
AC 2012-4211: NEW LIFE FOR PROCESS CONTROL TRAINERS IN A
MICROCONTROLLER COURSE

Dr. Dale H. Litwhiler P.E., Pennsylvania State University, Berks

Dale H. Litwhiler is an Associate Professor at Penn State, Berks, in Reading, Penn. He received his B.S.
from Penn State University, his M.S. from Syracuse University, and his Ph.D. from Lehigh University, all
in electrical engineering. Prior to beginning his academic career, he worked with IBM Federal Systems
and Lockheed Martin Commercial Space Systems as a Hardware and Software Design Engineer.

c©American Society for Engineering Education, 2012

P
age 25.974.1

New Life for Process Control Trainers in a Microcontroller Course

Abstract

To improve student enthusiasm and demonstrate the power of embedded control, laboratory

process control trainers were adapted and repurposed for use in an introductory microcontroller

course. While some students are able to extrapolate the ideas conveyed by making an LED flash

using assembly code, other students need to see their code doing something more powerful and

realistic. Control system training rigs are common in engineering and technology laboratories.

These trainers, from manufacturers such as Feedback®, typically have some type of “plant” that

is the controllable center of the system. The parameters of the plant are then measureable via

several types of process sensors. To complete the control loop, a programmable or otherwise

adjustable control unit is provided to be used to demonstrate various closed-loop control

techniques such as PID control. The system used here is the Feedback Basic Process Rig model

38-100. This system is comprised of a plumbing network in which the water level in a tank is

regulated by controlling the flow of water into and out of the tank using solenoid and/or servo

valves. Tank level and system flow rate sensors are used as inputs to the control unit. For the

microcontroller course, the manufacturer’s control unit was disconnected from the system and

replaced with a microcontroller trainer board and a simple, custom interface box to make the

appropriate interconnections. The students designed their own assembly code to read the system

sensors and control the water level to a variable, user-determined set point. The required code

components were developed throughout the semester as each peripheral of the microcontroller

was discussed. The process control served as a culminating project for the course. This paper

presents the system hardware and example student software. Course curriculum is also presented

and discussed.

Introduction

Microcontrollers are used extensively in process control applications. Courses in process control

often use microcontrollers to implement various control techniques.
1
 Low-cost custom-built

process control trainers can be utilized to demonstrate many processes.
2,3

 The experience

presented here, employs under-utilized educational-grade process control equipment to crossover

as training tools for a microcontroller course. The emphasis here is on the ability to sense and

control the process with the microcontroller rather than the control theory itself.

The laboratory space used for the microcontroller laboratory classes at (school name here) also

serves as the control and automation laboratory. Contained within this laboratory, are several

Basic Process Rig model 38-100 trainer stations manufactured by Feedback™. Figure 1 shows a

photograph of one of the trainer stations. The trainer is comprised of rugged mechanical

(plumbing) and electrical hardware that can easily be reconfigured for various water process

control demonstrations and experiments.
4
 The accessibility of the electrical connections between

the sensors and actuators also makes it easy for system customization. In particular, custom

interface hardware was developed to facilitate embedded control of the water process rig using

the microcontroller trainer board already used in the microcontroller course. In this way, students

P
age 25.974.2

could develop and implement code for the microcontroller that had a very visible and active

application.

Figure 1. Feedback Basic Process Rig model 38-100

Figure 2 shows the block diagram for the water process trainer rig (shown inside the dashed box)

with the interconnections to the microcontroller trainer board. All of the connections are

accomplished with simple patch cords so no tools are required to substitute the microcontroller-

based controller for the standard system controller. The system is then easily restored to its

standard configuration at the end of each laboratory period. Because the lab space is shared, this

was a very important consideration in the design of the interface unit.

The students use the microcontroller trainer board for each laboratory session and are very

familiar with its use together with the MPLAB™ IDE and PICkit2™ programmer from

Microchip.
5
 Making the simple connections to the interface box was very similar to the type of

wiring they had been doing in prior experiments. This was also a very important design

consideration.

