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Neuromorphic VLSI design course 
 

This paper describes a novel Neuromorphic VLSI design course that was added to the 
Electrical and Computer Engineering curriculum at our university.  

1. Significance 
Neuromorphic VLSI design has been a research area for over 3 decades. It started with 
attempts at building silicon chips that could emulate functions of various brain regions like 
eye and cochlea [1]. With Moore’s law hitting physical limits, the industry is looking to 
improve silicon circuit efficiency by exploring better algorithms like neurally inspired 
(neuromorphic). This includes Intel’s foray into building neuromorphic chip, the Loihi [2]. 
This follows IBM’s neuromorphic chip, the True North [3]. The True North is a neural 
processor with arrays of neurons and synapses. In addition to being a neural processor, the 
Loihi chip facilitates learning dynamically like the human brain. These chips can not only be 
used to emulate areas of the brain but also to build dedicated machine learning hardware [4] 
and to build neural prosthesis. Despite so many avenues, very few universities offer such a 
course. Therefore, we decided to offer this course at our university. This course includes 
teaching low power design, subthreshold mode circuits, mixed-signal chips, combining 
multiple chips into a system to realize neuromorphic hardware, background neuroscience and 
computational models. 

2. Background 
Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. 
Computational elements of neuromorphic circuits are MOSFETs in sub-threshold mode 
operation. MOSFETs exhibit exponential I-V characteristics and low currents when 
operating in this mode. Adaptation, learning and memory are implemented locally within the 
individual computational elements like floating gates and MITES. Neuromorphic 
architectures often rely on collective computation in parallel networks. These properties lead 
to the feasibility of high-density, low-power implementations of functions that are 
computationally intensive in other paradigms. Application domains of neuromorphic circuits 
include neural prosthesis, building computational neuroscience models in silicon, machine 
learning processor, and applications of neural hardware like eye-camera.  
Similar courses offered at Georgia Tech [5] and at the Institute of Neuroinformatics (INI), 
ETH Zurich [6] were studied to choose the topics appropriate for the course. Based on the 
study, topics to be covered in the course included: MOS transistors in CMOS technology, 
floating gates, static circuits, dynamic circuits, systems (silicon neuron-synapse arrays, 
silicon retina, silicon cochlea, silicon hippocampus, silicon lateral superior olive) with an 
introduction to multi-chip systems that communicate events analogous to spikes. This course 
was a 3-credit course, targeted at seniors and graduate students interested in machine 
learning, mixed-signal low-power VLSI design, neuroscience and neural engineering.  

3. The course 
a. Learning objectives/outcomes 
Course objective was to understand the neuromorphic circuit elements as an 
emerging paradigm in VLSI circuit design. The learning objectives: basics of 
CMOS transistor operation- both above and subthreshold mode, basics of 
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neuroscience, computational model of neuron, synapse, various parts of the nervous 
system and to connect silicon neurons and synapses into systems representing parts 
of the nervous system like the retina, cochlea, hippocampus, etc. The learning 
objectives were reinforced with bi-weekly homework exercises that included small 
signal analysis of various circuits. Learning was tested in the midterm and final 
exams that were like homework exercises but closed book, closed notes. In the end 
of course project, students built neurally inspired silicon retina and demonstrated 
image processing by the retina.  
b. Curriculum 

This course covered devices in CMOS technology (MOS transistor below and above 
threshold, floating-gate MOS transistor, photo-transducers), static circuits 
(differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits 
(adaptive circuits), systems (silicon synapse, silicon neuron, silicon retina and 
cochlea, silicon lateral superior olive and hippocampal formation) and an 
introduction to multi-chip systems that communicate events analogous to spikes. 
Since it was an inter-disciplinary course, it taught students the basics of both VLSI 
circuit design and neuroscience like structure of neuron, synapse, retina, cochlea, 
hippocampus, and lateral superior olive. This was supplemented by study of the 
computational neuroscience models of these. The computational models were 
mathematical models, so they were translated to build silicon circuits in 
subthreshold domain.  

