
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA.

Neural Network Based Obstacle Avoidance Using
Simulated Sensor Data

Timothy A. Zimmerman
Department of Electrical and Computer Engineering

University of Hartford
West Hartford, Connecticut

timothy.a.zimmerman@gmail.com

Abstract—This study characterized the design and
implementation of a low-cost autonomous robot capable of
performing obstacle avoidance using neural networks trained
with simulated sensor data. The only sensor used for detecting
the environment was an infrared distance sensor attached to a
hobby servo, allowing for 180° of sensor visibility. In order to
train the neural networks, simulated sensor data was created
using LabVIEW and presented to a user, who selected the
expected robot operation in that specific situation. The simulated
sensor data and expected robot operation data was then used to
create training data. The trained neural networks were then
verified by testing the actual network output with the training
data, and additional random sensor data. The robot was
controlled wirelessly by a computer running LabVIEW, which
processed the sensor data through the networks and controlled
the robot’s subsequent movements. The networks were able to
produce accurate obstacle avoidance actions during the
simulated network analysis, and on the test bed, allowing the
robot to avoid obstacles while successfully performing its mission.

Keywords—neural network, backpropagation, infrared,
LabVIEW, autonomous robot, dsPIC, microcontroller, obstacle
avoidance, extended delta bar delta, simulation

I. INTRODUCTION
Robots and autonomous systems are becoming more

commonplace throughout the human work environment,
performing many tasks that are considered too mundane or
hazardous for humans. However, many of these systems are
restricted to movements within a predetermined range of
motion. If robots are to “break free” of this restriction and
allow autonomous navigation, efficient and accurate control
paradigms must be conceived and researched.

One effective paradigm that can be used to successfully
perform this type of autonomous operation is the neural
network (NN). NNs mimic the way a biological nervous
system, e.g. the human brain, processes sensory information.
In these networks, simple computations are performed by
individual nodes (i.e. neurons) which are then transmitted to
other nodes through connections (i.e. synapses) whose
connection strength can either enhance or diminish the signal
before it reaches the next node. The desired output is
calculated from these computations.

The effectiveness of the NN has allowed much research to
be performed in regards to its application to robotics. Some of
the research being performed includes: navigation and path
planning [1], [2], physical orientation determination [3],
obstacle and collision avoidance [4]–[6], manipulator and
motor control [7], and programming of the robot by
demonstration [8].

In this study, the robotic test bed constructed to investigate
the obstacle avoidance capabilities of these NN’s used a single
infrared (IR) distance sensor attached to a hobby servo, giving
a full 180º field of view around the front of the robot. The
information from this sensor, when rotated through the full
range of motion of the servo, was sent to the NN’s for
processing in order to determine the next course of action the
robot needed to perform.

For ease of experimentation, the network was originally
stored and processed on a PC running LabVIEW (a graphical
programming environment). Once the best performing
network is found, the network will be integrated into the robot
firmware. This will require some modification of the network
code in order to improve processing time.

II. ROBOT TEST BED

A. Robot Platform
The robot test bed was based on the “Rover 5 Robot

Platform” from SparkFun Electronics (ROB-10336). The
platform provided all aspects of locomotion required,
including: integrated motors, optical encoders, and
electromagnetic noise suppression. The platform’s tracked
differential drive also provided simple and consistent control
for steering. Having all of these features available in a single
unit greatly reduced development and manufacturing time of
the test bed.

Attached to the top of the platform were two levels of
Delrin plates. The first level held a 2100mAh 3S 11.1V
lithium polymer battery (E-Flite) and a standard hobby servo
(900-00005, Parallax, Inc.) which protruded into the Rover 5
body. On the second level were the custom built robot
controller, a 300º/second MEMS gyroscope (LISY300AL,
SparkFun Electronics), and a two channel 5A motor controller
(R0403, Orion Robotics).

Mounted to the servo horn was a single IR distance
measuring sensor (Sharp, GP2Y0A21YK0F) capable of
accurately measuring distances from 10 to 80 cm. The sensor
determined the distance based on the reflectivity of the object,
which was converted by the sensor into an analog voltage to
be read by the control system.