Float Potentiometer

Servo

Valve

Solenoid

Valve (x2)

Manual

Valve

Pulse Flow

Meter

Control

Tank

Reservoir

Pump

P
age 25.974.3

Figure 2. Modified System Block Diagram

Course Curriculum

The microcontroller course is an introductory course taken by second or third year engineering

technology students. The course uses the PIC™ 18F4520, 8-bit microcontroller as the primary

device for demonstrating the capabilities of such devices. The devices are programmed using

assembly language. The course topics are as follows:

 Arithmetic and logic commands and operations

 Decision branches

 Subroutines

 Time delays

 I/O port programming

 Serial (RS232) port communication and programming

 Timer programming

 A/D conversion

 Polling and interrupt handling

 SPI bus communication and programming

 Controlling high-power loads

The topics shown above are covered in detail with programming and laboratory exercises. Each

of these concepts are key components in the assembly code developed by the students to control

the water process. The water process control project ties together these concepts in a very

tangible manner.

Control Tank

Reservoir

Solenoid
Valve 2

Solenoid
Valve 3

Manual
Valve

Servo
Valve

Pulse Flow
Meter

Pump

Float
Level

Sensor

Interface
Unit

uC
Trainer
Board

24VDC
Power

Lab PC

Feedback Basic Process Rig model 38-100

P
age 25.974.4

System Overview: Hardware

The interface unit is shown in Figure 3 with and without its cover. The actual size of the plastic

enclosure box is 2”x3”x1”. The connections to the solenoid valves are made via 2-conductor

patch cords with ¼” phone plugs that connect directly into the back of the process rig fixture.

The control tank water level sensing potentiometer is connected to the interface box via a 3-

conductor patch cord with a 5-pin DIN connector (2 unused pins). Connections to the

microcontroller trainer are made with simple jumper wires that are inserted into the individual

female connector pin sockets as needed. Figure 4 shows an assembly diagram of the interface

unit.

Figure 3. Interface unit

The solenoid valve requires a nominal current of 0.5A at 24V to hold it in the open position.

When the solenoid is de-energized, the valve is closed by spring action. To control the high

current of the solenoid valve, a MOSFET switch is used. Figure 5 shows a schematic of the

MOSFET switch circuit contained in the interface unit.

P
age 25.974.5

Figure 4. Interface unit connection diagram

Figure 5. Solenoid valve MOSFET switch circuit

The control tank water level is measured with a float and 10kΩ potentiometer apparatus. An

excitation voltage of 5VDC is passed from the microcontroller trainer board to the potentiometer

In
te

rf
ac

e
B

o
x

BLACK

RED

DIN Jack

Water Level Pot Input

YELLOW

WHITE

BLACK

BLUE

To Vcc

To GND

To RA0 (AN0)

To GND

To RD1

D
2

D
1

2
4
V

G
N
D

G
N
D

2
4
V

2
4
V

RED

BLACK

RED

BLACK

To Solenoid Valve 3

To 24V

Power

Supply

To Solenoid Valve 2

To RD2

Water

Level Pot

Solenoid

Valve

Control

IRFZ44100Ω

10kΩ

1N4002

D

G

S

+24V

D1

GND

Blue

Black

To uC trainer board

To solenoid

valve and power

supply

P
age 25.974.6

via the interface unit connections. The potentiometer wiper (output) voltage is noise-filtered with

a simple RC low-pass filter circuit also housed in the interface box. The potentiometer

connections are shown in Figure 6.

Figure 6. Water level sensor interface connector and signal filter circuit

The MDE PIC Trainer V2 microcontroller trainer board manufactured by MicroDigitalEd is

shown in Figure 7.
6
 This board provides easy access to all 40 pins of the PIC18F4520

microcontroller via male and female header connectors. The female headers are used to easily

connect jumper wires to the interface unit. The board also contains some simple DIP switches, an

LED driver IC and LEDS, and an RS232 interface/driver IC. In-circuit programming of the

microcontroller is accomplished through a dedicated header designed to mate with the PICkit2

programmer. +5V power for the board can be obtained through the USB connection of the

PICket2 or through an external +5V supply (included with the trainer board). A photograph of

the interface unit and microcontroller trainer connections is shown in Figure 8.

