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ABSTRACT

Over the past several years, I have supervised students creating Neural Network computer
models of operating processes for their senior project.  Processes modeled include a gas turbine
power generator, a furnace, and building energy use.  Models were created and used for
parametric analysis within the scope of a one semester course.  This modeling effort brought the
actual operating process into the classroom, demonstrated to the students the value of computer
modeling, and demonstrated that fundamental principles taught in the classroom apply to actual
operating processes.  This paper focuses on using neural networks to model processes, what
students can learn from developing a neural network model, and one student’s model of a gas
turbine power generator.

INTRODUCTION

The complexity of operating processes and the inherent difficulty of modeling real equipment
makes modeling of industrial processes extremely difficult.  The real equipment does not
necessarily perform exactly as characterized by the idealized equations used in the models. 
Consequently computer models created from first principles are complex and frequently do not
fit the operating data very well.  Additionally, these models cannot account for the individual
nuances of operating equipment and are not able to accommodate changes as the equipment ages. 
Consequently realistic models cannot be created from first principles within the scope of a one
semester project.

An alternative technique to model complex processes is to utilize neural networks.  Neural
network modeling contrasts with conventional computer modeling in that a detailed
understanding of the process is not required.  The neural network uses operating data to create
the model.  Neural networks have been used to model complex processes such as distillation
columns,  nuclear reactors,  and automotive fuel injection.   Additionally, realistic models can be1 2 3

created within the scope of a one semester project.  Neural networks have also been used in a
graduate level course at Tufts University.4

A neural network is composed of processing elements and connections as shown in Figure 1. 
The processing elements are arranged in three layers.  In the first layer, each element represents
one of the input parameters and the element in the third layer represents the output parameter. 
For educational purposes, each network should have only one output element.  Additional
processing elements are arranged in a second hidden layer.  Each input processing element is
connected to each hidden element and in turn each hidden element is connected to the output P
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element.  The processing elements first sums the values of the inputs applied to it and then takes
the resulting  

Figure 1:  Neural Network Topology
 

value and transforms it with the sigmoid function.  The sigmoid function is given by 1/(1+e )-s

where s is the sum input to the element.  The resulting value is the output of the processing
element.  The connections between processing elements each have independent coefficients
called weights.  This weight amplifies, attenuates, and can change the sign of the signal sent over
the connection. 

To calculate an output value, input values are placed in the input processing elements.  New
values are calculated by these processing elements and then multiplied by the appropriate weight
to become inputs to the hidden elements.  The hidden elements each process the sum of their
inputs and output a value to the output element.  The output element sums the inputs from the
hidden elements and calculates the output parameter.  By training the network to have the
appropriate weights in the connections, the network can mimic the operational database.

The mathematics of neural networks is well developed and many computer programs are
available to create and train neural networks.   For students purposes, Neuralyst by Cheshire5,6,7

Engineering Corporation  works well.  This program is a series of macros within Excel.  Thus the8

students are able to use a familiar spreadsheet program to analyze the operating data.  Neuralyst
handles the network formulation and training.  Thus the students can focus on the operating data,
data analysis, and network modeling rather than the mathematics of creating a neural network or
learning a new computer program.

In creating a neural network model, the overall topology is first selected.  This includes the input
parameters to be considered and the output parameter.  Two hidden Elements should be selected
for the initial model.  It has been shown that two hidden elements in a single hidden layer can
model any complex function .  Next the weights in the connections between processing elements9

must be determined to model the database.  This is performed by training the network. P
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Training the network determines the appropriate weights for the connections to minimize the
error between the predicted and actual outputs.  A sample data point is first presented to the
network by loading the input values into the input elements.  These values are then propagated
through the network by the connections and processing elements to the output element.  The
value in the output element is then compared to the known value of the data point.  The weights
of the connections between the elements are then adjusted to minimize the sum of squares error
between predicted and actual values.  A second example is then selected and the process
repeated.  Thus through the successive use of the examples, the network is trained to learn what
the output parameters should be for values of the input parameters.

Through training, the characteristics of the database are learned by the network through the
imbedded values of the connection weights.  This trained network can be used to predict values
of the output parameter for specific values of the input parameters.  Thus the network provides a
computation model of the process which can be used to predict alternative operating conditions.

NEURAL NETWORK MODEL OF A POWER GENERATION TURBINE

One specific model developed was for a gas turbine power generating unit.  The turbine was a
ABB Type 11-D2 gas turbine rated at 65 Mw at ISO conditions.  Input parameters used in
formulating the model were turbine inlet temperature, air temperature, air pressure, and steam
injection rate.  Additionally, we were interested in optimizing the interval for cleaning the
compressor of the unit.  Therefore time since cleaning the compressor was an additional input
parameter.  Parameters modeled were the power output and the unit heat rate.