Fig. 1. Picture of the completed robot platform

B. Control System

The robot test bed was controlled by a custom circuit
board, containing a single dsPIC33EP256GP502 digital signal
controller, which was operated at a clock speed of 70.0416
MHz. In order to provide a stable clock for high-speed serial
communications with minimal timing errors, a 7.3728 MHz
crystal was chosen. Also on the control board was an XBee S1
802.15.4 1 mW serial modem, 7-36 V DC to DC converter,
3.3 V voltage regulator, and multi-function / multi-voltage
headers for peripheral sensors and devices (i.e. gyroscope,
motor controller, or servo).

When the robot performed a rotation, the gyroscope was
used to guarantee that the robot executed an accurate rotation.
This was done by integrating the rate of rotation over time to
determine how much the robot rotated up until that point. The
frequency of this calculation was 100 Hz.

C. Robot Test Bed Firmware
At the highest level, the firmware in the dsPIC33 contained

a simple looped task structure, directing the robot to perform
whichever task was being requested. Tasks were called based
on internal and external robot events (i.e. serial packets,
detected objects). Even though the robot was wirelessly
connected to a computer running the robot control program,
the physical navigation was not directly controlled by the
computer. All robot control functions were handled within the
dsPIC33.

In order to bypass the processing limitations of the dsPIC,
the robot firmware would request the computer to perform
computationally expensive operations. For example, upon
finding an object was within the current path, the robot would
automatically stop and scan its environment, and then request
the computer to accept the sensor data in order to have the NN
process it. The computer would then inform the robot which
action it needed to perform next, based on the NN’s output.
The robot could also ask the computer how it must adjust itself
in order to travel to the goal, since the LabVIEW program was
monitoring the location of the robot (Section V).

On initial startup of the robot, it waited in an idle state
until it was told by the computer to start traveling towards the
goal. Once this process begun, it would continue until it
received an “all-stop” command from the computer, either
initiated by a user, or because the robot reached the goal.

All communication was performed with a custom protocol,
defining different messages so they could be easily discerned
from each other. The serial modem transmitted 8-bit values, so
as to simplify the protocol, all commands were made to
operate within these 8-bits. Although only 8-bits in length, in
this paper they are referred to as “packets”. In the packet, the
upper 4-bits controlled the type of message, while the lower
four bits controlled the “value” of that specific packet type, if
applicable.

III. NEURAL NETWORK FRAMEWORK
In order for the robot to learn how to successfully navigate

its environment, a neural network was trained to correctly
process the sensor data and compute the proper solution. In
this case, a back-propagation network was trained using an
Extended Delta-Bar-Delta (EDBD) learning algorithm.

In a neural network, the connections between neurons
within the layers (input, hidden, and output) have weights
associated to them. Data is sent from the input layer to the
hidden layer via synapses. And subsequently the hidden layer
neurons then send their calculated data to the output layer,
which then recalculates before outputting the data for use.
Through each synapse, the data is modified by a weight value,
which is determined during network learning. All of the
previous layer’s neuron outputs are connected to each neuron
in the subsequent layer, where they are summed and applied to
an activation function. This value is then output to each
neuron in the subsequent layer, where the process is repeated,
until it reaches the output layer.

The output (yi) of each neuron (excluding the input neuron)
can be summarized by Eq. [9]:

 xj
[s]=A (Σi (xj

[s-1]× wji
[s]

)) (1)

where wji is the weight value from the previous layer to the
current layer (which is different for each synapse), xj is the
value of the jth neuron of the previous layer, and A is the
activation function.

For this specific application, the EDBD learning algorithm
was used to minimize the global error (Eq. 4) of the NN [10].
The algorithm allows each synapse weight to have its own

learning rate, and changes each one independently on each
iteration. The Δweight of each synapse is calculated:

 Δw(k+1) = α(k)δ(k) + µ(k)Δw(k) (2)

where δ(k) is the gradient component of the weight change.
From Eq. 2 each weight is then calculated:

 w(k+1) = w(k) + Δw(k) (3)

In order for the network to learn using the back
propagation algorithm, the global error (e) at the outputs had
to be fed back to the previous layers in order to modify the
weights. The function used for the global error is described in
Eq. 4 below:

 ej
[s]=A’(Ij

[s])·Σk(ek
[s+1]·wk j

[s+1]) (4)

where Ij is the weighted summation of inputs to the jth neuron
in layer s [9]. The learning coefficient, α(k), and the
momentum coefficient, µ(k), in Eq. 2 are defined in Eq. 5 and
6.