Figure 7. Microcontroller trainer board

100Ω

0.1uF View INTO

DIN Jack

Output

(Yellow)

Gnd

(Black)

+5VDC

(Red)

T
o

 u
C

 t
ra

in
er

 b
o

ar
d

P
age 25.974.7

Figure 8. Interface unit and microcontroller trainer connections

System Overview: Software

The tasks of the microcontroller software are to control the level of the control tank water level

using hysteresis (bang-bang) control, periodically update the user with the current water level

and be ready accept new desired water level set points from the user. The user interface is a

LabVIEW application running on a PC that communicates with the microcontroller trainer board

via RS232 serial link.

The user enters a desired water level as a percentage of tank fill (0 – 100). The output voltage of

the water level sensor potentiometer is measured using the microcontroller’s 10-bit A/D

converter. To simplify the data manipulation, only the eight most significant bits of this

measurement are used. This produces a water level value, referred to the potentiometer, ranging

from 0 – 255.

The conversion between the percentage of tank fill (0-100) and potentiometer digitized voltage

reading (0-255), and vise-versa, is accomplished using calibration tables stored in external

EEPROM. The data for these calibration tables is obtained by the students for each trainer

station. The EEPROM data is accessed by the microcontroller via the SPI communication bus. In

this manner, the code developed by the students can be used with any of the water process

training stations in the laboratory as long as the programmed EEPROM for that station is used.

When the user inputs a desired tank fill level, the code retrieves the corresponding potentiometer

digitized voltage value. The code then calculates a hysteretic dead-band by adding (upper limit)

and subtracting (lower limit) 5 from the digitized voltage. When the water level is below the

P
age 25.974.8

lower limit, both solenoid drain valves are closed. When the water level is above the upper limit,

one solenoid drain valve is opened. If the water level continues to rise to the value of 5 counts

above the upper limit (10 counts above the set point), the second solenoid drain valve is opened.

At one second intervals, as determined by one of the microcontroller timers, the current water

level and current set point are sent to the user via the serial port. Prior to sending these values,

they are first converted from digitized voltages to tank fill percentages using the EEPROM

lookup table.

The flowchart from which the students design their assembly code is shown in Figure 9. The

assembly code elements required to successfully implement the desired functions encompass

most of the topics previously covered in the course. An example of the assembly code developed

by the students is given in Appendix A.

Main setup and loop

Figure 9. Water process control flowchart

Setup A/D

Setup Serial Tx-Rx

Setup SPI

Setup Interrupts

SETPTW=50

Convert SETPTW to SETPTP

Setup [most of]

Timer 0

Setup Ports

Preload Timer 0

Start Timer 0

Just loop

P
age 25.974.9

Timer0 rollover (1s interval) interrupt code

Figure 9 continued. Water process control flowchart

Perform A/D conversion

Toggle RD0

Make RD1 and

RD2 low

Make RD1

high

HILIMP = SETPTP+5

LOLIMP = SETPTP-5

MAXLIMP = SETPTP+10

LEVELP = ADRESH

LEVELP > HILIMP?
Yes

No

LEVELP < LOLIMP?
Yes

No

Send SETPTW

Convert LEVELP to LEVELW

Send LEVELW

Send d’0'

Send d’255'

Make RD2

high
LEVELP > MAXLIMP?

Yes

No

Reset interrupt flag

Stop Timer 0

Preload Timer 0

Start Timer 0

RETFIE

P
age 25.974.10

Serial receive interrupt code

Figure 9 continued. Water process control flowchart

Performance Results

During the last week of the semester, the students were required to demonstrate the performance

of their water process control system. Several desired water levels were entered into the user

interface. Some near the top of the control tank, others near the bottom. System performance data

was collected and included in the students’ final reports. Figure 10 shows a screen capture of the

LabVIEW user interface which also displays the performance data for one of the water process

control stations.

Figure 10. User interface and example system performance test data

Copy RCREG to

SETPTW (this also

clears the RCIF)

Convert SETPTW to

SETPTP

RETFIE

P
age 25.974.11

Conclusions and Outcomes

A simple and inexpensive custom interface unit allows for the insertion of a microcontroller

trainer into an educational process trainer station. The interface unit facilitates this insertion in a

quick and efficient manner without the need for any changes to the system hardwiring; only a

few patch cords need to be switched. This allows the system to be quickly reconfigured for use

by different courses.

Although this was not a control system course, the students were able to grasp the control ideas

and work with the process control trainer equipment very effectively. Few technical problems

were encountered that were unique to the process control stations. In the two years that this has

been done, all of the student groups were able achieve the objectives outlined in the project.

