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Abstract—This study characterized the design and 
implementation of a low-cost autonomous robot capable of 
performing obstacle avoidance using neural networks trained 
with simulated sensor data. The only sensor used for detecting 
the environment was an infrared distance sensor attached to a 
hobby servo, allowing for 180° of sensor visibility. In order to 
train the neural networks, simulated sensor data was created 
using LabVIEW and presented to a user, who selected the 
expected robot operation in that specific situation. The simulated 
sensor data and expected robot operation data was then used to 
create training data. The trained neural networks were then 
verified by testing the actual network output with the training 
data, and additional random sensor data. The robot was 
controlled wirelessly by a computer running LabVIEW, which 
processed the sensor data through the networks and controlled 
the robot’s subsequent movements. The networks were able to 
produce accurate obstacle avoidance actions during the 
simulated network analysis, and on the test bed, allowing the 
robot to avoid obstacles while successfully performing its mission.  

Keywords—neural network, backpropagation, infrared, 
LabVIEW, autonomous robot, dsPIC, microcontroller, obstacle 
avoidance, extended delta bar delta, simulation 

I. INTRODUCTION 
Robots and autonomous systems are becoming more 

commonplace throughout the human work environment, 
performing many tasks that are considered too mundane or 
hazardous for humans. However, many of these systems are 
restricted to movements within a predetermined range of 
motion. If robots are to “break free” of this restriction and 
allow autonomous navigation, efficient and accurate control 
paradigms must be conceived and researched. 

One effective paradigm that can be used to successfully 
perform this type of autonomous operation is the neural 
network (NN). NNs mimic the way a biological nervous 
system, e.g. the human brain, processes sensory information. 
In these networks, simple computations are performed by 
individual nodes (i.e. neurons) which are then transmitted to 
other nodes through connections (i.e. synapses) whose 
connection strength can either enhance or diminish the signal 
before it reaches the next node. The desired output is 
calculated from these computations. 

The effectiveness of the NN has allowed much research to 
be performed in regards to its application to robotics. Some of 
the research being performed includes: navigation and path 
planning [1], [2], physical orientation determination [3], 
obstacle and collision avoidance [4]–[6], manipulator and 
motor control [7], and programming of the robot by 
demonstration [8].  

In this study, the robotic test bed constructed to investigate 
the obstacle avoidance capabilities of these NN’s used a single 
infrared (IR) distance sensor attached to a hobby servo, giving 
a full 180º field of view around the front of the robot. The 
information from this sensor, when rotated through the full 
range of motion of the servo, was sent to the NN’s for 
processing in order to determine the next course of action the 
robot needed to perform.  

For ease of experimentation, the network was originally 
stored and processed on a PC running LabVIEW (a graphical 
programming environment). Once the best performing 
network is found, the network will be integrated into the robot 
firmware. This will require some modification of the network 
code in order to improve processing time. 

II. ROBOT TEST BED 

A. Robot Platform 
The robot test bed was based on the “Rover 5 Robot 

Platform” from SparkFun Electronics (ROB-10336). The 
platform provided all aspects of locomotion required, 
including: integrated motors, optical encoders, and 
electromagnetic noise suppression. The platform’s tracked 
differential drive also provided simple and consistent control 
for steering. Having all of these features available in a single 
unit greatly reduced development and manufacturing time of 
the test bed.  

Attached to the top of the platform were two levels of 
Delrin plates. The first level held a 2100mAh 3S 11.1V 
lithium polymer battery (E-Flite) and a standard hobby servo 
(900-00005, Parallax, Inc.) which protruded into the Rover 5 
body. On the second level were the custom built robot 
controller, a 300º/second MEMS gyroscope (LISY300AL,  
SparkFun Electronics), and a two channel 5A motor controller 
(R0403, Orion Robotics).  



Mounted to the servo horn was a single IR distance 
measuring sensor (Sharp, GP2Y0A21YK0F) capable of 
accurately measuring distances from 10 to 80 cm. The sensor 
determined the distance based on the reflectivity of the object, 
which was converted by the sensor into an analog voltage to 
be read by the control system.  
 