 ĸα exp(–γα |𝛿(k)|) if 𝛿(k – 1)δ(k) > 0
 Δα(k) = −φα α(k) if 𝛿(k – 1)δ(k) < 0 (5)

 0 otherwise

and

 ĸµ exp(–γµ |𝛿(k)|) if 𝛿(k – 1)δ(k) > 0
 Δµ(k) = −φµ µ(k) if 𝛿(k – 1)δ(k) < 0 (6)

 0 otherwise

where ĸα and ĸµ are constant coefficient factors for learning
and momentum, φα and φµ are the constant coefficient
decrement factors for learning and momentum, 𝛿(k) is the
weighted exponential average of all the previous gradient
components, and exp is the exponential function. Ceilings are
also used on the coefficients to prevent large changes and
oscillations of the weights.

NN learning is deemed complete when the RMS error of
the network falls below a certain threshold, or when the
network can no longer improve its error.

A. Simulation Data for the Neural Network
A NN learns by iterating through training data, which

contains the input values and the expected NN output. The
network will then process the input signals, producing an
“actual” output based on its current weight values. Any
deviation between the “actual” output and expected output will
be back propagated through the NN. Doing so modifies the
weights to correct for the error on the next iteration. The data
used to train the NN must contain many unique sets in order to
guarantee the NN can produce an accurate output.

In order to obtain this data, the plan was to have the robot
learn from a user, who would drive the robot manually while

LabVIEW recorded all of the sensor data and driver input. It
was quickly determined that the amount of time it took the IR
sensor to scan through all 180º (around 3 seconds) would not
allow for a user to drive the robot at a sensible pace. If the
speed of the robot was reduced to allow user operation, the
pace would not allow for a large enough quantity of data sets
to be recorded before the user quit from pure boredom.

To solve this dilemma, a simulation of the sensor data plot,
shown in Fig. 2, was created in LabVIEW. The amount of
objects and the minimum allowable distance from the robot to
an object were user selectable to simulate real-world situations
(e.g. sparse environments, very crowded environments, and
everywhere in between). The computer mouse pointer was
then hooked into the sensor plot; its position relative to the
origin of the plot.

Fig. 2. Screenshot of navigational decision simulator

On initial start of the simulation, new random sensor data

was generated and presented to the user. The user had to
determine whether the robot should continue forward, retreat
(perform a 180º rotation), or turn at an angle. If it was decided
that the robot should turn to a specific angle, the user would
click on the sensor plot in the direction the robot should
attempt to traverse.

All of the simulation runs were stored in comma-separated
value (CSV) files for later use. In all, 1101 data sets were
created for the training of the NN. The data sets spanned many
different situations that the robot would encounter, allowing
the robot to make correct decisions regardless of what
obstacles that were presented to it.

B. Neural Network Implementation
The network was created and trained using NeuralWare’s

Professional II/PLUS (ProfIIPlus) software. After much trial
and error testing with different learning algorithms,
momentums, learning rates, activations functions, and a
plethora of other settings, it was decided that a

backpropagation algorithm with EDBD learning, a sigmoid
activation function, and 18 nodes in the hidden layer would be
sufficient for accurate training.

The NN was configured to have 19 inputs for each distance
value coming from the IR sensor, and originally 22 outputs: 19
angles, forward, retreat, and an angle. If the network decided
that the robot should rotate to a specific angle, forward and
retreat were expected to be “off”, and an angle output would
instead be activated. In order to guarantee that only one output
was activated, the algorithm tested all network outputs in
order to determine which one had the greatest value.

It was discovered early in the network training that the NN
was having difficulty trying to account for every different
situation it may encounter. RMS error values were not within
the expected range for this research so it was decided to split
the NN into two separate networks.

Both networks had the same 19 angle inputs, but their
outputs differed. The first network simply decided whether the
robot should continue forward, retreat, or rotate a certain
amount (named the “FRA” network). If the network decided
that an angle needed to be selected, the second network was
called to process the same input data and produce a rotation
angle (named the “Angle” network). Separating the networks
greatly improved the RMS error of both networks.

The NeuralWare software allowed for the networks to be
exported as C/C++ code for use in other programs and
platforms. After the code was exported, it was modified to
remove sections of code that were not needed, specifically all
sections written for C++.

