Session 1420

New Laboratory Tools and Techniques for Embedded Microcontrollers

Todd Morton
Western Washington Univer sity

Abstract

Some modern microcontrollers are being introduced with on-chip debug facilities called
background debug modules (BDM) along with on-chip Flash EPROM. These microcontrollers
open new doorsin education. For the first time they make development of single-chip final
product designs practical in the laboratory at a reasonable cost. This paper covers the
development tools, both software and hardware, and processes used to take advantage of these
new devices and to overcome some of the challenges of single-chip designs. It will show
methods that will alow the students greater insight into real-time operation of their assembly and
C programsin the final product configuration. Specifically, the M68HC912B32 microcontroller
is covered. Tools covered include evaluation boards used as BDM pods and targets, a source-
level BDM debugging system, and the HP54645D Mixed-Signal Oscilloscopes.

Introduction

The use of microcontrollersin academic laboratories isincreasing in many different disciplines
such as engineering, engineering technology, and the sciences. The application of
microcontrollersin the lab is well documented. Thisis especialy true for student senior and
research projects, which tend to require a final standalone product.

Occasionally, atechnology breakthrough in industry can have a very significant effect on the
educational laboratory. For example, when EEPROM-based PALSs became available, students
could reuse parts after programming errors or for multiple laboratories’. This madeit practical to
cover programmable logic devices in the academic lab. The technologies described here should
have a similar effect because they, for the first time, have made it practical for students and
faculty to develop final products using microcontrollers that are running in single-chip mode.
Therefore, instead of focusing on the applications of microcontrollers, this paper covers some of
the new technologies and techniques used to develop and test microcontroller softwarein the
final product.

This paper first covers the challenges involved in devel oping and testing programs for fina
products. It will then briefly cover the traditional methods used for meeting these challenges.
Two new technologies, Flash EEPROM and Motorola s background debugging module (BDM)
will then be covered. Thiswill be followed with the description of two typical development
systems based on the BDM — An inexpensive system using two M otorola eval uation boards and

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

T°'1G.2'9 abed

amore expensive, full-featured, source level debugging system for large C programs. Finally,
this paper will describe some techniques for debugging real-time programs. These techniques
become especially important when using a single-chip microcontroller because, since the bus
signals are not available externally, normal bus analysis tools can not be used.

Introduction to Devel oping Microcontroller Programs

The focus of this paper is on development systems and techniques that can be used in an
academic laboratory for developing final products that contain single-chip embedded
microcontrollers. A final product is defined as a standalone embedded system that executes the
developer’s code once power is applied or the system is reset. The final product operates without
the help of development tools such as a host or resident monitor program.

The ultimate goal of any development system is to provide an environment that enables the
programmer to efficiently construct reliable programs®. Therefore, the system must be able
provide insight into the detailed operation of the program while, at the same time, the
development system should be as non-invasive to the final product as possible. A good
development system is especially important in the academic lab. It is very important that students
have access to tools that will allow them to analyze and gain insight into how their program
works.

Normally, a student is introduced to programming microprocessors or microcontrollers using a
simulator or a platform that runs the user’s program in the target’s RAM. When the target isa
microcontroller trainer board or evaluation board, the code is downloaded and executed with the
help of a monitor program. When using the Motorola 68HC912B32 evaluation board >’
(912EVB) the D-Bug12 monitor program is used to load machine code into on-chip RAM and
control execution. This system is a simple and effective way to develop small programs,
routines, and code snippets. It is simple and efficient and allows the student to focus on the
application code without having to be concerned about the details involved in initialization and
configuration. However, because of the lack of RAM space, it is generally not useful for larger
programs. Nor isit very useful for programs designed for final products or real-time debugging
because of the invasiveness of the resident monitor and the volatility of the RAM.

Developing afinal product presents several challenges beyond simply devel oping the application
code. The code must include reset and interrupt vectors, fault tolerance code, and configuration
code. It must also be contained in non-volatile memory so it will be there when power is first
applied. When the final product is a single-chip microcontroller, there are additional challenges
because the bus system is not available.