Fig. 1.   Picture of the completed robot platform 

 
B. Control System 

The robot test bed was controlled by a custom circuit 
board, containing a single dsPIC33EP256GP502 digital signal 
controller, which was operated at a clock speed of 70.0416 
MHz. In order to provide a stable clock for high-speed serial 
communications with minimal timing errors, a 7.3728 MHz 
crystal was chosen. Also on the control board was an XBee S1 
802.15.4 1 mW serial modem, 7-36 V DC to DC converter, 
3.3 V voltage regulator, and multi-function / multi-voltage 
headers for peripheral sensors and devices (i.e. gyroscope, 
motor controller, or servo).  

When the robot performed a rotation, the gyroscope was 
used to guarantee that the robot executed an accurate rotation. 
This was done by integrating the rate of rotation over time to 
determine how much the robot rotated up until that point. The 
frequency of this calculation was 100 Hz. 

C. Robot Test Bed Firmware 
At the highest level, the firmware in the dsPIC33 contained 

a simple looped task structure, directing the robot to perform 
whichever task was being requested. Tasks were called based 
on internal and external robot events (i.e. serial packets, 
detected objects). Even though the robot was wirelessly 
connected to a computer running the robot control program, 
the physical navigation was not directly controlled by the 
computer. All robot control functions were handled within the 
dsPIC33.  

In order to bypass the processing limitations of the dsPIC, 
the robot firmware would request the computer to perform 
computationally expensive operations. For example, upon 
finding an object was within the current path, the robot would 
automatically stop and scan its environment, and then request 
the computer to accept the sensor data in order to have the NN 
process it. The computer would then inform the robot which 
action it needed to perform next, based on the NN’s output. 
The robot could also ask the computer how it must adjust itself 
in order to travel to the goal, since the LabVIEW program was 
monitoring the location of the robot (Section V).  

On initial startup of the robot, it waited in an idle state 
until it was told by the computer to start traveling towards the 
goal. Once this process begun, it would continue until it 
received an “all-stop” command from the computer, either 
initiated by a user, or because the robot reached the goal. 

All communication was performed with a custom protocol, 
defining different messages so they could be easily discerned 
from each other. The serial modem transmitted 8-bit values, so 
as to simplify the protocol, all commands were made to 
operate within these 8-bits. Although only 8-bits in length, in 
this paper they are referred to as “packets”. In the packet, the 
upper 4-bits controlled the type of message, while the lower 
four bits controlled the “value” of that specific packet type, if 
applicable.  

III. NEURAL NETWORK FRAMEWORK 
In order for the robot to learn how to successfully navigate 

its environment, a neural network was trained to correctly 
process the sensor data and compute the proper solution. In 
this case, a back-propagation network was trained using an 
Extended Delta-Bar-Delta (EDBD) learning algorithm.  

In a neural network, the connections between neurons 
within the layers (input, hidden, and output) have weights 
associated to them. Data is sent from the input layer to the 
hidden layer via synapses. And subsequently the hidden layer 
neurons then send their calculated data to the output layer, 
which then recalculates before outputting the data for use. 
Through each synapse, the data is modified by a weight value, 
which is determined during network learning. All of the 
previous layer’s neuron outputs are connected to each neuron 
in the subsequent layer, where they are summed and applied to 
an activation function. This value is then output to each 
neuron in the subsequent layer, where the process is repeated, 
until it reaches the output layer.  

The output (yi) of each neuron (excluding the input neuron) 
can be summarized by Eq. [9]: 

 xj 
[s]=A ( Σi ( xj 

[s-1]× wji 
[s]

 )) (1) 

where wji is the weight value from the previous layer to the 
current layer (which is different for each synapse), xj is the 
value of the jth neuron of the previous layer, and A is the 
activation function.  