Reading through documentation regarding running external
code through LabVIEW virtual instruments (VIs), it was
determined that the quickest and most efficient way to import
the NN code was to wrap it in a dynamic link library (DLL).
To accomplish this, the code was imported into Microsoft
Visual Studio C++ 2010 Express where a DLL wrapper file
was created. Since the DLL simply wraps the NN C code, it
allowed for simple updates to the NN in the future, if the need
arose.

To test the functionality of the NN, a NN Data Simulator
(NNDS) was created in LabVIEW. This program was a
repurposed version of the user driving simulator, modified to
send the sensor data to the two NNs, instead of creating
simulation data from user input. On each execution, random
sensor data was generated and processed through the NNs.
After performing many simulations with this program, it was
found that the NNs were able to accurately determine the
proper robot action to perform.

IV. OBSTACLE AVOIDANCE
As described in Section II Part C, once the robot was told

to begin traversing towards the goal, it automatically
initialized the obstacle avoidance process. While the robot was
driving forward, the servo directed the sensor to perform a
distance scan at three positions: directly in front of the robot
(90º), and ±30º from the forward position (60º and 120º). If an
object was detected at any of these positions within 22 cm (8.6

inches), the robot would have stopped all movement and
perform a 180º scan of the environment.

Fig. 3. Example of distance data from a 180º scan.

In total, 19 distance measurements were performed in 10º

increments from right to left. An example of the distance data
is shown in Fig. 3. The figure displays an actual robot scan, in
which an object was detected 35.5 cm (14 inches) away at 30º,
and another object 20.3 cm (8 inches) away at 90º. The plot
also displays the raw sensor data received from the robot, and
the NN’s decision.

The decision of the NN was then sent back to the robot in

the form of a requested robot action. If a retreat or angle
rotation was requested, the robot would have begun traversing
forward once the requested action was complete.

V. ROBOT NAVIGATION
In order for the robot to have an obstacle to avoid the

previously stated method, it would require some form of
“objective”, or goal. While the goals created in this research
were arbitrary and virtual, the real-life application of this
navigational goal is limited only to the imagination of the
reader.

For the physical testing of the autonomous navigation of
the robot, a test area was created which measured 165 cm by
244 cm (5 feet 5 inches by 8 feet). An Axis M1013 network
camera was then positioned 3.81 meters (12 feet 6 inches)
above the test area, allowing for a complete view of the test
area for monitoring robot operations.

In order to translate the robot position within the image to a
valid linear system, LabVIEW was used to correct for the
barrel distortion of the lens. The image after the distortion
correction is shown in Fig. 4. Note the curvature of the edges
of the original image.

Fig. 4. Image from the Axis M1013 camera after distortion correction.

While the robot was easily visible to the human observer,

the vision system needed an accurate method of determining
the position and heading of the robot. This was done by
placing two vision targets of different colors on the front of
the robot (green and pink bright-colored Post-It notes). With
the addition of these targets, the vision system was capable of
determining the position and heading of the robot anywhere
within the test area.

A. Navigational Goals
 The navigational goals for the robot to traverse towards

were created virtually within the LabVIEW control program.
When a goal was created, it was given a random position on
the opposite side of the test area from where the robot was
currently residing, providing longer trial times and the
opportunity to encounter more obstacles.

After a specific amount of time, determined by the robot, it
would request an update on the error between its current
heading and the heading it needed to traverse in order to
accurately travel to the goal. If an adjustment was needed, the
robot would perform the adjustment before continuing towards
the goal. This allowed the robot to clear any previous
obstacles before correcting its heading.

Once the robot got within 10 cm (4 inches) of the goal, the
LabVIEW control program automatically generated a new
goal location.

B. Data Acquisition
The refresh rate of the test area image within the LabVIEW

control software was 1.5 seconds. At each image capture, the
robot position and heading were stored within a log file, along
with any robot packets that were transferred between the robot
and the computer, neural network data, and the original image.
This was done not only to document the traversing of the robot
throughout the test area, but also to improve the NNs.

For example, if the robot happened to come upon an
obstacle and the NNs decided the best course of action was to
hit the object head-on, the input data and results of that
decision would be stored in the log. That data could then be

“scraped” from the log and added to the training data with the
correct expected output. When the NN was retrained, this
added data set would have prevented the network from
performing that action again.

