
On-line Assessment for Web-Based
Programming Portfolios

John K. Estell

Bluffton College

Abstract

A methodology for Web-based programming portfolios that focuses on utilizing the interactive
nature of the medium is presented. The concept of a portfolio and its value for assessment is
reviewed, leading into a discussion on the benefits of electronic portfolios and rubrics for
enhancing student learning outcomes. The development of the Interactive Programming
Portfolio at our institution is used as a case study to examine how on-line assessment can be
implemented.

1. The Portfolio

A portfolio consists of a collection of materials assembled over a period of time that is used to
both demonstrate and document one’s ability in a particular subject. Portfolios are commonly
used in the artistic professions. For example, photographers who specialize in weddings will
present to the inquiring engaged couple an assembled collection of their work. By constructing a
portfolio photographers have the opportunity to reflect upon their work as they select the best
results from their photographic sessions; similarly, the couple looking to hire someone for their
wedding can use the portfolios to evaluate the ability of each photographer. So not only is the
portfolio a means to demonstrate and document competence, it also allows for assessment by
both the person assembling the portfolio and those who must pass judgement on that person’s
work. While not as widely used, portfolios can also be found in the computing sciences. The
programming portfolio contains a selection of computer programs that a programmer has
produced over a period of time.

The traditional format of the portfolio is a physical document, typically a ring binder that allows
for the easy insertion or removal of items. For the programming portfolio, the document usually
consists of a notebook containing pages of program source code listings, sometimes combined
with text-based example runs or graphics-based snapshots showing particular moments of
program execution. While useful, reviewing such material is about as exciting as watching paint
dry as it fails to capture the essence of the programs in action. There is also the noticeable
drawback that at most one person can use the portfolio at any given time as physical possession
of the document is required. Additionally, the notebook format forces the organization of the
portfolio to be sequential because of the nature of the print medium; however, the structure of
ideas is not sequential. As early as 1945 Vannevar Bush noted that the human mind operated by
the association of thoughts and proceeded to describe his “memex” system that is considerably

Session 3520

P
age 5.475.1

similar to the Web environment of today3. The concept of hypertext, presented by Ted Nelson in
1965, brought forth the possibilities of using the computer to form documents of arbitrary
structure4. With the advent of the personal computer and the development of hypertext systems
in the mid-1980s, it was a simple jump for educators to promote the use of electronic portfolios.
This eliminated the “at most one” problem as it is easy to provide multiple copies of an
electronic document. Hypertext also allows a better structural representation of the thought
process involved in the learning process, as it can better show how a portfolio entry was the
product of the synthesis of a variety of ideas.

With the rise of the World Wide Web there has been increased interest in the development of
electronic portfolios. The nature of the Web as an interactive multimedia facility that can
provide information on demand opens up new possibilities for the use of portfolios in many
disciplines. Added interest has been generated by the need to document and access student
outcomes according to guidelines developed by accreditation agencies such as the Accreditation
Board for Engineering and Technology. Probably the best known effort for the implementation
and use of electronic portfolios is the RosE-Portfolio system developed at the Rose-Hulman
Institute of Technology6. The electronic portfolio was adopted at their institution to reduce the
accessibility problem encountered with the traditional portfolio. Deemed an efficient and cost-
effective method of collecting and accessing student materials, the RosE-Portfolio has so far
proven itself useful. Students have found it easy to enter and update documents using a familiar
multimedia format. Faculty members that have used the system have found the system reliable
and easy to use. There is optimism that the information provided overall by this assessment
methodology will be useful in helping to analyze and improve the programs offered at their
institution.

Applying the concepts of an electronic portfolio to the subject of computer programming is
straightforward. It is simple to create a Web document containing listings and descriptions of
one’s computer programs, especially as the source code is already stored in an electronic format.
The pages within this document may include graphical snapshots of programs “in action” and
links to downloadable source code and executable files. The problem with this approach is the
amount of effort required by the reviewer to evaluate the material. It is worthwhile to download
the source code only if one possesses a suitable compiler or interpreter for the language in which
the program is written. Furthermore, despite the claims of the portable nature of high-level
programming languages, a sufficiently robust program can easily contain platform-dependent
code that would prevent its compilation and execution on different systems without some degree
of modification. The downloading of an executable file also suffers from platform dependencies;
in addition, there is an element of risk associated with running this type of file on one’s own
computer as the code could maliciously contain a hidden virus.