Class Schedule 

S.No. Topic 

1 Introduction to neuromorphic VLSI Systems 

2 MOSFET Transistor Theory 

3 Introduction to SPICE 

4 Subthreshold Transistor Theory 

5 Small Signal Analysis 

6 Single transistor amplifiers  

7 Current Mirrors (sub threshold)    

8 Differential amplifiers (sub threshold) 

9 Trans-amplifiers (sub threshold) 

10 Elementary mathematical operations (subthreshold 
mode) 

11 Log domain Integrators and differentiators 
(subthreshold mode) 

12 Trans-linear circuit (subthreshold mode) 

13 Diffusor circuit (subthreshold mode) 
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14 Winner-take-all circuit (subthreshold mode) 

15 Bump and correlator circuit (subthreshold mode) 

16 Synapse circuits  

17 Neuron circuits 

18 Address event representation circuit 

19 Floating gates 

20 MITES 

21 Memristors 

22 Lateral superior olive chip 

23 Hippocampal Formation chip 

24 Hippocampal Formation chip 

25 Introduction to project 

26 Biological retina  

27 Photosensors 

28 Silicon Retina 

29 Silicon cochlea 

30 See-hear chip 

31-36 Project related inputs – report, circuits, PSPICE 

c. Reference materials 

Following three textbooks were referred to develop course materials. 

Analog VLSI: Circuits and Principles (Shih-Chii Liu, et. al., 2002) 

Analog VLSI and Neural systems (Carver Mead, 1989) 

Analysis and Design of Analog Integrated Circuits, (Gray, Hurst, Lewis, Meyer, 5th 
Edition 2009) 

These were supplemented with readings from literature on neuromorphic VLSI 
design, neuroscience and computational neuroscience. 
d. Credits, hours, grading 

This course was offered as a 3-credit hour, elective lecture course for students in 
Electrical and Computer Engineering, Bioengineering and Neuroscience. Pre-
requisites included a course in circuit design and/or introductory course in 
neuroscience or permission of instructor. 

Class meetings included 3 lectures weekly. Each lecture was an hour long. One hour 
of weekly lecture time for the initial 10 weeks was set aside for discussing 
homework problems in class. Group problem solving was encouraged in these 



4 
 

sessions. In the latter 5 weeks, project-based inputs were provided such as help with 
circuit design, PSPICE simulator and report writing. 

Grading was based on homework assignments: 10%, exams (mid-term and final, 
both in class): 30% each, and end of term project: 30%. HWs were graded based on 
completion (not correctness). HWs were discussed in class as a teamwork exercise 
among groups of students. Total of 5 HWs, one every other week in the initial 10 
weeks of the course were assigned. For the rest 4-5 weeks of the course, students 
worked on the project. Exams were closed book, closed notes, online (due to covid 
restrictions) with proctoring by instructors.  
e. Lecture delivery 

3 lectures of an hour each were delivered every week online via zoom. Some 
students attended the course from overseas. So, at times they could not attend the 
synchronous lecture. For their convenience, the lectures were recorded in zoom and 
the recordings were made available after the lecture. To avoid zoom bombing, 
students had to log in to their university zoom accounts to access the zoom session. 
Access to recordings was limited to students taking the course. A special course 
page was created for the same. Two samples of lecture slides are shown below.  

 
Fig.  1 Slide from lecture showing demonstration for PSPICE 

One (Fig.1) is from the third lecture, when PSPICE use was demonstrated. The one 
in Fig. 2 is from one of the later lectures. It shows an online problem-solving 
exercise using power point slides. Students were assigned problems to solve at the 
beginning of the lecture as a group. They discussed the solutions in their groups and 
then presented them to everyone. The solutions were written on the slides or the 
white board in zoom.  
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Fig.  2 Slide from a lecture showing problem solving exercise 

f. Sample Homework/exam question 

Five homework exercises were assigned through the course. One homework was 
assigned every two weeks. The homework included circuit design and analysis 
problems from the topics taught in the week. One of the problems and its solution is 
shown here for illustration. Students were required to solve the problem using 
circuit analysis principles taught in class including small signal analysis, sub 
threshold mode circuit analysis or PSPICE. The solutions were submitted online on 
blackboard.  

Sample problem: Find Iout (in terms of IB) in the following circuit operating in sub-
threshold mode of operation. 

 
Solution: 

𝐼𝐼1 = 𝐼𝐼𝑜𝑜𝑒𝑒
𝑘𝑘𝑉𝑉1
𝑈𝑈𝑇𝑇  

𝐼𝐼𝐵𝐵 = 𝐼𝐼𝑜𝑜𝑒𝑒
𝑘𝑘𝑉𝑉2−𝑉𝑉1
𝑈𝑈𝑇𝑇  

2𝐼𝐼1 = 𝐼𝐼𝑜𝑜𝑒𝑒
𝑘𝑘𝑉𝑉2−𝑉𝑉3
𝑈𝑈𝑇𝑇  
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𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼𝑜𝑜𝑒𝑒
𝑘𝑘𝑉𝑉3
𝑈𝑈𝑇𝑇  

