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On Calculating the Slope and Deflection of a Stepped and 

Tapered Shaft 

Introduction 

As this is written there are natural gas-fired power plants that include a bottoming cycle 

achieving 45% thermodynamic efficiency.  There is ongoing development of a gear driven 

compressor for an aircraft engine that could reduce fuel consumption by 15%.  Additionally, 

there are a number of automobiles using hybrid power trains in the marketplace and there are 

eight and nine speed automobile transmission designs that maximize the fuel economy.  It is easy 

to focus on these sophisticated applications and marvel at the systemic design, and not think 

about the basic components deep inside.  One of those components is the shaft which may locate 

bearings, gears and couplings while transmitting power and motion. 

The design considerations of a shaft can be broken down into three areas, fatigue, deflection, and 

critical frequency.  During operation it can be subject to minimum and maximum axial, 

transverse and torsional loads leading to mean and alternating stress states.  These stresses can be 

addressed during a fatigue analysis which is well covered in texts on machine component design 

and governing standards.  Critical frequency prediction is reasonably straightforward once the 

deflection of the shaft is known along with the attendant masses. 

As long as the loading is not complicated and the shaft has a constant diameter, determining the 

deflections of a shaft is straight forward and well covered in texts on mechanics of materials and 

machine component design.  However, when the shaft cross section becomes practical it 

includes changes of diameter to provide steps that can be used to accurately mount bearings and 

gears.  It can have overhanging ends and tapered cross sections.  The need for finding the 

deflection and slope of these types of shaft geometries and loadings is timeless.  Each generation 

of engineers has used that part of mechanics of materials theory that fit the calculating capability 

available to them at that particular time.  The method presented here is offered in that vein. 

 

Figure 1.  Machine Designer Walter Schroeder of the Cincinnati Milling Machine Co. was 

interested in the deflection of the stepped shaft loaded as shown.[1]  To avoid binding 

at the bearing ends, their locations were of critical importance. 
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Background 

The literature search is purposefully limited to methods that have been previously used for 

finding deflections of stepped shafts.  An article by Professor C.W. Bert in 1960 entitled 

“Deflection of Stepped Shafts” [2] used Castigliano’s theorem to find the deflection of a simply 

supported grinding machine spindle with two intermediate masses for the purpose of calculating 

the critical frequency of the shaft.  In this article Professor Bert also reviewed the other methods 

available at the time to find deflections.  These included: (a) the graphical funicular polygon 

method [1] (still presented in some literature [3]), (b) the moment area-integration method, (c) 

the finite difference method, (d) the relaxation method, (e) the conjugate beam method, (f) the 

matrix method, (g) the Laplace transform method and (h) the Hetenyi trigonometric-series 

method.  Additional methods that can be added to this list could include those based on the use 

of Macaulay functions [4-6], singularity functions as well as finite element analysis.  All of these 

methods can provide numerically accurate results and there are undoubtedly certain shaft 

geometries and loadings that might be more amenable to one method or the other.  Some 

methods were appropriate for the classroom such as the graphical methods when drafting was 

still taught, but they are more difficult to use today. 

The method presented here is based on the work of Professor F.D. Ju as presented in his 1971 

article “On the Constraints for Castigliano’s Theorem” [7] and the notes of one of the authors as 

a student in Professor Ju’s class in the mid 1980's.  In his article Professor Ju provides two 

extensions to the application of Castigliano’s theorem.  First, it is shown how to incorporate 

constraints in the form of the equations of equilibrium (e.g., ΣF=0 and ΣM=0) by way of 

Lagrangian multipliers into the Castigliano’s theorem resulting in a “generalized form of 

Castigliano’s theorem.”  For typical statically determinate problems such as the example 

presented in this article, there is no need for incorporating the equilibrium constraints.  For 

statically indeterminate structures, this method can be quite effective.  Second, in his article 

Professor Ju also incorporates the use of dummy loads to find the displacement at the location of 

the dummy load.  A second virtual axis that tracks the 

location of the dummy load is also incorporated into the 

analysis.  Additionally, Heaviside step functions were used to 

write the continuous load (moment, torque) expressions thus 

allowing a continuous displacement function.  This means 

that when the closed-form analysis is completed, the 

deflection anywhere along the structure from beginning to 

end can be calculated.   