The Tradition Methods
This section discusses some of the traditional methods used to develop code for afinal product.

Note that some of these methods can not be used when the microcontroller isrun in single-chip
mode.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

2'1G/'9 abed

The traditional development process to create afinal product starts with developing the
application code under the control of a monitor program. This allows the programmer to easily
download and debug the code. Then, at some point, the ties to the monitor program must be cut
and the MCU must run the final product code by itself. The complexity of this transition depends
on which development tools are being used. Traditional development tools, especially most
trainers devel oped for education, made this transition very difficult.

The most common method that has been used is to write and debug as much of the application
code with amonitor program, then once the application code is working, the final product codeis
programmed into an EPROM. The EPROM is then placed in the target board and the program is
executed by resetting the processor. By itself, this development system does not include any way
to control the CPU execution besides the system reset. Since a monitor program is not available
at this stage, alogic analyzer is used to debug the code.

A couple problems make this process very inefficient. First, the EPROM programming processis
manual and time consuming. It also requires an EPROM programmer, which is not always
available. This can be improved by using a battery-backed RAM to emulate the EPROM until
the code is complete. The second problem is the lack of program control for debugging. The
logic analyzer can be used to watch the bus activity but it can not be used to control program
execution. To solve this, some development systems have dual-boot capability and include
sufficient memory to hold both the monitor program and the user code. In thisway, the user’s
program can be aimost completely debugged under the monitor and the transition to running the
program standaloneis very simple.

In addition to this process being inefficient, it is limited to microcontrollers that run in expanded
mode. To design afinal product that uses a single-chip microcontroller, an expensive in-circuit
emulator or an evaluation board that emulates the single-chip mode would be required. The final
product code would then be programmed on an on-chip ROM. Unfortunately, this processis not
practical for academic projects because of the expense and the time it takes for the manufacturer
to provide programmed parts.

Another problem with the traditional methods is that they rely on a monitor program that is
contained in memory. These programs tend to be very invasive because of the memory space
they require and their effect on real-time execution. One solution to this has been to use an in-
circuit emulator. However, emulators for microcontrollers are relatively expensive and may not
be available for all MCU versions.

Using On-Chip Flash EEPROM and Background Debug Systems

The development process for a single-chip design can be dramatically improved by using a
microcontroller that combines Flash EEPROM and an on-chip debugging system. The Flash
EEPROM allows automated, in-circuit programming. The on-chip debug system adds the
capabilities of a debug monitor without the invasiveness of aresident monitor program.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

€'1G/.'9 abed

Motorola’'s 68HC12 microcontrollers all have a Background Debug Module (BDM)>®. The
BDM involves a special operating MCU mode, on-chip debugging circuitry, a small firmware
program contained in ROM, and a dedicated serial communications port.

To control program execution and access memory and registers, the 68HC12 BDM has a set of
hardware commands, firmware commands, and on some M CUs, hardware breakpoints. Because
extra hardware circuitry is used, this system is relatively non-invasive to the CPU. Thisisavery
significant improvement over a resident monitor program, which requires the CPU to stop
executing the user program to run a monitor command.

The 68HC12 BDM hardware commands are shown in Table 1. They are used for basic BDM
initialization and memory access. Because these commands are implemented in hardware, they
can be executed while the CPU is executing the user program.

Table 1 M68HC912B32 BDM Hardware Commands®

Command Description

BACKGROUND Enter background mode.