To document the motion of the robot around the test area, a
map was generated within the LabVIEW control program to
display the robot’s travel. On each image capture, the current
position of the robot was added to the image, along with a line
from the previous data point, to show the path traveled. Upon
the robot reaching the goal, the image was stored, and a new
one was created. An example of this is shown in Fig. 5.
Objects, which were rolled pieces of letter size paper with a
diameter of 2.5 cm (1 inch), had blue Post-It notes attached to
them, which the control program displayed as blue dots.

Fig. 5. Example of the map created from robot position data.

VI. EXPERIMENTAL RESULTS
In order to analyze the accuracy of the NNs, experiments

were performed using sensor data from three different sources:
the original training data, simulated sensor scans, and physical
autonomous robot operation.

A. Network Analysis Using Original Training Data
After the NNs were trained in ProfIIPlus, the test data was

processed on both networks to determine the error between the
expected and actual outputs. The classification results of these
two tests are shown in Fig. 6 for the FRA network and Fig. 7
for the Angle network. In order to visualize the large
concentration of data points in the figures, a random amount
of “jitter” was added to each point in the x and y axis.

Of the 1101 data points tested with the FRA network, only
40 were misclassified (shown in Fig. 6 with circular markers),
and 9 of the 40 appear to have been caused by invalid
expected values in the training data. While results of the test
on the FRA network yielded a classification error of 3.63%,
the 9 points of invalid test data were disregarded, resulting in a
classification error of 2.82%.

To determine why these 9 sets were misclassified, the
original input data was analyzed. All of the “Angle” points
that were misclassified as “Forward” contained objects that
were directly in front of the robot, but were distant. It is

believed that this was caused by training data which included
an attempt at creating robot “curiosity”. Some of the simulated
sensor data presented by the NNDS lacked enough
information to make an accurate navigational decision. In
order to gain more information on the objects, it was planned
to have the robot move a short distance at a certain angle in
order to gather more information about the obstacles. In most
of these situations, the robot was instructed to “rotate” to 90°
(forward) to get this extra information. When the training data
was created, any “rotation” to 90° was converted to a
“Forward” command. This is believed to be the source of the
misclassification.

Fig. 6. Actual vs. Expected output of FRA network

All of the “Retreat” points that were classified as “Angle”

appear to have been caused by the sensed objects’ distance
from the robot. The closest distance of any object in all of the
misclassifications was 28 cm (11 inches). Regardless of the
rotation the robot would have performed, the proximity of the
other objects would have promptly caused a sensor rescan of
the environment.

All of the “Forward” points that were classified as
“Retreats” appear to have been caused by some sort of pattern
matching by the NN. In all of these cases, there were spans of
50° or greater between objects, while the opposing side
contained a high population (2-4) of objects. It is believed that
the NN tended to classify scans which contained many objects
concentrated on either side of the robot as an “Angle”
movement, rather than “Forward”, as this pattern was typical
of most of the correctly classified “Angle” rotations.

Of the 935 data points tested on the Angle network, shown
in Fig. 7, the 389 points that made up the 90° category were
removed. Of the remaining 546 points, 49 were misclassified,
giving an error of 9.18%. After reviewing the data, it was
decided to redefine a misclassification as any result that
deviated more than 50° from the expected result, and
contained an object directly within ±10° of the subsequent
path of the robot. The ±10° rule was added after noticing

many of the sets of data successfully avoided obstacles, but
did not do so at the expected angle in the training data. These
modifications reduced the number of misclassifications to 17,
lowering the error to 3.11%.

Fig. 7. Actual vs. Expected output of the angle network

Again, each group of misclassified points was analyzed to

determine the reason for their misclassification. It is believed
the network was more than likely affected by the same robot
“curiosity” that caused misclassifications in the FRA network.

B. Network Analysis Using Simulated Sensor Trials
In order to verify the accuracy of the generated NNs, the

NNDS program was modified to deliver randomly generated
sensor data to the networks. This exactly mimicked how the
networks would process data during normal robot operations,
and provided data which differed from the 1000+ data sets that
were used as training and testing data.