The use of flowing water, the whirring of the pump, the decisive thump of the solenoid valves

opening and closing, and the physical size of the process trainer added a real-world industrial

feel to the project. All members of the teams were actively engaged and involved in the

debugging of their system’s hardware and software.

Acknowledgements

The author wishes to thank the electrical engineering laboratory supervisor, Mr. Jeff Wike, for

his help with design ideas and the fabrication of the interface units.

References

1. Lodge, K., “The programming of a micro-controller as the laboratory component in process control for

undergraduates in chemical engineering,” Proceedings of the American Society for Engineering Education

Annual Conference and Exposition, 2006.

2. Rehg, J., “Low cost process control trainers,” Proceedings of the American Society for Engineering

Education Annual Conference and Exposition, 1998.

3. Moor, S., Piergiovanni, P., and Keyser, D., “Design – Build – Test: Flexible process control kits for the

classroom,” Proceedings of the American Society for Engineering Education Annual Conference and

Exposition, 2003.

4. http://www.feedback-group.com/product/level-and-flow-process-control-6060.

5 http://www.microchip.com

6. http://www.MicroDigitalEd.com

P
age 25.974.12

Appendix A

;assembly code file for the water process control project.

;

; - Water level is read from potentiometer on AN0 (0 - 255)

; - User sends desired water level via serial port (interrupt here) as

; percent of tank fill(0 - 100)

; - Conversion between water level (pot) and desired are through a lookup

; table in SPI EEPROM

; - Water level is controlled by opening one or both solenoid drain valves

; (RD1 and RD2). There is a constant flow into the tank.

; - Cadence is set by 1 second rollover of Timer 0 (interrupt)

; - Stop timer, preload timer, start timer

; - Read water level

; - Compare with desired water level.

; - Make decision to open, close, or do nothing with the drain valves

; based on water level and desired level.

; - Send current water level, desired level, 0, 255 to PC via serial port

; - Toggle LED on RD0 to show sign of life in software.

; - Reset flags

; - Sit in "DumLoop" forever waiting for interrupts

;

;--

;

;

#include P18F4520.inc

 CONFIG LVP = OFF, MCLRE = OFF, WDT = OFF, OSC = INTIO67, PBADEN = OFF

SETPTW equ 0x00 ;setpoint referred to water level (0-100)

SETPTP equ 0x01 ;setpoint referred to pot reading (0-255)

LEVELW equ 0x02 ;current water level referred to water level (0-100)

LEVELP equ 0x03 ;current water level referred to pot reading (0-255)

HILIMP equ 0x04 ;upper water level limit referred to pot (0-255)

LOLIMP equ 0x05 ;lower water level limit referred to pot (0-255)

MAXLIMP equ 0x06 ;maximum water level limit referred to pot (0-255)

Couter EQU 0x07 ;needed for DELAYMS subroutine

Cinner EQU 0x08 ;needed for DELAYMS subroutine

 org 0x00 ;tells compiler where to start user code space

 movlw b'01100011'

 movwf OSCCON ;4MHz internal clock (2 LSB select the

 ; internal(11) or external(00))

 goto Main ;jump over interrupt locations

 org 0x08 ;program flow jumps here when an

 ;interrupt occurs

 btfsc INTCON, TMR0IF ;check if TMR0 interrupt flag set

 goto TMR0_ISR

 btfsc PIR1, RCIF ;check if received byte interrupt flag set

 ;flag is set

 goto RC_ISR

 retfie ;just a ghost, I guess. Back to DumLoop.

Main

 ;Setup A/D ...(taken from A-D Conversion Lab Starter.asm)

P
age 25.974.13

 MOVLW b'11000001' ;select AN0, NO Go, A/D ON

 MOVWF ADCON0

 MOVLW b'11001110' ;Vref=Vdd/Gnd, AN0=A, AN1-12=D

 MOVWF ADCON1

 MOVLW b'01100001' ;Left Justified, 8TAD, FOSC/8

 MOVWF ADCON2

 ;setup serial port Tx-Rx...