READ BD BYTE Read 8-bit word from memory with BDM ROM in map
STATUS Read BDM status register

READ_BD_WORD Read 16-bit word from memory with BDM ROM in map.
READ BYTE Read 8-bit word without BDM ROM in map
READ_WORD Read 16-bit word without BDM ROM in map

WRITE_BD BYTE

Write 8-bit word to memory with BDM ROM in map

ENABLE_FIRMWARE | Set ENBDM bitin BDM status register

WRITE_BD_WORD

Write 16-bit word to memory with BDM ROM in map

WRITE BYTE

Write 8-bit word to memory without BDM ROM in map

WRITE_WORD

Write 16-bit word to memory without BDM ROM in map

Table 2 M68HC912B32 BDM Firmware Commands®

Command Description

READ_ NEXT Read next 16-bit word pointed to by I X
READ_PC Read Program Counter, PC

READ_D Read accumulator D, ACCD

READ_X Read index register 1X

READ_Y Read index register 1Y

READ_SP Read stack pointer, SP
WRITE_NEXT Read next 16-bit word pointed to by I X
WRITE_PC Write to Program Counter, PC
WRITE_D Write to accumulator D, ACCD
WRITE_X Write to index register 1X

WRITE_Y Write to index register 1Y

WRITE_SP Write to stack pointer, SP

GO Go to user program

TRACE1 Execute one instruction then return to BDM
TAGGO Enable tagging and go to user program

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2001, American Society for Engineering Education

¥'1G/.'9 abed

The BDM aso utilizesasmall ROM that contains the BDM firmware commands shown in Table
2. The BDM firmware commands can not be executed by the BDM circuitry so they haveto be
executed by the CPU. This means that these commands can not be executed without preempting
the user program, which means they affect the real-time operation of the user program. For
example, notice that the commands used to access the registers require the CPU. This means
reading the register contents will require the user program to be preempted. On the other hand, a
read or write to memory can be done while the user program is running.

These commands are sent by a host connected to the BDM port, BKGD. The host istypically
made up of PC and aBDM pod, which translates the PC commands to BDM commands. Keep in
mind that the commands shown here are transparent to the user because development systems
designed for the BDM provide a more user-friendly interface. Typically, the user will enter D-
Bugl2 commands on a PC or select widgetsin a graphical user interface. The host system will
then convert that request into the required BDM commands and send them to the MCU.

To use the BDM commands, the CPU must be placed under BDM control. To accomplish this,
thereis a Special Sngle-Chip mode in addition to the Normal Sngle-Chip mode. In Special
Sngle-Chip mode, the CPU is placed under BDM control and the BDM firmware ROM is
available. There are also some subtle differencesin MCU configuration between the two modes.
For example, the COP monitor resets are disabled in the Special Single-Chip mode.

During the debugging process, the MCU isreset in the Special Single-Chip mode. Oncereset, the
CPU is placed under BDM control, which iswaiting for a command to be sent by a host. The
host can send command sequences that |oad a program into RAM, program an on-chip
EEPROM, or execute a program. This mode is used to develop the program until it appears to be
operating to specification. At that point, the MCU isreset in Normal Sngle-Chip mode and the
transition to final product is complete. ThisBDM system combined with on-chip EEPROM
makes the transition from the debugging process to the final product very ssimple.

An Inexpensive BDM System 3’

There are several BDM debugging systems available for the 6BHC12 family. The debugging
system described here uses two Motorola M68EVB912B32 boards — oneis used as the final
product (target) and the other is used asa BDM pod. It isarelatively inexpensive solution and
uses the same D-Bug12 command interface and evaluation boards that are commonly used in a
beginning course. Although this system uses the D-Bug12 interface, it isimportant to realize that
D-Bugl2 is no longer resident on the target board. It runs on the POD board and uses the BDM
interface to communicate to the target. This has all of the advantages of using the BDM system
while using the familiar D-Bug12 command interface.

Figure 2 shows the hardware configuration for a system that uses two M68EVB912B32
evaluation boards. Oneis configured as a BDM pod and the other is configured as atarget. The
POD is connected to a PC COM port and the target’s BDM connector. The POD runs D-Bug12

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

G'1G/.'9 abed

so the user on the PC interacts with the D-Bug12 command interface. The POD then translates
the D-Bug12 commands into the appropriate BDM commands and sends them to the target.