Research using various search engines on the Web has failed to turn up many student
programming portfolios at the present time. The majority of those found had the appearance of
being student-initiated and not established as an instructional requirement. The lack of guidance
is apparent at these sites, both in terms of portfolio design and of web site design. Almost every
site examined simply presented a list of programs. There was neither elements of reflection upon
the ideas and concepts found in each of the entries for a typical portfolio, considered vital for the
learning experience5, nor was there evidence of specific learning outcomes. Even more apparent
was the near total lack of aesthetics in the design of the web sites. For some reason, many

P
age 5.475.2

students seem enamored with the use of dark-colored text on a black background, the selection of
which fails to provide sufficient contrast for proper readability. Other design flaws, too
numerous to mention here, were also apparent on many of these web sites. If programming
portfolios are to be effectively used in the computer science curriculum, then students must be
provided with some form of structural guidance for the development of portfolio entries and for
proper web page design. In addition, the accessibility issue concerning program entries needs to
be addressed so that reviewers can efficiently examine executable code without having to go
through various contortions for the downloading and execution of such code.

2. Java and Interactive Portfolios

The Java programming language provides a new design paradigm for programmers: write once,
run anywhere. This object-oriented language was designed to maximize portability by
specifically defining many of the details of the language for all implementations, from the source
code all the way down to the byte code for the abstract machine language into which Java code is
translated2. Java programs can be executed on any platform that has a Java Virtual Engine
written for it; this engine is usually incorporated into all Web browsers. While Java programs
can be written as stand-alone applications, they are best known in their applet format, which
allow interactive programs to be incorporated into web page design.

At our institution Java is the language used in the object-oriented programming (OOP) courses
that our students take in their second year of study. Many of the non-OOP constructs of the
language are derived from C, which is learned by our students in their first year of study.
Accordingly, the introductory OOP course focuses on the OOP aspects of Java. In order to
explore these concepts through the writing of programs, applets are introduced early in the
course curriculum. This requires that students obtain a fundamental understanding regarding
event-driven graphical user interface (GUI) programs. A minimal, but sufficient, amount of
coverage is presented at this time regarding the use of Symantec’s Visual Café Java rapid
application development tools, the button, label, and text field GUI components, a small number
of methods associated with these components, and how one handles action events generated by
components. As our students have previously been instructed as to web page development, once
this material is covered they are able to write simple Java applets.

Now that the students have a basic understanding of event-driven GUI programming using
applets, the interactive programming portfolio (IPP) is introduced. The IPP is presented through
the examination of an example portfolio developed for this purpose. The home page for the IPP
is very simple, containing text identifying that this is a student’s programming portfolio and
providing links to three different orderings of entry information: alphabetical, chronological, and
subject. The pages for the alphabetical and chronological ordering of portfolio entries are
straightforward, with each item consisting of a link to the portfolio entry followed by a brief
description of what that particular entry is about. The alphabetical ordering allows for quick
access to a known portfolio entry whereas the chronological ordering allows for easy analysis of
the student’s development over time. Subject ordering is used to focus the student’s attention
onto what key concepts are embodied by their programs. For this index the subjects are listed
alphabetically and are coupled with one or more links to the relevant portfolio entries. One of
the benefits of this ordering scheme is that a reviewer can easily determine whether a particular
subject has been grasped by the student without having to go through all of the portfolio entries.

P
age 5.475.3

The actual portfolio entry can be in a variety of forms; however, it is in the student’s best interest
to adopt and stick with a particular design format for all entries in the portfolio. A sample
portfolio entry from the example portfolio shown to our students is given in Figure 1. The
navigation bar at the top of the page allows quick access to all indexes plus the home page. The
column to the left shows the fields represented in this entry. Note that the applet and
corresponding source code is not contained in the portfolio entry page. Instead, it is stored on a
separate page and is accessed via a link in the “Program” field. This is done in order to allow the
viewing of a portfolio entry without forcing the reviewer to also download the source and
executable code. If the reviewer finds the program to be of interest, the executable applet is only
one click away. The “Components” field is used to indicate what classes are included in the
applet; if a user-defined class is present then a link is given to a page that, at a minimum,
contains the source code for that class. The key fields, from a portfolio standpoint, are “New
Concepts” and “Reflections.” The “New Concepts” field requires the student to examine and
identify what is being accomplished through the writing of the program. The “Reflections” field
is used by the student to gain valuable insight into the learning process by incorporating such
items as documentation of the design choices before writing the code and an analysis of the

Figure 1. Example Interactive Programming Portfolio entry.