Professor Ju concludes his article by presenting the closed 

form solution of the deflection of a semi-circular beam 

(Figure 2) of constant cross section, built-in at one end with 

supports at the opposite and half way position loaded 

uniformly perpendicular to the axis of the beam.  A uniform 

distributed load, p0, is applied along the length.  Position C is 

built in loosely so as “to allow no resistance to twist.” 

The initial portion of Professor Ju’s article is very theoretical 

and presented in indicial notation.  If a reader is interested in 

the deflection of a beam, this presentation and its example 

problem can be a challenge.  When the authors began their 

 

 

Figure 2.  From Ju [7] curved 

beam. 
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study of this subject, a literature review found no one had ever referenced this article.  Other than 

the authors that is still true.  The only supplemental information available was the classroom 

notes.  The method presented here takes advantage of these notes and uses a portion of Professor 

Ju’s work. 

Context 

The method presented has been tuned to fit within the undergraduate Mechanical Engineering 

curriculum.  Our assumption is that students have completed classes in statics and mechanics of 

materials and they are ready to learn this approach in their study of machine component design.  

We have reviewed the Machine Design textbooks and found they all provide the following:  a 

review of free body diagrams, statics, and determination of reactions for simple beam-load 

configurations, a section on the use of singularity functions, writing shear and moment equations, 

and strain energy methods.  Finally, we also assume students have access to an equation solver.  

The authors use TK Solver™ and EES
©

 but our students and colleagues have produced solutions 

using Mathematica


, Matlab


 and MathCad


.  In deference to the faculty who might be 

interested in this method, we selected a very complex shaft geometry and loading.  Additionally, 

our complete solution provided in this paper may be more than is needed in a shaft design 

problem.  The typical textbook problem involves a simply supported shaft with one concentrated 

load between the supports complicated by numerous changes in cross sectional dimensions.  A 

bare-bones deflection solution to such a problem using this method requires about a half dozen 

lines of code and a table function.  Exploring this solution method began as a curiosity and was 

very slowly introduced into the classroom over a number of semesters.  To date over 450 

students at the University of Idaho and 130 students at the United States Coast Guard Academy 

have been introduced to this method and only about a dozen, overall, failed to master the process 

and produce virtually perfect analysis and results. 

The Method 

The method stays generalized, using an engineer’s knowledge of free body diagrams, writing 

moment equations, and Castigliano’s theorem to set up the problem solution into a form that is 

solved in an engineer’s favorite computer program.    

Beginning with Castigliano’s Theorem, the strain energy, U, stored in a structural member due to 

its bending is written as: 

dx
EI

M
U

L


0

2

2
 Eq.1 

where M is the moment along the length, L, of the beam, E is the modulus of elasticity and I is 

the second moment of the area.  Castigliano’s second theorem relates deflection at a point to the 

partial derivative of the strain energy with respect to a load applied at that point.  If an external 

load is not present at the point of interest, then a dummy load can be applied there for the 

purpose of deflection determination.  After the partial derivative is calculated with respect to the 

dummy load, that dummy is set to zero in the moment equation.  In equation form, we write: 
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dx
Q

M

EI

M

Q

U
L

Q

Q








 



0

0
  Eq.2 

The variable Q is used to delineate the dummy load.  It should be noted here that variables I, M, 

and the partial derivative are all functions of x. 

Since designing engineers are also acutely interested in shaft slope at key locations such as at 

bearings or overhangs, a similar process can be used.  Castigliano’s Theorem for slope at a point-

of-interest along the beam is: 

dx
m

M

EI

M

m

U
L

m
m









 



0

0  Eq.3 

The variable m represents a dummy moment located at the point where the slope, θ, is desired. 