For this specific application, the EDBD learning algorithm 
was used to minimize the global error (Eq. 4) of the NN [10]. 
The algorithm allows each synapse weight to have its own 

 



learning rate, and changes each one independently on each 
iteration. The Δweight of each synapse is calculated: 

 Δw(k+1) = α(k)δ(k) + µ(k)Δw(k) (2) 

where  δ(k) is the gradient component of the weight change. 
From Eq. 2 each weight is then calculated: 

 w(k+1) = w(k) + Δw(k) (3) 

In order for the network to learn using the back 
propagation algorithm, the global error (e) at the outputs had 
to be fed back to the previous layers in order to modify the 
weights. The function used for the global error is described in 
Eq. 4 below: 

 ej 
[s]=A’(Ij 

[s])·Σk(ek 
[s+1]·wk j 

[s+1]) (4) 

where Ij is the weighted summation of inputs to the jth neuron 
in layer s [9]. The learning coefficient, α(k),  and the 
momentum coefficient, µ(k), in Eq. 2 are defined in Eq. 5 and 
6. 

 ĸα exp(–γα |𝛿(k)| ) if 𝛿(k – 1)δ(k) > 0 
 Δα(k) =  −φα α(k) if  𝛿(k – 1)δ(k) < 0 (5) 

 0 otherwise 

and 

 ĸµ exp(–γµ |𝛿(k)| ) if 𝛿(k – 1)δ(k) > 0 
 Δµ(k) =  −φµ µ(k) if  𝛿(k – 1)δ(k) < 0 (6) 

 0 otherwise 

where ĸα and ĸµ are constant coefficient factors for learning 
and momentum, φα and φµ are the constant coefficient 
decrement factors for learning and momentum, 𝛿(k) is the 
weighted exponential average of all the previous gradient 
components, and exp is the exponential function. Ceilings are 
also used on the coefficients to prevent large changes and 
oscillations of the weights.  

NN learning is deemed complete when the RMS error of 
the network falls below a certain threshold, or when the 
network can no longer improve its error.  

A. Simulation Data for the Neural Network 
A NN learns by iterating through training data, which 

contains the input values and the expected NN output. The 
network will then process the input signals, producing an 
“actual” output based on its current weight values. Any 
deviation between the “actual” output and expected output will 
be back propagated through the NN. Doing so modifies the 
weights to correct for the error on the next iteration. The data 
used to train the NN must contain many unique sets in order to 
guarantee the NN can produce an accurate output. 

In order to obtain this data, the plan was to have the robot 
learn from a user, who would drive the robot manually while 

LabVIEW recorded all of the sensor data and driver input. It 
was quickly determined that the amount of time it took the IR 
sensor to scan through all 180º (around 3 seconds) would not 
allow for a user to drive the robot at a sensible pace. If the 
speed of the robot was reduced to allow user operation, the 
pace would not allow for a large enough quantity of data sets 
to be recorded before the user quit from pure boredom.  

To solve this dilemma, a simulation of the sensor data plot, 
shown in Fig. 2, was created in LabVIEW. The amount of 
objects and the minimum allowable distance from the robot to 
an object were user selectable to simulate real-world situations 
(e.g. sparse environments, very crowded environments, and 
everywhere in between). The computer mouse pointer was 
then hooked into the sensor plot; its position relative to the 
origin of the plot. 

 
Fig. 2.   Screenshot of navigational decision simulator 

 
 
On initial start of the simulation, new random sensor data 

was generated and presented to the user. The user had to 
determine whether the robot should continue forward, retreat 
(perform a 180º rotation), or turn at an angle. If it was decided 
that the robot should turn to a specific angle, the user would 
click on the sensor plot in the direction the robot should 
attempt to traverse.  

All of the simulation runs were stored in comma-separated 
value (CSV) files for later use. In all, 1101 data sets were 
created for the training of the NN. The data sets spanned many 
different situations that the robot would encounter, allowing 
the robot to make correct decisions regardless of what 
obstacles that were presented to it. 

B. Neural Network Implementation 
The network was created and trained using NeuralWare’s 

Professional II/PLUS (ProfIIPlus) software. After much trial 
and error testing with different learning algorithms, 
momentums, learning rates, activations functions, and a 
plethora of other settings, it was decided that a 

 



backpropagation algorithm with EDBD learning, a sigmoid 
activation function, and 18 nodes in the hidden layer would be 
sufficient for accurate training.  

The NN was configured to have 19 inputs for each distance 
value coming from the IR sensor, and originally 22 outputs: 19 
angles, forward, retreat, and an angle. If the network decided 
that the robot should rotate to a specific angle, forward and 
retreat were expected to be “off”, and an angle output would 
instead be activated. In order to guarantee that only one output 
was activated, the algorithm tested all network outputs in 
order to determine which one had the greatest value.  