Figure 2 M68EVB912B32 BDM-Based Debugging System

0

[e }/

Personal Computer

Power
Supply

Target EVB

When the reset button on the target board is pressed, the target will reset in Normal Sngle-Chip

mode, which uses the user’ s exception vectors — thisis the final product. When the target is reset
with the RESET command through the POD, the target is reset in the Special Sngle-Chip mode
and waits for BDM commands from the POD to operate.

The user can load programs into RAM or into one of the on-chip EEPROM memories. In
general, the application code for afinal product will be loaded into Flash EEPROM. Once +12V
isapplied to Vep pin on the MCU, the FBULK command can be used to erase the flash EEPROM
and the FLOAD command can be used to load the machine code into the Flash EEPROM. In this
way, the non-volatile, on-chip program memory can be programmed in-circuit.

On some MCU’sthe BDM system also has hardware breakpoints. Normal D-Bugl12 breakpoints
are called software breakpoints. To stop the CPU at the desired instruction, the monitor will
replace that instruction with a software interrupt, swi, instruction. However, when the program is
in Flash EEPROM, thisis not possible. By including hardware breakpoints, the debugging
system can stop execution of a program running out of Flash EEPROM.

This system has several advantages in the student laboratory. First it uses two inexpensive,
readily available evaluation boards — the same boards can be used in the traditional resident
monitor system. The D-Bug12 user interfaceis ssmple and familiar to students that have used it
on a 68HC12 board with aresident monitor or students that have used the BUFFALO monitor in
a68HC11 system. In addition, it enables the student to easily develop afinal product. The
disadvantage to this system really shows up when using C programs. As described in the next
section, the user must manually look up references to map CPU execution to the C source code.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

9'1G/'9 abed

In addition, this system does not allow a variable or signal to be monitored at a fixed rate. For
example, it would be impossible to look at a variable in memory every 10ms using this system.
Let alone synchronizing a sample with another real-time event.

A Source-Level Debugging System

Programming in C has many advantages but it also complicates the debugging task. When C is
used there is no longer a one-to-one correspondence between the source code and the CPU
operations. The programmer has to trandlate the code executed by the CPU back to the C source.
When using the D-Bug12 BDM system described in the previous section, the programmer must
translate the CPU operations to the C source code by making use of the listing files generated by
the compiler. For example, to set a breakpoint at the start of aline of C code, the user must first
correlate the line with the resulting assembly code and find its absolute address. Once the
absolute address of the line is found, a breakpoint can be set. This can be a tedious process,
which may discourage students from debugging their code.

In general, a source level debugger refers to a computer application and external hardware that
can control program execution on atarget system and correlate the program execution with the
original source code. Many programmers are first introduced to this type of system while taking
a programming course for writing PC applications. In traditional source level debugging systems,
an emulator is used to control the CPU, collect data from the CPU memory, and load programs
into memory. These are the most powerful debugging tools available for debugging high-level
language programs. However, they are also the most expensive because extensive hardwareis
reguired to emulate the processor. The on-chip debugging features that are found on many new
microcontrollers provide an ideal solution to this problem. Because the debugging hardwareis
integrated into the microcontroller, the CPU emulation circuitry is no longer required. The only
hardware required isthe BDM pod to communicate with the on-chip debugging circuitry. This
type of system provides us with most of the capabilities of afull emulator, yet at a reduced cost.

In this section, the Noral Micrologics Flex BDM Debugger for the 68HC12 family of
microcontrollers will be covered. It takes advantage of the 68HC12’ s Background Debug
Module (BDM) to provide real-time source level debugging. The system consists of a source-
level debugging application and a BDM pod connected between a PC parallel port and the target
hardware. It is more expensive than using Motorola’'s 68HC12 EVB as a background debug pod
but less expensive than a full emulator — if one existed. In the student lab, this system provides
much better control and insight for the student debugging large C programs. Figure 3 shows an
example of the Noral 68HC12 BDM debugger’s working environment. A few of the features of
this debugger are shown in the figure including the Source window, the Registers window, the
Monitor Points window, the Watch window, and the Call Tree window.