For determination of slope, the partial derivative is taken with respect to the dummy moment.   

Solving Eq.2 and Eq.3 directly yields the deflection and slope of any shaft or beam at any chosen 

location along the length.  If each term of the integrand can be correctly written, then an equation 

solver provides the numerical muscle needed.  Consider each of the terms in the integrands.  The 

modulus, E, is constant for most cases so it can be moved outside of the integral.  The moment of 

inertia, I, is a function of diameter which is defined within the equation solving software chosen.  

It remains, then, to insert a dummy load, Q, and a dummy moment, m, on the shaft and write a 

moment equation for the entire length.  Determine two partial derivatives of the moment 

equation, one with respect to the dummy load, Q, and one with respect to the dummy moment, 

m.  Finally, re-write the moment equation for use in the integrand (set Q,m=0).  Then x is used as 

the integrating variable while a secondary axis, ξ, serves to track the location along the shaft 

where the deflection is being calculated (Figure 3).  Writing the moment equation for the entire 

beam is accomplished efficiently by introducing a Heaviside step function to serve the same 

purpose as Macaulay brackets [8] in discontinuity functions taught in mechanics of materials 

class.   

Although in 1947 Walter Schroeder had no spreadsheet or equation-solving software, he 

articulates clearly the type of real-life problem needing to be solved:  “those cases where loading 

is manifold and arranged at random, where beam cross section is not constant but varying, and 

where deflections at special points or over the full length of the beam are desired.”[1]  Such is 

the shaft shown in Figure 1.  It has several steps and one taper in its diameter.  Supported by two 

bearings (upward distributed loads), the shaft accommodates three external loads, one of which 

is distributed.  Schroeder’s design criteria incorporated slope at each bearing end and smallest 

possible deflection everywhere.   

Traditionally in challenging deflection problems, distributed loads are modeled as concentrated 

loads for simplicity with the assumption that concentrated loading will be “close enough” to the 

actual distributed loading for determination of deflection.  In the example which follows, the 

analysis begins with the treatment of distributed loads as concentrated loads.  Then, because the 

method shown is readily repeated using distributed loading, we can assess whether the 

simplification is sufficient. 

Overall, the analysis method consists of the following steps: 

(1)  apply a dummy load/moment, and solve for static support reactions, 
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(2)  write a moment equation in Macaulay form augmented with Heaviside step function 

variables, 

(3)  take a partial derivative of the moment equation with respect to the dummy load and a 

second partial derivative with respect to the dummy moment, 

(4)  re-write the moment equation to eliminate the dummy load/moment and finally, 

(5)  use the results of steps 3 and 4 to develop the deflection calculation via Castigliano's 

Theorem applied parametrically to create a deflection curve for the entire length of the 

beam. 

Figure 3 shows the example shaft having several steps and one taper in its diameter.  Three loads 

are applied, one of which is distributed (3450-lb over 8-inches), and the shaft is supported by two 

rigid bearings (left support, RL, 3500-lb over 6-inches; right support, RR, 1600-lb over 4-inches).  

The free-body diagram is augmented with dummy-load, Q, and dummy-moment, m, and the 

concomitant secondary axis, ξ.  Diameter measurements are indicated; distances from x=0 to 

load locations are shown on the middle axis.  Distances from x=0 to diameter changes are shown 

on the lowermost axis.  All distances are measured in inches; loads are in lbs.  The tapered 

section begins at x=1 and ends at x=12 inches.  The left bearing begins at x=13 and ends at x=19 

inches from the left.  Both x and ξ are zeroed at the same left position where the 900-lb overhang 

concentrated load is applied.  The entire length of shaft in the analysis is 45-inches. 