The networks were first tested with a minimal amount of
simulated objects (around 2-3) ranging from 28 to 38 cm (11
to 15 inches) away from the robot. Of the 105 simulations,
only 3 showed questionable behavior. In each of the three
cases, the networks decided that the robot should rotate to
angles that would have put the detected objects very close to
the robot’s direction of travel.

The second round of simulations added more objects
(around 4 to 8), at the same range as the previous simulation.
After 100 runs, 5 showed questionable behavior. Again, the
network was attempting to have the robot rotate to angles that
were very close to detected objects.

The final simulation used the same amount of objects, but
allowed them to be produced within 18 cm (7 inches) of the
robot. Doing so produced many “Retreats”, as expected. Some
of the runs contained gaps between the objects which appeared
to be large enough for the robot, but the robot decided instead
to retreat. The classification of these situations could be
improved upon by adding more training data sets which define
the proper navigational decision.

C. Autonomous Robot Operation Trials
The robot was tested using a variety of obstacle and goal

placements, resulting in 20 trials. Of the 20 trials, 2 caused
behavior which resulted in the robot being incapable of
finding the goal, and 2 others collided with objects. Fig. 8
shows four of the trials where the robot was able to
successfully navigate through the obstacles and find the goal.
Each arrow points to the location where a full 180° scan and
subsequent NN calculation were performed.

The two trials where the robot was incapable of finding the
goal appeared to be caused by the NNs constantly reporting
that the robot needed to retreat. In all of these situations, the
objects were within 4 inches of the front of the robot as would
be expected in environments with a large amount of obstacles.
It appeared that the robot was not capable of properly
determining the correct course of action when an object was
within close range, as well as invalid distance measurements
from the IR sensor.

Fig. 8. Map of Robot Trials #02, 04, 14, and 06

The two trials where the robot collided with obstacles

appeared to be caused by the top-level navigation program and
the lack of side facing sensors to prevent side collisions. In
each case, the collisions occurred on the side of the robot,
which is where it did not have active sensors to prevent those
collisions. It also appeared that in certain situations, the sensor
did not accurately inform the control system that there was an
object in front of the robot even though it was within view of
the sensor. These situations, however, did not result in
collisions, as the objects were usually outside of the robot’s
direction of travel or eventually caused the robot to perform a
180° scan.

VII. DISCUSSION
When analysis was performed on the training data, it

revealed the data generated by the NNDS program formed a
bimodal distribution (with the 90° data points removed). A
comparison of the percentage of population at each angle and
the percentage of misclassification at each angle of the
training data analysis was performed to verify that the bimodal
distribution of training data sets did not cause any of the
misclassifications due to some angles having more training
sets than others. As evident in Fig. 9, it was concluded there
was no correlation between the two variables.

The results from the training data analysis were also
reviewed to determine the distribution of expected and actual
network output, which is shown in Fig. 10. The actual
classifications performed by the network did show a
distribution similar to the expected classifications, although it
appeared the network preferred certain angles over others. The
source of the angle preference was found after analyzing the
amount of misclassified results at each angle, which is shown
as the third series of data in Fig. 10. This additional series of
data shows the extra classifications were a result of the
misclassifications of the network.

Fig. 9. Comparison of % Misclassifications and % Population

Fig. 10. Comparison of % Classifications and % Population

Fig. 11. Percent of misclassified population vs. hesitation value

While analyzing the data, it was noted that the network

output value of many of the misclassified data sets had a small
value (<0.50). In order to improve the operation of the angle
network, it was proposed that the largest output value of the
network could be used to determine whether the network was
confident in its decision, or if more data needed to be
obtained. This value was called the “hesitation” value of the
network. After gathering the data, it was determined that the
output value was not practical for expressing the amount of

network hesitation because a majority of the misclassifications
had values of over 0.50. The distribution is shown in Fig. 11.

It was believed that the IR distance sensor was the primary
source of erroneous object detection on the robot test bed.
Many sensor scans returned object data that did not appear to
be accurate, in regards to the actual distances. During robot
traversing, there were also situations when the object detection
of the sensor would either delay or sometimes not even sense
the object, resulting in the robot colliding with the object, or
performing its reading so close to the object that the result of
the NN was simply to retreat. After reviewing the datasheet
for the sensor, the physical orientation of the sensor appeared
to be part of the issue, more than likely because of the position
sensitive detector (PSD). Rotating the orientation of the sensor
so both the sensors emitter and PSD are aligned vertically may
have helped to reduce some of the variability as the light from
the emitter transitions from the background to an object. The
accuracy may have also been improved by collimating the
emitter light into a tighter beam, but this was not tested.