If we apply the trans-linear principle and assume k=1, 

𝐼𝐼1𝐼𝐼𝐵𝐵 = 2𝐼𝐼1𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐼𝐼𝐵𝐵
2

 

 
g. Project 

Last four weeks of the course were dedicated to application of knowledge gained in 
the course to a project. The goal of this end of the term project was to design a 
silicon retina using sub-threshold mode VLSI circuits taught through the course. 
Students had to demonstrate use of this retina as a camera to process images. It was 
4X4 pixel retina circuits (each pixel containing different layers - photoreceptors, 
horizontal cells, bipolar cells and ganglion cells) designed in PSPICE. With this 
silicon retina, a 4X4 pixel image with a 2X2 pixel object in it was processed by 
processing spatial intensity of all the pixels. This spatial intensity was processed to 
decode the object in the image. Based on this, the students had to derive an 
algorithm to detect the object from ganglion cell spikes.  

Sample implementation of this project is presented here. It will demonstrate the key 
ideas and methodology for neuromorphic VLSI design taught in this course. And 
how these were applied by the students in this design. 

 
Biology of retina 

The retina of human eye works like a camera and has several layers of light 
processing cells – photoreceptors, horizontal cells, bipolar cells, amacrine cells and 
ganglion cells. To implement each pixel in silicon, one cell type from each of the 
layers needs to be implemented. Further, to port functionality of each cell in silicon, 
we need to understand its computational information processing. For instance, the 
photoreceptor converts light to electric current. So, photodiodes can be used to 
implement it in silicon retina. They also represent log conversion of intensity to 
current which is achieved by a transistor biased in subthreshold mode (where 
relationship between current and voltage is exponential). The next layer contains 
horizontal cells that allow current from several photoreceptors to be shared and 
smoothed. This can be designed using single transistors, the outputs of which are 
connected through a wire. The bipolar cell's output is proportional to the difference 
between the photoreceptor signal and the horizontal cell signal. Thus, bipolar cells 
can be designed in silicon using bump and anti-bump circuits or opAmp circuit. The 
ganglion cells produce spiking outputs proportional to the input current from bipolar 
cells. Thus, to model these in silicon, we can use the silicon circuit of an integrate 
and fire neuron.  
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Fig.  3 biological retina – R-photoreceptors, H-horizontal cell, IB, FB, IP – Bipolar cell, 

A-amacrine cell, G- ganglion cell[1] 

An example implementation of the silicon retina pixel from [1] is shown here. 

 
Fig.  4 Silicon retina example implementation (from textbook) 

Sample project implementation  

This section describes project of a group of students in the course. It describes the 
silicon implementation of different retinal cells and the algorithm to process their 
output.  

Photoreceptor: was designed using three transistors on the left side (Fig. 5). The 
NMOS uses light inputs to stimulate the photodiode. The two diode-connected 
PMOS transistors transformed the output into the “Vphoto”. 

Horizontal layer: The horizontal layer is shown in the middle part of the layout 
(Fig. 5). An opAmp was used as voltage follower to connect the “Vphoto” to the 
resistor network. Each pixel was connected through resistors to its six neighbors. 
The signal from a pixel’s neighbors was connected as input “Vavgin”. The pixel #6 
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is taken as an example. The six grey lines were connected to “Vavg6” net. This 
generated the average signal from neighbors of pixel #6 and goes into the “Vavgin” 
input of pixel #6. 

 

Fig.  5 circuit schematic of silicon retina pixel 
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Fig.  6 Bipolar cell circuit schematic 

Bipolar cell: The bipolar transistor compares the local average and the photo signal 
and provides an excitation signal to ganglion cells based on the comparison. A 
voltage mode bipolar cell using an opamp with an artificial gain of 1000 was used 
as bipolar cell (Fig. 6). The ideal opamp rejects all common mode signals and has 
linear gain across a wide range. When the photo voltage is smaller than the average 
voltage, the output is high at 4.2V, and when the photo voltage is higher than 
average voltage, the output is low at 3V. 