 

Figure 3.  Example problem shaft (after Schroeder [1]).  For the machine component designer the 

shaft deflection and rotation is important at the bearings so that clearance is provided 

to prevent binding. 

Concentrated load assumption 

As shown, a dummy-load (Q) and dummy-moment (m) are applied to the free body diagram at 

the arbitrary location indicated by the secondary axis, ξ.  For only the dummy load and dummy 

moment, reactions, RL and RR are determined using statics: 

   
    

  
  

 

  
    

    

  
  

 

  
 Eq.4 

 

Before proceeding to write the moment equation, we need to define the Heaviside function 

 (   )  {
        
        

 Eq.5 
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When used to write moment equations Heaviside step functions serve the same purpose as a 

singularity function or Macaulay function (the Heaviside step function is used here in deference 

to Professor Ju [7]).  Instead of using pointed brackets we use regular parenthesis followed by 

the Heaviside step function which operates as a switch to activate the term.  Treating all 

distributed loads as concentrated loads, the moment equation is: 

 (   )         (   ) (   )    (   )   (    ) (    )
     (    ) (    )
     (    ) (    )   (    ) (    )
     (    ) (    ) 

Eq.6 

where RL and RR are defined in Eq.4.  The terms in this equation are in the order encountered 

from left to right in Figure 3.  The term -Q(x-ξ)H(x, ξ) is the moment caused by the dummy load, 

Q, when coordinate x becomes greater than the point-of-interest coordinate, ξ.  The moment arm 

is (x - ξ) and the term is not active as long as x < ξ.  The term representing the 750-lb load at the 

right end is omitted because we consider 45-inches to be the end and do not integrate beyond that 

location. 

Determine the partial derivative with respect to the dummy-load, Q. 

  (   )

  
   (   ) (   )  

    

  
(    ) (    )  

    

  
(    ) (    ) Eq.7 

The partial derivative with respect to the dummy-moment, m, will be used to determine slope 

and is included here since it conveniently follows Eq.7. 

  (   )

  
  (   )  

 

  
(    ) (    )  

 

  
(    ) (    ) Eq.8 

Rewrite the moment equation setting Q,m=0. 

 (   )            3500(    ) (    )      (    ) (    )  

    (    ) (    ) 
Eq.9 

Before a solution can be accomplished the area moment of inertia term, I(x), will need to be 

defined as a function of shaft diameter and location (x) for integration.  

 ( )  
 [   ( )] 

  
 Eq.10 

The shaft diameter can be defined according to the equation solver chosen.  Figure 4A shows the 

list function used by TKSolver™ which serves as a look-up table and Figure 4B shows EES
©

 

code for the user-defined function which produces the same result.  While we are aware that 

integrating across a discontinuity can be problematic for numerical tools, we have found 

convergence to be extremely rapid. 
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LIST FUNCTION: dia 

Comment:  
Domain List: Distance 
Mapping: Linear 
Range List: Diameter 

Element Domain Range 

1 0 2.5 

2 1 2.5 

3 11.99 3.5 

4 12 4 

5 19.99 4 

6 20 3.5 

7 43 3.5 

8 43.01 3 

9 45 3 
 

"Define the diameter as a function of x"  
function dia(x)  
   if(x<1) then dia:=2.5 else  
      if(x<12) then dia:=(2.5+(x-1)/11) else  
         if(x<20) then dia:=4 else  
            if(x<43) then dia:=3.5 else 

               if(x<=45) then dia:=3 else  
               endif  
            endif  
         endif  
      endif  
   endif  
end 

(A) (B) 

Figure 4.  (A) User-created TKSolver™ list function defining the shaft diameter along the 

length.  (B) User-created EES
©

 code also defines shaft diameter.  Both serve as look-

up tables, determining diameter for any location, x. 

Construct the correct integral (using Castigliano’s Theorem) which will be solved by the 

software of choice.  Combine Eq.7, Eq.9 and Eq.10 with Eq.2 (repeated here for convenience) or 

combine Eq.8, Eq.9 and Eq.10 with Eq.3 (also repeated).  Eq.11 is coded into the software of 

choice to determine deflection and Eq.12 to determine slope.   