It was discovered early in the network training that the NN 
was having difficulty trying to account for every different 
situation it may encounter. RMS error values were not within 
the expected range for this research so it was decided to split 
the NN into two separate networks. 

Both networks had the same 19 angle inputs, but their 
outputs differed. The first network simply decided whether the 
robot should continue forward, retreat, or rotate a certain 
amount (named the “FRA” network). If the network decided 
that an angle needed to be selected, the second network was 
called to process the same input data and produce a rotation 
angle (named the “Angle” network). Separating the networks 
greatly improved the RMS error of both networks.  

The NeuralWare software allowed for the networks to be 
exported as C/C++ code for use in other programs and 
platforms. After the code was exported, it was modified to 
remove sections of code that were not needed, specifically all 
sections written for C++.  

Reading through documentation regarding running external 
code through LabVIEW virtual instruments (VIs), it was 
determined that the quickest and most efficient way to import 
the NN code was to wrap it in a dynamic link library (DLL). 
To accomplish this, the code was imported into Microsoft 
Visual Studio C++ 2010 Express where a DLL wrapper file 
was created.  Since the DLL simply wraps the NN C code, it 
allowed for simple updates to the NN in the future, if the need 
arose. 

To test the functionality of the NN, a NN Data Simulator 
(NNDS) was created in LabVIEW. This program was a 
repurposed version of the user driving simulator, modified to 
send the sensor data to the two NNs, instead of creating 
simulation data from user input. On each execution, random 
sensor data was generated and processed through the NNs. 
After performing many simulations with this program, it was 
found that the NNs were able to accurately determine the 
proper robot action to perform.  

IV. OBSTACLE AVOIDANCE 
As described in Section II Part C, once the robot was told 

to begin traversing towards the goal, it automatically 
initialized the obstacle avoidance process. While the robot was 
driving forward, the servo directed the sensor to perform a 
distance scan at three positions: directly in front of the robot 
(90º), and ±30º from the forward position (60º and 120º). If an 
object was detected at any of these positions within 22 cm (8.6 

inches), the robot would have stopped all movement and 
perform a 180º scan of the environment.  

 
Fig. 3.   Example of distance data from a 180º scan. 

 
 
In total, 19 distance measurements were performed in 10º 

increments from right to left. An example of the distance data 
is shown in Fig. 3. The figure displays an actual robot scan, in 
which an object was detected 35.5 cm (14 inches) away at 30º, 
and another object 20.3 cm (8 inches) away at 90º. The plot 
also displays the raw sensor data received from the robot, and 
the NN’s decision. 

 
The decision of the NN was then sent back to the robot in 

the form of a requested robot action. If a retreat or angle 
rotation was requested, the robot would have begun traversing 
forward once the requested action was complete.  

V. ROBOT NAVIGATION 
In order for the robot to have an obstacle to avoid the 

previously stated method, it would require some form of 
“objective”, or goal.  While the goals created in this research 
were arbitrary and virtual, the real-life application of this 
navigational goal is limited only to the imagination of the 
reader. 

For the physical testing of the autonomous navigation of 
the robot, a test area was created which measured 165 cm by 
244 cm (5 feet 5 inches by 8 feet). An Axis M1013 network 
camera was then positioned 3.81 meters (12 feet 6 inches) 
above the test area, allowing for a complete view of the test 
area for monitoring robot operations.  

In order to translate the robot position within the image to a 
valid linear system, LabVIEW was used to correct for the 
barrel distortion of the lens. The image after the distortion 
correction is shown in Fig. 4. Note the curvature of the edges 
of the original image.  

 



 
Fig. 4.   Image from the Axis M1013 camera after distortion correction. 

 
While the robot was easily visible to the human observer, 

the vision system needed an accurate method of determining 
the position and heading of the robot. This was done by 
placing two vision targets of different colors on the front of 
the robot (green and pink bright-colored Post-It notes). With 
the addition of these targets, the vision system was capable of 
determining the position and heading of the robot anywhere 
within the test area. 