 MOVLW B'00100100' ;enable transmit, choose high baud rate

 MOVWF TXSTA ;write to register

 MOVLW D'25' ;9600 baud with 4MHz clock, high setting

 MOVWF SPBRG ;put it in Serial Port Baud Rate

 ;Generator register

 MOVLW B'10010000' ;enable serial port, 8-bit, continuous

 ;receive

 MOVWF RCSTA ;write to register

 BCF TRISC, 6 ;make TX pin of PORTC an output pin

 BSF TRISC, 7 ;make RX pin of PORTC an input pin

 BSF PIE1, RCIE ;enable interrupts from received byte

 BSF INTCON,PEIE ;enable peripheral interrupts

;setup SPI bus parameters including CSbar for EEPROM...

 BSF TRISC,SDI ;make SDI pin of PORTC an input pin

 BCF TRISC,SDO ;make SDO pin of PORTC an output pin

 BCF TRISC,SCK ;make SCK pin of PORTC an output pin

 BCF TRISC,RC1 ;make RC1 pin an output pin, use as CSbar

 BSF PORTC,RC1 ;set RC1 so that it starts out high

 MOVLW b'01000000' ;need CKE=1 (bit 6) for proper data write

 ;edge for EEPROM write

 MOVWF SSPSTAT

 MOVLW b'00100001' ;0,0,Enable SPI port,0,0,SPI Master with

 ;clk = Fosc/16

 MOVWF SSPCON1

;Setup Timer 0…

 MOVLW b'00000011' ;TMR0 0ff, 16-bit, internal clk,

 ;prescaler ON, 1:16 prescaler

 MOVWF T0CON ;

 MOVLW 0x0B ;with 1:16 prescaler, 62500 counts occur

 ;in 1000ms. 65636 - 62500 = 3036 = 0x0BDC

 MOVWF TMR0H ;load TMR0H with 0x0B

 MOVLW 0xDC

 MOVWF TMR0L ;load TMR0L with 0xDC

 BSF INTCON, TMR0IE ;enable Timer0 rollover interrupts

;setup remaining I/O pins...

 BCF TRISD,0 ;make RD0 an output for blinking LED

 BCF TRISD,1 ;make RD1 an output to control solenoid

 ;valve 2

 BCF TRISD,2 ;make RD2 an output to control solenoid

 ;valve 3

;set initial water level set point to 50% and use lookup table in EEPROM to

;determine the corresponding SETPTP

P
age 25.974.14

 movlw d'50'

 movwf SETPTW

 BCF PORTC,RC1 ;make CSbar low to select chip

 movlw b'00001011' ;0,0,0,0, A8=1 for upper 256 byte area of

 ;EEPROM, 011 (read operation) this is the

 call SPI ;first SPI byte

 movf SETPTW,w ;seond SPI byte indicates the location in

 ;the upper 256 bytes to read from

 call SPI

 call SPI ;read the value at that location (just

 ;send any byte to force read from EEPROM)

 BSF PORTC,RC1 ;make CSbar high to de-select chip

 movwf SETPTP ;copy the value read from EEPROM to the

 ;setpoint-referred-to-pot register

;last few details and GIE...

 BCF INTCON, TMR0IF ;clear TMR0 overflow interrupt flag

 BSF T0CON, TMR0ON ;start timer0 (could also use T0CON, 7)

 BSF INTCON, GIE ;set the GIE bit to enable all

 ;interrupts.

DumLoop

 bra DumLoop ;something (nothing) to do

;Interrupt Service Routines...

TMR0_ISR ;this is where almost everything happens...

 ;reload timer...

 BCF T0CON, TMR0ON ;stop timer0 (could also use T0CON, 7)

 MOVLW 0x0B ;with 1:16 prescaler, 62500 counts occur

 ;in 1000ms. 65636 - 62500 = 3036 = 0x0BDC

 MOVWF TMR0H ;load TMR0H with 0x0B

 MOVLW 0xDC ;

 MOVWF TMR0L ;load TMR0L with 0xDC

 BSF T0CON, TMR0ON ;start timer0 (could also use T0CON, 7)

 ;perform A/D conversion...

 BSF ADCON0,1 ;start the conversion

ADLoop

 BTFSC ADCON0,1 ;wait for conversion to be done

 goto ADLoop

 movff ADRESH,LEVELP ;copy [8-bit] A/D conversion result to

 ;safe register

 ;convert LEVELP to a LEVELW value...