   
  

  
 ∫

    
  ( )

  

  
  

 

 

 
 

 
∫
(    )

(     )
(    )  

 

 

 Eq.11 

   
  

  
 ∫

    
  ( )

  

  
  

 

 

 
 

 
∫
(    )

(     )
(    )  

 

 

 Eq.12 

There are several checks which might be performed as the solution proceeds.  First, the geometry 

is easily checked by creating a plot such as Figure 5.  Similarly, a check of the moment diagram 

would support confidence in the solution if done prior to attempting the repeated integrations.  At 

a minimum, calculating deflection at one point (such as at supports) where the value is known 

would be an excellent task before moving on to multiple repeated integrations. 

The critical action is to 

integrate with respect to x 

but to create a series of 

solutions (such as in a 

parametric table) using ξ 

as the indexing variable.  

For this shaft, selecting 

91 positions of ξ will give 

reasonable smoothness 

for the tapered section 

geometry as well as 

smooth deflection and 

slope curves. 

 

Figure 5.  Equation-solver graph used to ensure the geometry 

function worked as intended. P
age 24.946.8



Moment Comparison 

The solution 

development for 

distributed loads is 

provided in Appendix A.  

Here we compare the 

results from the 

concentrated load and 

the distributed load 

approach.  Figure 6 

shows the differences for 

the moment along the 

shaft length.  As 

expected the moment 

curve compares 

exceptionally well with 

[1]. 

 

Deflection Comparison 

The deflection curve 

shows how much 

difference it makes to 

treat the distributed loads 

precisely.  As it turns out, 

the deflection is less 

(better clearance) at the 

critical points of interest 

(ends of bearings) than 

predicted using 

concentrated loads.  The 

distributed load shows 

less deflection resulting at 

the midway external load 

than that predicted by 

concentrated loads, but 

minimally different.  So, 

at least in the case of this 

shaft, the simplification of 

concentrated loading for 

calculations of deflection 

is reasonable. 

 

Figure 6.   Comparison of the moment along the length of the shaft. 

 

Figure 7.  Comparison of deflection for concentrated load and 

distributed load.  
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Slope Comparison 

Figure 8 shows the 

excellent comparison of 

slope as determined using 

concentrated loads for all 

loads versus using the 

more precise distributed 

load where it applies.  

Clearly the assumption 

that concentrated loads 

are sufficient is 

exemplified in the graph, 

since both curves are very 

close together and the y-

axis units are thousands of 

radians.  Historically, slope was not determined per se; rather it was inferred by visual inspection 

of the deflection curve characteristics. 

Discussion 

In today’s undergraduate Machine Design textbooks, we see few general approaches to the 

solution of deflection for stepped or tapered shafts; one approach is graphical and other 

approaches use some form of discontinuity equations [9-13].  These approaches work well for a 

simply supported stepped shaft with a single load. 

By any measure, the Schroeder shaft is complicated.  It is also a real shaft whose deflection and 

slope are of primary interest to the engineer.  The method presented here offers a roadmap to the 

determination of deflection and slope whether or not one elects to assume distributed loads as 

fungible with concentrated loads.  The method presented relies on basic engineering skills such 

as solving statics, writing moment equations and determining partial derivatives.  Senior 

undergraduate students should have no difficulty with this level of problem-solving.  Because 

individuals select an equation-solving tool of personal choice, difficulties with coding and syntax 

are mitigated.  The method presented here allows for visual inspections along the way using 

knowledge of paper-and-pencil moment diagrams.  Depending on the software selected, less than 

one page of code need be created, even for a complicated problem such as this one where the 

equations get lengthy.  The method can be extended to any degree of indeterminacy using 

Lagrange multipliers.  The method can also be applied to any geometry; curved beam or variable 

cross-section beam deflections benefit from this same simple, structured problem-solving 

approach.  The authors and their students have benchmarked the method against a dozen 

published solutions [14-21] as well as closed form solutions and found the method is accurate.  