The first step in creating this model was to obtain a database.  Getting this data provided the
students an opportunity to visit the plant, make a presentation to station personnel, and follow up
visits gave him the opportunity to review his results with operating personnel.  This was more
meaningful to the student than a plant tour since he had the opportunity to discuss specific plant
problems with the operating personnel and he had a specific objective in mind for the visit. 

Operating data spanning a one year period was obtained from plant personnel.  This data
included hourly readings of the turbine operating conditions over two thousand hours of
operation.  From this database, approximately eight hundred data points were used to train the
network.  

Students need to make several decisions in creating the model.  The first of these is what
parameters to use as input parameters and which to model as output parameters.  For each of
these data points, the turbine inlet temperature, air temperature, air pressure, steam injection rate,
time since cleaning, power output, and heat rate were entered into the database created in Excel. 
Two separate neural networks were created:  One to determine the power output and a second to
determine the heat rate.  For process modeling a separate network should be created for each
output parameter.  This makes a simple model that is easy for the students to understand and use. 
Though neural networks can be created with multiple outputs, i.e. both power output and heat P
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rate from the same network, the additional complexity makes the network harder to train,
interpret, and use.  Only the power output network is discussed in this paper.

Figure 2:  Power Output Neural Network Topology
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The first step is to determine the topology of the model.  The topology for the power output
model is shown in Figure 2.  There are five input parameters and one output parameter.  Two
hidden elements were selected for the initial model.  To train the network, the neural network
program takes the first data point in the database and places its values in each of the input
processing elements.  It then calculates the weights to minimize the error between the calculated
power output and the actual power output.  It then selects another data point and repeats this
process.  This is repeated for hundreds of repetitions through the database (one hundred
repetitions was 80,000 data points in this example), creating a best fit model in the network. 
Though this process is mathematically complex, it is performed automatically by the Neuralyst
program and transparent to the student.  Computation time is only a few minutes on a 486
computer.

If the neural network is considered as a statistical routine determining the best fit of the model to
the database, then statistically reasoning can be used to determine the topology and training of
the model.  If the model is given sufficient degrees of freedom, then it can be trained to perfectly
fit the data.  The exception to this rule is it cannot be trained to fit two data points with identical
input parameters but a different output parameter.  Rather it learns the average of the two values.
However, if the model is given too many degrees of freedom, then it is fitting the noise of the
database rather than the actual real dependencies.  Thus the trick is to create the simplest model
which can fit the real dependencies of the data with the minimum training.  Any further
complexity in the model is training it to learn the noise in the data and inhibits generalization of
the model to other operating conditions.  Much work is underway to determine the optimum way
to train a network to obtain the best generalization of the results.   However, for the purposes10,11

of student projects, I have developed a simplified method of determining the network training
and topology that, although not mathematically rigorous, does produce good models.
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Figure 3:  Neural Network Training
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Figure 3 shows training results for the model.  The standard deviation of the error decreases with
training up to approximately one thousand training cycles.  The standard deviation of the error is
the standard deviation of the difference between the network predicted power output and the
actual power output over the database.  Each training cycle represents presentation of every data
point to the network once.  Figure 3 shows that increasing the training improves the network
modeling of the data.  However, after about 1000 cycles, this improvement in characterizing the
database stops.  This is because the network has learned the general dependencies and is now
learning the noise in the data.  If training continues, the standard deviation decreases slightly as
the model learns the noise in the data.  This plateau in the learning curve, also represents the
standard deviation of the power output.  For identical operating conditions, the power output was
found to have a standard deviation of about 0.9 Mw compared to the plateau value of 0.7 Mw.

The different curves in Figure 3 represent training for a different number of hidden elements. 
Two hidden elements is the minimum number for any network.  Increasing this number to three
or five hidden Elements did not improve the learning of the process.  However, increasing this
number allowed the network to learn the noise in the data.  Hence a better model is created with
two Elements than with three or five nodes, even though the level of learning is the same.

Thus the process for creating the model is to first estimate the standard deviation of the output
parameter.  Then select two hidden elements in the network and train the network.  Stop the
training periodically and determine the standard deviation of the error.  This deviation should
reduce and then reach a plateau as shown in Figure 3.  The error of this plateau should be
approximately the standard deviation of the output parameter.  Then the number of hidden nodes
should be increased and the process repeated.  The final network configuration should represent
the minimum number of hidden nodes that produce a standard deviation of the model error
approximately equal to the standard deviation of the output parameter with the minimum amount
of training.  In this case, two hidden nodes with about one thousand training cycles.
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Figure 4:  Actual and Predicted Power Output

The fit of this model to the operating data is shown in Figure 4.  Plotted in this figure is the
predicted power output as a function of the actual power output.  A good comparison was
obtained, showing that the model fits the operating data.  The standard deviation of the error
between the model prediction and the actual measured power output is 0.7 Mw.