None of the misclassifications by the NNs were affected by
the sensor because the sensor was not involved in collecting
the training data. If the sensor had been used to collect training
data instead of simulating the data, the inaccuracy of the
sensor readings would have been introduced training process.
Whether or not the network would have been able to learn this
error and compensate for it was not tested.

A major limitation of the sensor was also the amount of
time needed to obtain an updated sensor value. The analog
voltage of the sensor did not change for at least 38.3 ms ±9.6
ms, which made the time required for a 180° scan (with servo
position updates) around 2−3 seconds. This not only limited
the speed of obstacle avoidance decisions, but also required
that the decisions be limited to angular rotations, and also did
not allow a user to physically drive the robot while the control
system gathered data (hence the simulated sensor data). If an
improved sensor was used with a faster update rate (10+ Hz),
a form of dynamic control could have been implemented,
where the robot would not have had to stop at each object to
perform a scan, but instead actively traversed around the
object.

Although over 1000 simulated sets of simulated sensor
data was created for the training of the NNs, not all situations
the robot encountered were included in the data, resulting in
some unwanted actions. This was especially evident when the
robot found itself close to a wall. The simulation program did
not produce situations which imitated a large object directly in
front or to the side of the robot, resulting in the FRA NN
deciding the best course of action was to “retreat”. Many of
the situations where the robot test bed detected the wall could
have been traversed better with a decision other than “retreat”.

VIII. CONCLUSION
In this paper it has been shown that a back-propagation

neural network trained with simulated sensor data is capable
of avoiding obstacles in order to accomplish a navigational
goal. When combined with more accurate sensors, this low

cost system could be added to other devices, allowing
autonomous obstacle avoidance capabilities.

REFERENCES

[1] K. Park and H. Choi, “Neural Network Based Path
Planning Plan Design of Autonomous Mobile Robot,”
in 2006 SICE-ICASE International Joint Conference,
2006, pp. 3757–3761.

[2] S. Neusser, “Developments in autonomous vehicle
navigation,” CompEuro’ 92. “Computer Syst. Softw.
Eng. Proceedings,” pp. 453–458, 1992.

[3] M. P. Paulraj, R. B. Ahmad, C. R. Hema, and F.
Hashim, “Estimation of mobile robot orientation using
neural networks,” 2009 5th Int. Colloq. Signal
Process. Its Appl., pp. 42–46, Mar. 2009.

[4] H. T. Trieu, H. T. Nguyen, and K. Willey, “Obstacle
avoidance for power wheelchair using bayesian neural
network.,” Conf. Proc. IEEE Eng. Med. Biol. Soc.,
vol. 2007, pp. 4771–4, Jan. 2007.

[5] D. Tsankova, “Neural Networks Based Navigation and
Control of a Mobile Robot in a Partially Known
Environment,” pp. 197–223.

[6] I. Engedy and G. Horvath, “Artificial neural network
based mobile robot navigation,” in 2009 IEEE
International Symposium on Intelligent Signal
Processing, 2009, pp. 241–246.

[7] M. Meng, “A neural network approach to real-time
motion planning and control of robot manipulators,”
IEEE SMC’99 Conf. Proceedings. 1999 IEEE Int.
Conf. Syst. Man, Cybern. (Cat. No.99CH37028), vol.
4, pp. 674–679, 1999.

[8] M. Stoica, G. a. Calangiu, F. Sisak, and I. Sarkany, “A
method proposed for training an artificial neural
network used for industrial robot programming by
demonstration,” 2010 12th Int. Conf. Optim. Electr.
Electron. Equip., pp. 831–836, May 2010.

[9] NeuralWare, Neural Computing - A Technology
Handbook for NeuralWorks Professional II/PLUS,
5.50 ed. Carnegie, PA, 2001, p. 334.

[10] A. Minai and R. Williams, “Back-propagation
heuristics: a study of the extended delta-bar-delta
algorithm,” Neural Networks, 1990., 1990 IJCNN …,
pp. 595–600, 1990.