Few numerical difficulties have been encountered during the several years of our use; the method 

and solutions are robust. 

Assessment of the method over several years in multiple institutions has shown that virtually 

every student can determine deflection “everywhere” along a beam regardless of the complexity 

of loading or changing cross-section. 

 

Figure 8.  Comparison of slope for distributed load and 

concentrated load. 
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Concluding Remarks 

Each generation of engineers has used that part of mechanics of materials theory that fit the 

calculating capability available to them at that particular time.  As long as the loading is not 

complicated and the shaft has a constant diameter, determining the deflections of a shaft is 

straight forward and well covered in texts. 

We have presented by way of example, an analysis of distributed versus concentrated load 

modeling for supports and applied loads.  We found the traditional simplifying assumption to use 

concentrated loading is a good one.   

When the shaft cross section becomes practical it includes changes of diameter to provide steps 

that can be used to accurately mount bearings and gears.  It can have overhanging ends and 

tapered cross sections.  The need for finding the deflection and slope of these types of shaft 

geometries and loadings is timeless.  We have presented a solution method which stays 

generalized, using an engineer’s knowledge of free body diagrams, writing moment equations, 

and Castigliano’s theorem to set up the problem solution into a form that is solved in an 

engineer’s favorite computer program. 
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Appendix A 

Compare concentrated-load versus distributed load representations 

Once the deflection and slope calculations have been set up and completed using the simpler 

concentrated load in lieu of the distributed loads on the shaft, it is rather straight-forward to solve 

the same problem without making the simplifying assumption.  The distributed load terms are 

easily developed for use in the moment equation and the solution structure is already in place. 

The only change is in the moment equation (Eq.9) where three terms will need to be replaced.  

Many sophomore level mechanics of materials texts offer excellent content on discontinuity 

functions [13] and a quick reference table is certainly useful [13].  For the Schroeder shaft, using 

the method proposed herein, the distributed load terms take the form of 
  

 
〈    〉

  where wo is 

the magnitude per unit length of the load, x is any location along the beam and a1 is the leftmost 

point at which the distributed load is applied.  Unless the distributed load extends to the right 

end, a companion term is required to “turn off” the distributed load at an appropriate location, a2.  
Table I summarizes the moment equation terms needed to represent the distributed loads and Eq. 

13 shows the resulting moment equation.  The pointed Macaulay brackets are replaced with 

regular parentheses and each term is augmented with a Heaviside function to serve as the 

“switch” to activate the term depending on the location being calculated. 

Table I.  Representing Distributed Loads 

Load 

Force 

(lb) 

Length 

(in) 

Start 

 (in) 

Stop 

 (in) Terms representing distributed load for moment equation 

Left 

Bearing 
3500 6 13 19  

    

( )( )
(    )  (    )  

    

( )( )
(    )  (    ) 

Mid 3450 8 21 29  
    

( )( )
(    )  (    )  

    

( )( )
(    )  (    ) 

Right 

Bearing 
1600 4 38 42  

    

( )( )
(    )  (    )  

    

( )( )
(    )  (    ) 

 

 (   )            
    

( )( )
(    )  (    )  

    

( )( )
(    )  (    )

 
    

( )( )
(    )  (    )  

    

( )( )
(    )  (    )

 
    

( )( )
(    )  (    )  

    

( )( )
(    )  (    ) 

Eq.13 

Of note is the happy condition that both partial derivatives (i.e. with respect to Q and with 

respect to m) remain exactly as they were under the concentrated loading case.  And since no 

other relationships are altered for the distributed load case, the equations to enter into the 

software are summarized in Eq.14 and Eq.15 where the only substitution is Eq. 13 for Eq. 9. 
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