The purpose of creating a model, however, is to better understand how the gas turbine operates
and how operating conditions effect the gas turbine.  To test this, input conditions are provided to
the model and the power output predicted.  Figure 5 shows the power output of the turbine for
different turbine inlet temperatures with the atmospheric pressure, temperature, and hours since
cleaning held constant.  The model predicts that the power output increases with increasing
turbine inlet temperature.  The next step is to compare this observed effect with what the students
are taught in thermodynamics.

In thermodynamics the students are taught that the power output from a turbine is given by:

Thus the power output should be proportional to the turbine inlet temperature, as shown in Figure
5.  Thus the model confirms, using actual operating data, the variation predicted from first
principles.  This is an important step in validating a model and in the students understanding of
neural network modeling.  The model should show the students the validity of the material taught
to them in the basic engineering courses. P

age 2.305.6



Figure 5:  Predicted Power Output variation with Turbine Inlet Temperature
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Figure 6 shows the model prediction for the power output as a function of the ambient air
temperature.  The power output decreases as the ambient temperature increases.  This can also be
determined from first principles.  This is because the power output from the power turbine is
constant while the power required by the compressor increases with increasing ambient
temperature.  Thus the power output should decrease linearly with ambient temperature, as
shown in figure 6.
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Figure 6:  Predicted Power Output variation with Ambient Air Temperature
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Figure 7 shows the model prediction for the power output as a function of the ambient air
pressure.  The power output increases linearly with air pressure.  This can also be verified from
first principles.

The previous effects observed in the model predictions, could all be determined from first
principles about a baseline operating point.  This helps to verify the model and give the student
confidence that the model correctly predicts turbine operation.  The power of the neural network P
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Figure 8:  Predicted Power Output Variation with Time
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modeling, however, is its ability to determine parameters that cannot be derived from first
principles.  One of these parameters is the importance of fouling of the compressor blades.

A gas turbine ingests ambient air ladened with contaminants including oil, pollen, and dirt. 
These materials tend to stick to the compressor blades, especially when the air is heated as it
passes through the compressor.  This fouling of the compressor blades is not fully understood
and cannot be predicted from first principles.  Studies reported in the literature discuss how
fouling occurs,  how quickly it occurs and how to clean the compressor.   Cleaning is12 13, 14

performed by washing the compressor blades with a soap solution.  This can be done either while
the unit is running or shut down.  However, even with online cleaning  the compressor must
occasionally be cleaned while shut down.  

Figure 8 shows the predicted power output from the gas turbine as a function of the time since
the compressor has been washed.  The power output declines as the operating hours increase. 
This effect cannot be predicted from first principles.  However, it was known to turbine
operators.  They did, however, not know the magnitude of the reduction with operating time. 
This prediction is also consistent with the observations reported by Haub  where a two percent14

reduction was reported over 10 days operation.  Hence the neural network model was able to
increase the understanding of the turbine unit by the operators.  The other factor that was not
known to the operators was the optimum interval for cleaning the compressor blades.

The cost of cleaning the compressor is shown in Figure 9.  Shown on this curve are the various
costs associated with the fouling of the compressor.  The lowest curve is cost associated with the
increased fuel burned as the unit heat rate is increased by the compressor fouling.  The increase
in unit heat rate was determined by a second neural network similar to the one for power
production.  The second curve is the loss of revenue due to the reduced power output of the unit. 
The third curve represents the cost of cleaning the compressor.  The final curve represents the
sum of these three costs.  This curve shows that the total costs are minimized when the
compressor is cleaned every 50 hours.  For intervals less than this, the cost of cleaning is more
expensive than the loss of performance.  For cleaning less frequently, the cost of the performance P
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loss exceeds the cost of cleaning.  Thus the optimum cleaning interval is somewhere between 50
and 100 hours.  This was new information to the unit operators. 

Figure 9:  Cost of Compressor Fouling

 
CONCLUSIONS

This study showed the power of using neural networks to model a combined cycle power
generation unit.  From a technical perspective, results were consistent with operator experience
and led to a definition of parameters that were unknown to the operators.  From a student
perspective, use of neural networks allowed the student to create a computer model of an actual
operating unit in one semester.  This model was then used to gain a further understanding of
station operations and show that the general principles taught in thermodynamics applied to
operating plants.  It also provided the student with access to an operating power station and a
chance to work with the plant personnel.  Neural network modeling provides an excellent
medium for teaching students about industrial processes as well as providing them with an
opportunity to meet with plant personnel and learn about operational problems.
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