The buttons on the top of the display control program execution and run debugging macros. The
program can be executed with the Go button or single-step to the next instruction with the Step
Instr button.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

/'1G/'9 abed

The source window shows the source code of the program being tested. In Figure 3, the source
window shows both the C source code and the assembly code contained in target memory in
mixed mode. It also shows the module name and the routine name for the source of each
function. Optionally, the display can show only assembly or only C but, when testing code for
embedded microcontrollers, it isimportant for the student to see both the source and assembly
code so the mixed mode should be used. The debugger correlates the code from target memory
with the code in the source files by using information contained in an |IEEE-695 standard debug
file. The highlighted line in the figure shows where the code execution has been stopped with a
breakpoint. The breakpoint was set be clicking on the breakpoint box directly to the left of the
assembly code line.

The Registers window is roughly equivalent to the RD command in D-Bug12. It shows the
register contents at the breakpoint, the current module and routine, and the disassembled source
code from memory. The Call Tree window displays the current source code context. It includes
the module name followed by the function name for each nested function call. The Monitor
Points window is used to display the current contents of a memory location. It is roughly
equivalent to the MD command in D-Bug12. The points are absolute memory locations such as
the MCU control and status registers. In Figure 3, the system set to monitor PORTP and DDRP
of the MCU. Since the 68HC12 BDM can read address contents without interrupting the
program execution, the system can monitor these locations in real-time. The update time for this
window is configurable. It can be updated at a fixed rate or updated at designated pointsin the
code execution called Refresh Points. Refresh Points, however, are implemented with
breakpoints so they can affect the real-time execution of the code. The Watch window is
essentially the same as the Monitor Points window except it allows us to monitor C data objects
by name.

These are the main features of the Noral 68HC12 BDM debugger. There are many other features
such as loading Flash EEPROM, monitoring local variables, and automating the debug process
by creating debugging macros. Although this system is relatively expensive for the laboratory, it
iIsagreat way for students to debug and understand the operation of large C programs.

Real-Time Techniques **

In this section, techniques to help debug and analyze real-time programs running in a single-chip
microcontroller will be covered. When debugging real-time programs the tools must be as non-
invasive as possible. They must collect as much data as required while affecting the system
timing aslittle as possible. In areal system, thereis atrade-off between the amount and type of
debugging data that can be watched or saved and the invasiveness of the debugging tool. Thisis
especially true when working with single-chip microcontrollers.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