P
age 5.475.4

finished product. Reflection can be performed at any time; the entries in the example portfolio
illustrate this by showing multiple entries in the “Reflections” field. In our courses students are
asked near the end of the term to review and update their portfolio entries. This provides
students the opportunity to perform an informal self-assessment of their abilities as well as to see
how much their skills have developed over the past term.

Once placed onto the web site the portfolio entry is available for perusal by the reviewer, who
has the luxury of sitting at the computer, surfing to the appropriate web page, and interacting
with the executing applet. The reviewer can evaluate the program without having to deal with a
bunch of floppy disks or with scripting programs designed for handling electronic submissions,
and without needing to explicitly download and compile the source code.

The IPP has been used in our OOP courses for students to demonstrate competence in OOP
through a combination of self-designed and instructor-assigned applets. Students best learn
programming by writing programs; the IPP is used to encourage them to explore aspects of the
Java language on their own by providing a vehicle to showcase their ability. Due to the
multimedia features incorporated into the language, many students gravitate towards exploring
applications involving graphics and sound. Some of the student-designed applets that have been
written include a graphing window, a calculator, and a dancing John Travolta with “disco fever.”
Games are also popular; some that have been written include skeet shooting, Mad Libs, and
poker. It is vital that students are provided with choice in the process as to what is included in
the portfolio; otherwise, it degrades into an accountability folder for which the student feels no
ownership. While the number of applets submitted by our students averages twelve per
semester, it should be noted that students are not, and should not be, judged based on the quantity
of applets generated. Students are periodically provided with a list of concepts covered in the
course; they are to incorporate and exercise these concepts in their programs. As long as the
student can demonstrate an understanding of the set of concepts provided, it matters not whether
it took three or six or whatever number of applets to illustrate this understanding. Instructor-
assigned applets are used, albeit sparingly at an average rate of three per semester, as a
comparative assessment tool and as a way to ensure that students write programs incorporating
certain language constructs at particular points in the course. Deadlines are strategically set for
these instructor-assigned applets to ensure that students stay on pace with the current set of
topics being covered in the course. Some of the assignments that have been given include
implementing Yahtzee-like dice games complete with graphically-displayed dice, creating
classes derived from an abstract class for a shape manipulation program, and a drag racing
simulation. To further keep students on track with their studies, the traditional assessment
methods of quizzes and exams are also used in conjunction with this portfolio method.

This assignment paradigm has shown itself to be an effective motivational tool for most students.
Students work on programming topics that are of interest to them. Because of this interest the
average student writes more code and places greater effort into ensuring its correctness than is
normally encountered in the typical programming assignment. The IPP format has also been
used by the instructor as a means to make example programs available to the students in the
class. This provides students with both the source code, which is also distributed in class as a
handout when the program is discussed, and the working applet so that they can interact with the
program at their convenience.

P
age 5.475.5

3. Rubrics and On-line Assessment

One of the difficulties with the use of portfolios is that of assessment. In the traditional model, a
student provides a body of work to be graded by the instructor. The student in this model is
motivated to tailor the presentation of material in the portfolio toward the one person who will
assign a grade to the body of work. Unfortunately, the student is often unaware of the criteria
that will be employed by the instructor. This failure to properly communicate goals and
expectations takes away from the long-term learning experience desired from the use of a
portfolio. Students need to know what is expected of them; instructors need to communicate this
information to their students.

The development of the rubric as an assessment tool has helped to solve this problem. Rubrics
are scoring guides that provide sets of standard descriptions for a group of outcome parameters
that form the basis of the evaluation. For each outcome there are descriptions relating to the full
range of quality levels of student work. Rubrics are commonly found in tabular form, with rows
representing the outcomes being measured and the columns representing levels of achievement.
This information can be made available to students, thereby allowing them to understand what is
expected of them. The use of the rubric promotes objectivity in the assessment process;
accordingly, the construction of a rubric must be developed through a carefully thought-out
process.