A. Navigational Goals 
 The navigational goals for the robot to traverse towards 

were created virtually within the LabVIEW control program. 
When a goal was created, it was given a random position on 
the opposite side of the test area from where the robot was 
currently residing, providing longer trial times and the 
opportunity to encounter more obstacles.  

After a specific amount of time, determined by the robot, it 
would request an update on the error between its current 
heading and the heading it needed to traverse in order to 
accurately travel to the goal. If an adjustment was needed, the 
robot would perform the adjustment before continuing towards 
the goal. This allowed the robot to clear any previous 
obstacles before correcting its heading.  

Once the robot got within 10 cm (4 inches) of the goal, the 
LabVIEW control program automatically generated a new 
goal location.  

B. Data Acquisition 
The refresh rate of the test area image within the LabVIEW 

control software was 1.5 seconds. At each image capture, the 
robot position and heading were stored within a log file, along 
with any robot packets that were transferred between the robot 
and the computer, neural network data, and the original image. 
This was done not only to document the traversing of the robot 
throughout the test area, but also to improve the NNs.  

For example, if the robot happened to come upon an 
obstacle and the NNs decided the best course of action was to 
hit the object head-on, the input data and results of that 
decision would be stored in the log. That data could then be 

“scraped” from the log and added to the training data with the 
correct expected output. When the NN was retrained, this 
added data set would have prevented the network from 
performing that action again. 

To document the motion of the robot around the test area, a 
map was generated within the LabVIEW control program to 
display the robot’s travel. On each image capture, the current 
position of the robot was added to the image, along with a line 
from the previous data point, to show the path traveled. Upon 
the robot reaching the goal, the image was stored, and a new 
one was created. An example of this is shown in Fig. 5. 
Objects, which were rolled pieces of letter size paper with a 
diameter of 2.5 cm (1 inch), had blue Post-It notes attached to 
them, which the control program displayed as blue dots. 

 
Fig. 5.   Example of the map created from robot position data. 

 

VI. EXPERIMENTAL RESULTS 
In order to analyze the accuracy of the NNs, experiments 

were performed using sensor data from three different sources: 
the original training data, simulated sensor scans, and physical 
autonomous robot operation.  

A. Network Analysis Using Original Training Data 
After the NNs were trained in ProfIIPlus, the test data was 

processed on both networks to determine the error between the 
expected and actual outputs. The classification results of these 
two tests are shown in Fig. 6 for the FRA network and Fig. 7 
for the Angle network. In order to visualize the large 
concentration of data points in the figures, a random amount 
of “jitter” was added to each point in the x and y axis.  

Of the 1101 data points tested with the FRA network, only 
40 were misclassified (shown in Fig. 6 with circular markers), 
and 9 of the 40 appear to have been caused by invalid 
expected values in the training data. While results of the test 
on the FRA network yielded a classification error of 3.63%, 
the 9 points of invalid test data were disregarded, resulting in a 
classification error of 2.82%.  

To determine why these 9 sets were misclassified, the 
original input data was analyzed. All of the “Angle” points 
that were misclassified as “Forward” contained objects that 
were directly in front of the robot, but were distant. It is 

 

 



believed that this was caused by training data which included 
an attempt at creating robot “curiosity”. Some of the simulated 
sensor data presented by the NNDS lacked enough 
information to make an accurate navigational decision. In 
order to gain more information on the objects, it was planned 
to have the robot move a short distance at a certain angle in 
order to gather more information about the obstacles. In most 
of these situations, the robot was instructed to “rotate” to 90° 
(forward) to get this extra information. When the training data 
was created, any “rotation” to 90° was converted to a 
“Forward” command. This is believed to be the source of the 
misclassification. 

 
Fig. 6.   Actual vs. Expected output of FRA network 

 
 
All of the “Retreat” points that were classified as “Angle” 

appear to have been caused by the sensed objects’ distance 
from the robot. The closest distance of any object in all of the 
misclassifications was 28 cm (11 inches). Regardless of the 
rotation the robot would have performed, the proximity of the 
other objects would have promptly caused a sensor rescan of 
the environment. 