Ganglion cell: an “integrate and fire” silicon neuron was designed to implement the 
ganglion cell (Fig. 7). The input voltage at 4.2V generated a constant charging 
current for the membrane capacitor, C2 and as it reached a potential comparable to 
the threshold of the invertors, the neuron fired spikes. Part of this voltage was fed 
back to maintain the membrane potential through capacitor C1 and part was used to 
discharge the potential to reset the neuron after a refractory period determined by 
Vrefr potential applied to gate of M8.  
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Fig.  7 Integrate and fire neuron as ganglion cell 

System setup: A 4x4 pixel array was implemented and pixels were arranged 
hexagonally (Fig. 8). The input of 1 indicates light on the photodiode, and input 0 
means no light input to the photodiode.  
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Fig.  8 4X4 pixel array 

Photocurrent averaging and computing: The results are shown in the figure 
below. The Vavgin was the average intensity of neighbor pixels. When a neighbor 
did  not exist, 0V was assigned as its input. For pixels with 0,1,2,3 illuminated 
neighbor pixels, the Vavgin varied between 0.73V to 4.53V. If the center cells had 1 
as input, and its surrounding cells were partially illuminated, its response was higher 
than the average signal, and the output was 4.2V. This was the minimum voltage 
that can trigger a spiking output in the ganglion cell. For the pixels under dark 
condition, with one or more illuminated pixels around it, response is lower than the 
average signal, and the output is 3V, which is the neuron voltage at which C2 is 
being charged without neuronal firing. The ganglion cells output was periodic neural 
spiking from the activated pixels 6, 7, 10 and 11, (Fig. 9) and none from the inactive 
pixels. 

 

4. Course outcomes 
Course objectives to understand the neuromorphic circuit elements as an emerging paradigm 
in VLSI circuit design and learning objectives like learning the basics of CMOS transistor 
operation- both above and subthreshold mode, basics of neuroscience, computational model 
of neuron, synapse, various parts of the nervous system and to connect silicon neurons and 
synapses into systems representing parts of the nervous system were covered in the course 

Fig.  9 Pulse signal from active pixels 
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curriculum. Through various lectures, the students were taught topics like transistor operation 
in subthreshold mode. For each part of the nervous system implemented in VLSI design 
(including neurons and synapses), the topic started with its basic neuroscience structure and 
computational model which was later implemented in VLSI circuits. Their knowledge was 
tested through HWs, exams and the end of term project (samples shown above). Performance 
of students on various tests, especially the project, indicated that they had absorbed all the 
learning objectives. They used sub-threshold mode transistor circuits and knowledge of 
neuroscience to design parts of the nervous system. And used it for engineering applications 
like image processing. Upon completing the course, they have the skills to design any other 
part of the nervous system and use it for engineering applications.  
All the students in this course performed well - 80% secured A grade and 20% secured B. 
None secured C or lower. In a comparable digital VLSI only course, with similar (seniors 
and graduate) student population and same instructor, 60% of the students secured A, 32% B 
grade and 8% secured C or lower grades. The difference could be because students who took 
this course had taken some VLSI course before (even though not a pre-requisite). Only the 
more committed students enrolled for the course as the content was more specialized and 
interdisciplinary (neuroscience and VLSI design). In student evaluation of the course, the 
rating of instructor and course content was much higher than that of comparable VLSI 
course.  

5. Student population – interest group 
Primarily, graduate students or final year undergraduate electrical and computer engineering 
students interested in VLSI design were enrolled in the course. This was a mixed signal VLSI 
design class; therefore, students had a broader learning experience. A new undergraduate 
neural engineering program has been started at the university. As the students reach their 
junior or senior year of the program, this course will be very useful for them. The students in 
neuroscience and neurology stand to benefit from it as well. The course starts with review of 
basic circuit concepts to bring neuroscience students up to speed. However, they will need a 
basic introductory circuit design course before taking this course. Students doing research in 
machine learning, interested in building their own data processor for faster and more efficient 
data processing could also be interested in this course.  

6. Conclusion & Future work  
The paper describes a mixed signal VLSI design course that was developed and offered to 
seniors and graduate students. It covered implementation of silicon neurons and synapses to 
build systems. It is useful in several ways – firstly, neuroscientists can build different parts of 
brain in silicon and model the working of systems of neurons and synapses. Secondly, some 
of the implementations could be used as prosthesis in patients with neural loss. Thirdly, 
machine learning and data processing algorithms could be implemented on silicon spiking 
neurons to conserve power and improve efficiency. Thus, this course can be a useful addition 
to the Electrical and Computer Engineering or Bioengineering curricula. 
This course can be offered to students with more diverse interests viz., VLSI design, neural 
prosthesis, neural modeling, and machine learning. In future, we plan to introduce industry 
standard hardware like Intel’s Loihi processor to implement the project. This will enable 
testing ideas on neuromorphic hardware before implementing in dedicated silicon chips 
which can be more economic. 
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