 BCF PORTC,RC1 ;make CSbar low to select chip

 movlw b'00000011' ;0,0,0,0, A8=0 for lower 256 byte area of

 ;EEPROM, 011 (read operation) this is the

 call SPI ;first SPI byte

 movf LEVELP,w ;seond SPI byte indicates the location in

 ;the lower 256 bytes to read value from

P
age 25.974.15

 call SPI

 call SPI ;read the value at that location (just

 ;send any byte to force read from EEPROM)

 BSF PORTC,RC1 ;make CSbar high to de-select chip

 movwf LEVELW ;copy the value read from EEPROM to the

]level-referred-to-water register

 ;calculate limits...

 movlw d'5'

 addwf SETPTP,w ;add w TO f, put result in w

 movwf HILIMP ;make upper limit 5 counts greater than

 ;SETPTP

 movlw d'10'

 addwf SETPTP,w ;add w TO f, put result in w

 movwf MAXLIMP ;make maximum upper limit 10 counts

 ;greater than SETPTP

 movlw d'5'

 subwf SETPTP,w ;subtract w FROM f, put result in w

 movwf LOLIMP ;make lower limit 5 counts less than

 ;SETPTP

;compare water level with set points and turn valves on and off as needed...

HiTest

 movf HILIMP,w

 cpfsgt LEVELP ;is water level higher than upper limit?

 goto LoTest

 BSF PORTD,1 ;turn on MOSFET to open drain valve SV2

MaxTest

 movf MAXLIMP,w

 cpfsgt LEVELP ;is water level higher than maximum upper

 ;limit?

 goto LoTest

 BSF PORTD,2 ;turn on MOSFET to open drain valve SV3

 goto SendInfo

LoTest

 movf LOLIMP,w

 cpfslt LEVELP ;is water level lower than lower limit?

 goto SendInfo

 BCF PORTD,1 ;turn off MOSFET to close drain valve SV2

 BCF PORTD,2 ;turn off MOSFET to close drain valve SV3

 ;transmit data to PC via serial port followed by two sync/framing bytes

 ;(0 and 255)

SendInfo

 movf SETPTW,w

 call SendIt

 movf LEVELW,w

 call SendIt

 movlw d'0' ;send ASCII null as part of data frame

P
age 25.974.16

 call SendIt

 movlw d'255' ;send ASCII 255 as part of data frame

 call SendIt

 ;last few details before returning to DumLoop...

 BTG PORTD,0 ;toggle RD0 to blink LED to indicate the system

 ; is alive

 BCF INTCON, TMR0IF ;clear TMR0 overflow interrupt flag

 RETFIE

RC_ISR ;serial byte received…

 movff RCREG,SETPTW ;copy received value to setpoint-

 ;referred-to-water-level register (this

 ;also clears the flag)

 BCF PORTC,RC1 ;make CSbar low to select chip

 movlw b'00001011' ;0,0,0,0, A8=1 for upper 256 byte area of

 ;EEPROM, 011 (read operation) this is the

 call SPI ;first SPI byte

 movf SETPTW,w ;seond SPI byte indicates the location in the

 ;upper 256 bytes from which to read value

 call SPI

 call SPI ;read the value at that location (just send any

 ;byte to force read from EEPROM)

 BSF PORTC,RC1 ;make CSbar high to de-select chip

 movwf SETPTP ;copy the value read from EEPROM to the

 ;setpoint-referred-to-pot register

 RETFIE

;Subroutines...

SendIt

S1 BTFSS PIR1, TXIF ;wait until the last bit is sent

 BRA S1 ;stay in loop

 MOVWF TXREG

 RETURN

SPI MOVWF SSPBUF ;copy contents of WREG to SPI buffer

SPILoop BTFSS SSPSTAT,BF ;wait for it to be sent (and/or something

 ;to be fully received)

 BRA SPILoop

 MOVF SSPBUF,W ;copy received byte to WREG before

 ;returning

 RETURN

DELAYMS ;load desired millisecond delay into WREG before calling

 ;this (at 4MHz).

 movwf Couter

OutLoop

 movlw d'249'

 movwf Cinner

InLoop nop

P
age 25.974.17

 decf Cinner

 bnz InLoop

 decf Couter

 bnz OutLoop

 return

 END

P
age 25.974.18