All of the “Forward” points that were classified as 
“Retreats” appear to have been caused by some sort of pattern 
matching by the NN. In all of these cases, there were spans of 
50° or greater between objects, while the opposing side 
contained a high population (2-4) of objects. It is believed that 
the NN tended to classify scans which contained many objects 
concentrated on either side of the robot as an “Angle” 
movement, rather than “Forward”, as this pattern was typical 
of most of the correctly classified “Angle” rotations.  

Of the 935 data points tested on the Angle network, shown 
in Fig. 7, the 389 points that made up the 90° category were 
removed. Of the remaining 546 points, 49 were misclassified, 
giving an error of 9.18%. After reviewing the data, it was 
decided to redefine a misclassification as any result that 
deviated more than 50° from the expected result, and 
contained an object directly within ±10° of the subsequent 
path of the robot. The ±10° rule was added after noticing 

many of the sets of data successfully avoided obstacles, but 
did not do so at the expected angle in the training data. These 
modifications reduced the number of misclassifications to 17, 
lowering the error to 3.11%.  

 
Fig. 7.   Actual vs. Expected output of the angle network 

 
 
Again, each group of misclassified points was analyzed to 

determine the reason for their misclassification. It is believed 
the network was more than likely affected by the same robot 
“curiosity” that caused misclassifications in the FRA network.  

B. Network Analysis Using Simulated Sensor Trials 
In order to verify the accuracy of the generated NNs, the 

NNDS program was modified to deliver randomly generated 
sensor data to the networks. This exactly mimicked how the 
networks would process data during normal robot operations, 
and provided data which differed from the 1000+ data sets that 
were used as training and testing data.  

The networks were first tested with a minimal amount of 
simulated objects (around 2-3) ranging from 28 to 38 cm (11 
to 15 inches) away from the robot. Of the 105 simulations, 
only 3 showed questionable behavior. In each of the three 
cases, the networks decided that the robot should rotate to 
angles that would have put the detected objects very close to 
the robot’s direction of travel. 

The second round of simulations added more objects 
(around 4 to 8), at the same range as the previous simulation. 
After 100 runs, 5 showed questionable behavior. Again, the 
network was attempting to have the robot rotate to angles that 
were very close to detected objects. 

The final simulation used the same amount of objects, but 
allowed them to be produced within 18 cm (7 inches) of the 
robot. Doing so produced many “Retreats”, as expected. Some 
of the runs contained gaps between the objects which appeared 
to be large enough for the robot, but the robot decided instead 
to retreat. The classification of these situations could be 
improved upon by adding more training data sets which define 
the proper navigational decision. 

 

 



C. Autonomous Robot Operation Trials 
The robot was tested using a variety of obstacle and goal 

placements, resulting in 20 trials. Of the 20 trials, 2 caused 
behavior which resulted in the robot being incapable of 
finding the goal, and 2 others collided with objects. Fig. 8 
shows four of the trials where the robot was able to 
successfully navigate through the obstacles and find the goal. 
Each arrow points to the location where a full 180° scan and 
subsequent NN calculation were performed. 

The two trials where the robot was incapable of finding the 
goal appeared to be caused by the NNs constantly reporting 
that the robot needed to retreat. In all of these situations, the 
objects were within 4 inches of the front of the robot as would 
be expected in environments with a large amount of obstacles. 
It appeared that the robot was not capable of properly 
determining the correct course of action when an object was 
within close range, as well as invalid distance measurements 
from the IR sensor. 

 
Fig. 8.   Map of Robot Trials #02, 04, 14, and 06 

 
The two trials where the robot collided with obstacles 

appeared to be caused by the top-level navigation program and 
the lack of side facing sensors to prevent side collisions. In 
each case, the collisions occurred on the side of the robot, 
which is where it did not have active sensors to prevent those 
collisions. It also appeared that in certain situations, the sensor 
did not accurately inform the control system that there was an 
object in front of the robot even though it was within view of 
the sensor. These situations, however, did not result in 
collisions, as the objects were usually outside of the robot’s 
direction of travel or eventually caused the robot to perform a 
180° scan. 