8'1G/'9 abed

Figure 3 Noral 6BHC12 BDM Source Level Debugging Environment

B Flex - 68HC12B32 BDM [O[] |
File Edit “iew Hun Break Refresh Data ‘Window Help
“E}Steplnstr {PStepRet #15Stepinto T Step Over | Go M Gtopn “J £k Goto Function o Goto Module 1 Goto Label ;R Goto Address
JJ BR5vs int 1f ResstiHard] | BLoadProgiam i Load Code B Load Symboke | B MACE ‘
JJ mMonPulse mMonTimer mMonSerial mMonBDLE mMonADE mMonBrkpts
[Source [_ O[] I [Registers !Elﬂ I
lablstart .s128H ﬁ PC-884A 5P-BOFE A-0@ L-B86A
_start: SHHINZYC E-008 Y-886B
il ©B8@E CERGEA ldx #5866 CCR=11118168 D-8888
1) 8883 26882 bra $6807 THITRG?=00
g B8@hs 6930 clr #1,x+ Scope: pulsel#fmaind
Il ©B8@7 BERAER cpx #3868 Dism: BE4A TIBBEA dec $086A
I @88@A 25F9 bes $6805
_datainit:
il B8AC CDRAER ldy #5868
)l BSAF CERREA 1dx #5866
1) @812 2004 bra $6818 _ILI
11 B814 188A3B7E novh #1, %, 81,5+ 1 G
Il B81E BEREEA cpx #5866 | v
I B81R 25F7 bes $6814 2
lablstart.s12## ';J Call Tree —[alx]
_stackinit:
Jil @81 CFBAEE 1ds #$A00 1] lablstart.s128% -
lablstart.s124# [8] pulseZ¢tmaint
Ju BEZE Ta@EIY jsr FIEEN 5 pulselffmnaind
TabhIstart s120H
_exithalt: hd
11 @823 14l@ orce §$1@ - _>|_I
)l B825 26FE bra 8825 - -
pulse2itiimaindt ES | Lt Z
mein:
8821 InII_LI-:D_DIR() /* Initialize LED as outpu Wl Aite I [=1E3 | |
Jil B827 1CBE5781 $B057, 481 & RY PORIP 8856 -]
BO22 TURN_LED _ UFF() Be56 = BxA0
i ®82R 1cemseDL beet $OA56, #31 [P? =0 "Lov’
BO24 for(PulseCnt - 68; PulseCnt » 0; PulseCnt--) 1 PG = @ "Low’
Jil 9EZF 1BBBICOEEA mavh #$3C,$086A P5 = @ "Low”
i 9834 2017 bra $084D P4 = @ "Low”
BOZ5 TURN_LED_OFF () ; F3 - 0 low
Jil 9836 1CE@5E@1 hzet $O056, 151 P2 = @ "Low”
BO26 msDelay (OFF_TIME) ; Pl =0 "Lov’ |
Il B83A CCB2EE 1dd #$2EE PB = 8 "Low
Il 983D 168859 jsr $0859 5 msdelay.sl2## & RY _DDRF 8857
BO27 TURH_LED_OH(); Bes7 - BxBl .
)y @248 1D@ASEAL heolr $AAB5E, 451 DDRE? = @ "Input”
aRza msnelay(un _TIME}; DDRFS = @ "Input”
0 ©244 CCAAFA dd #$FA DDRFS = @ "Input”
J) ©247 168853 ;. r $@858 3 madelay.s12## DDRP4 = @ "Input”
8024 for(PulseCnt - 68; PulseCnt > B; Pulselnt--) { DDRPS = @ 'Input] _|;|
10 CEEEIEECELE dec SHEAA 4 7 o »
Il 684D FEREEA 1dab taa6A |
| 8850 26E4 hr(n; T EE [[| /i
BE31 TURHR_LED_OFF(); f* Turn LED off and tra
4 8852 1C0B56DL bset $0056,#51 ‘ Ewach)
2832 TRAP(); FulzeCnt = 68 <~ =
i)l B856 2BFE bra $B856
8633
i1l 8858 3D rts
msdelay .s124##
msDelay: =
Jil 8859 @706 bar $B861 <] »
I B85 838@A1 subd #51 2
<i | 3 [A
|F'ress F1 for HELP |F|EADY | i

The easiest source of datais external signals. Access to these signals can be achieved in avery
non-invasive way by using an oscilloscope or logic analyzer. At minimum, the external signals
on asystem will indicate if the system meets its system requirements. However, these signals can
also help the student gain insight into why the system is not working, especialy if they have
access to external signals that contain information about program execution. The most obvious
and helpful external signals for this are the bus signals. If the bus system is accessible, alogic
analyzer can be used to see exactly what the program is doing bus cycle by bus cycle. Thisisone
of the most powerful debugging tools for real-time systems. It is essentially non-invasive and it
provides detailed information about the program’ s operation. The problem is that more and more

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

6°'1G.'9 abed

designs today are using single-chip microcontrollers where the bus is not accessible. For these
systems, it is more difficult to gain information about detailed program operation.