VII. DISCUSSION 
When analysis was performed on the training data, it 

revealed the data generated by the NNDS program formed a 
bimodal distribution (with the 90° data points removed). A 
comparison of the percentage of population at each angle and 
the percentage of misclassification at each angle of the 
training data analysis was performed to verify that the bimodal 
distribution of training data sets did not cause any of the 
misclassifications due to some angles having more training 
sets than others. As evident in Fig. 9, it was concluded there 
was no correlation between the two variables. 
 

The results from the training data analysis were also 
reviewed to determine the distribution of expected and actual 
network output, which is shown in Fig. 10. The actual 
classifications performed by the network did show a 
distribution similar to the expected classifications, although it 
appeared the network preferred certain angles over others. The 
source of the angle preference was found after analyzing the 
amount of misclassified results at each angle, which is shown 
as the third series of data in Fig. 10. This additional series of 
data shows the extra classifications were a result of the 
misclassifications of the network.  

 
Fig. 9.   Comparison of % Misclassifications and % Population 

 
 

Fig. 10.   Comparison of % Classifications and % Population 

 
 

Fig. 11.   Percent of misclassified population vs. hesitation value 

 
 
While analyzing the data, it was noted that the network 

output value of many of the misclassified data sets had a small 
value (<0.50). In order to improve the operation of the angle 
network, it was proposed that the largest output value of the 
network could be used to determine whether the network was 
confident in its decision, or if more data needed to be 
obtained. This value was called the “hesitation” value of the 
network. After gathering the data, it was determined that the 
output value was not practical for expressing the amount of 

 

 

 

 



network hesitation because a majority of the misclassifications 
had values of over 0.50. The distribution is shown in Fig. 11.  

It was believed that the IR distance sensor was the primary 
source of erroneous object detection on the robot test bed.  
Many sensor scans returned object data that did not appear to 
be accurate, in regards to the actual distances. During robot 
traversing, there were also situations when the object detection 
of the sensor would either delay or sometimes not even sense 
the object, resulting in the robot colliding with the object, or 
performing its reading so close to the object that the result of 
the NN was simply to retreat. After reviewing the datasheet 
for the sensor, the physical orientation of the sensor appeared 
to be part of the issue, more than likely because of the position 
sensitive detector (PSD). Rotating the orientation of the sensor 
so both the sensors emitter and PSD are aligned vertically may 
have helped to reduce some of the variability as the light from 
the emitter transitions from the background to an object. The 
accuracy may have also been improved by collimating the 
emitter light into a tighter beam, but this was not tested.  

None of the misclassifications by the NNs were affected by 
the sensor because the sensor was not involved in collecting 
the training data. If the sensor had been used to collect training 
data instead of simulating the data, the inaccuracy of the 
sensor readings would have been introduced training process. 
Whether or not the network would have been able to learn this 
error and compensate for it was not tested. 

A major limitation of the sensor was also the amount of 
time needed to obtain an updated sensor value. The analog 
voltage of the sensor did not change for at least 38.3 ms ±9.6 
ms, which made the time required for a 180° scan (with servo 
position updates) around 2−3 seconds. This not only limited 
the speed of obstacle avoidance decisions, but also required 
that the decisions be limited to angular rotations, and also did 
not allow a user to physically drive the robot while the control 
system gathered data (hence the simulated sensor data). If an 
improved sensor was used with a faster update rate (10+ Hz), 
a form of dynamic control could have been implemented, 
where the robot would not have had to stop at each object to 
perform a scan, but instead actively traversed around the 
object. 

Although over 1000 simulated sets of simulated sensor 
data was created for the training of the NNs, not all situations 
the robot encountered were included in the data, resulting in 
some unwanted actions. This was especially evident when the 
robot found itself close to a wall. The simulation program did 
not produce situations which imitated a large object directly in 
front or to the side of the robot, resulting in the FRA NN 
deciding the best course of action was to “retreat”. Many of 
the situations where the robot test bed detected the wall could 
have been traversed better with a decision other than “retreat”. 

VIII. CONCLUSION 
In this paper it has been shown that a back-propagation 

neural network trained with simulated sensor data is capable 
of avoiding obstacles in order to accomplish a navigational 
goal. When combined with more accurate sensors, this low 

cost system could be added to other devices, allowing 
autonomous obstacle avoidance capabilities.  
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