The student programmer can gain as much insight as possible from the accessible signals but, if
that is not enough, software and hardware debug helpers must be used. Software and hardware
debug helpers are additional code and hardware resources used solely for the purpose of
debugging and analysis. They are not part of the specified function of the system but may remain
in the final product for diagnostic purposes. Two basic forms of helpers are those that capture
and store data at run-time to be accessed later, and those that provide additional external signals
that can be watched while the program is running. One of the best examples of a hardware debug
helper isthe BDM on the 68HC12 microcontrollers. It allows the programmer to watch internal
variables and signalsin real-time. Most debug helpers that are added by the programmer require
additional software. Therefore, they are invasive and will affect the program timing. However,
many times the software can be reduced to a single move or store instruction.

The first type of debug helper is one that captures and stores critical data during run-time. At
critical pointsin program operation, debug code is added to save the value of a critical variable.
The datais stored in alocation reserved for the helper and can be examined by a monitor
program once the program has stopped or the BDM while the program continues running.

The second type of debug helper is used to add external signals that contain debug information.
These signals are normally binary indicators that provide more information about the program’s
operation. They can then be watched externally with an LED, an oscilloscope, or alogic
analyzer. Another way to provide external information is to send data out the serial port for
display. This, however, can be very invasive because of the time it takes to send data through the
serial port.

For example, Figure 4 shows a captured set of external debug signals that are used to examine
the timing of a multitasking program based on a time-slice scheduling loop. In this case, there are
four cooperative tasks. For each task, code is added to make the corresponding output bit goes
high when the CPU is executing that task. Figure 4 shows these debug signals captured with an
HP54645 Mixed Signal Oscilloscope. If the signal is high, the CPU is executing that task. Once
these signals are captured, the task times can be measured on the scope for a complete timing
analysis and CPU load calculations. This technique can also be used in a preemptive kerndl if the
programmer has access to the kernel task switching routine.

This technique can be used to effectively analyze and debug real-time programs running in
single-chip microcontrollers, as long as there are adequate resources. For example, there must be
extra GPIO ports for the debugging signals and enough CPU time available to change signal
values.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

0T'1S.2'9 abed

Figure 4 Debug Helper Signals Captured on a HP54645 M SO

o Jitt T o0 o 3.80% 20.0%- Srgl PatSTOP
N [N N N N I : N N
3 |UPTASK:
| I I I | | 1 | 1 : 1 : 1 : 1 : 1 | 1 : 1 : 1
4 |SWTASK: : : : : : : : :
5 [OTTASK: §‘ §‘
: | :
L | :
BlscITHD: Il l
: Ve : : s : | : : :
t1 = -B0.00ms tz = 40.00ms &t = 100.0ms 1/4t = 10.00 Hz

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

TT1°1G.'9 abed

Bibliography

1. Ball, Stuart R., Debugging Embedded Microprocessor Systems, Butterworth-Heinemann, Woburn, MA, 1998
2. Labrosse, John J., MicroC/OS 1, The Real-Time Kernel, R& D Books, Lawrence, KS, 1999.

3. Morton, Todd, Embedded Microcontrollers, Prentice-Hall, Upper Saddle River, NJ, 2001.

4. Morton, Todd, A Digital System Design Laboratory, ASEE National Conference, June 1991, New Orleans, La.
5. CPU12 Reference Manual, CPU12RM/AD, Motorola

6. MC68HC912B32 Technical Data, MC68HC912B32/D, Motorola

7. M6BEVB912B32 Evaluation Board User’s Manual, 68EVB912B32UM/D, Motorola

TODD MORTON

Todd Morton has been teaching the upper level microprocessor and digital courses for Western Washington
University's Electronics Engineering Technology program for 13 years. He is the author of the text ' Embedded
Microcontrollers’, which covers assembly and C programming for the 68HC12. He has also worked as a design
engineer at Physio Control Corporation and has worked several summers at NASA's Jet Propulsion Laboratory as an
ASEE-NASA summer Faculty Fellow. He has a BSEE and M SEE from the University of Washington.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

21°16.°9 abed