The design of the IPP rubric evaluation procedure is motivated by the concept that successful
portfolios require authentic audiences5. Accordingly, the evaluation forms for the IPP are made
available on-line to anyone who wishes to provide feedback to the student. Simply clicking on a
link that is provided with each portfolio entry allows access to the primary evaluation form, an
example of which is shown in Figure 2. This form indicates the particular web page under
review, presents the evaluation criteria categories and associated radio buttons for entering
scores, and provides text boxes to allow reviewers to enter their name, return e-mail address, and
comments. A reviewer needs only to fill in the required information then click on the submit
button. A CGI script written in Perl processes the submitted form information and automatically
mails it to the student’s electronic mailbox. An example of the mail received by a student that
was generated by this evaluation form is shown in Figure 3. In order to provide an uncluttered
evaluation form, links are provided for each of the criteria categories that lead to detailed
descriptions on their own web pages. An example rubric for example quality guidelines is
presented in Figure 4. The value of this design is that anyone, be it a fellow classmate, student in
the major, the instructor, or someone surfing the web from outside can provide the student with
feedback. This openness requires the student to take greater ownership of the portfolio since it is
freely available to all who have access to the Internet, thereby allowing for an increase in the
number of learning experiences from both the added responsibility and hopefully greater amount
of feedback.

Rubrics were developed for the IPP in five primary areas of evaluation: web page design, coding
style, user interface design, example quality, and documentation. For producing a quality
portfolio on the Internet, the design of the web pages is just as important as the information
contained on the pages. The pages need to be created in such a way as to invite the visitor to
examine its contents; poor design can easily drive people away from a site with quality content.

P
age 5.475.6

Portfolios are judged on four aspects of web page design: text appearance, graphics and layout,
proper navigation, and reference links. The coding style employed in the writing of a computer
program is very important as it provides valuable documentation within the source code. Simple
things such as proper indentation, structure, use of comments, and meaningful variable names
can be valuable later on when a program is modified, upgraded, or studied. Conversely, the use
of poor coding style can render a great executing program into a worthless array of bytes when
maintenance needs to be performed. For coding style, a portfolio entry is evaluated on the use of
meaningful variable names, comments, coding structure, and implementation clarity. The design
of the user interface for a program is very important; the program is of little value if one is
unable to use it effectively. This category is affected by the underlying philosophy for the
language and/or operating system being used for development. For example, Java programs
usually deal with graphical user interfaces for handling events whereas filter programs for UNIX
systems rely on using command-line entries for program behavior modification. The current
rubric focuses on the proper use of the Java graphical user interface with regards to layout,

Figure 2. Portfolio evaluation form.

P
age 5.475.7

responsiveness of event feedback, and intuitive use. The example quality category is for
evaluating the quality of the example used in terms of how well the concepts or skills being
presented have been addressed, displayed, and documented. The rubric guidelines for this
category include evaluation of the student’s discussion of the examined concepts and post-coding
reflections of what this particular entry has accomplished. Finally, documentation is presented
as a separate category here, although other rubric areas contain some of these evaluation
elements, to provide the student with a clear evaluation on this important issue. The lack of
meaningful documentation within a program can prove catastrophic for a project at some point in
time; throwing in some token comments after the code has already been written does not
constitute proper code documentation skills. The rubric also emphasizes the evaluation of how
well the portfolio entries document the concepts and skills being examined, and how well the
portfolio documents the student’s learning experience.

The scoring guidelines are consistent for each question asked in the evaluation rubrics. There are
three possible outcomes. A score of 1 indicates that the student has demonstrated mastery of the
concept or skill being evaluated and that there is little to no doubt that the student understands

From: jstudent@cs.bluffton.edu (WebMonitor mail)
To: jstudent@cs.bluffton.edu
Subject: Portfolio Feedback
X-Comments: ===
X-Comments: NOTE: This message was sent through the WebMonitor mail form
X-Comments: ===
X-Comments: HOST: 10.1.5.213 (10.1.5.213)
X-Comments: BROWSER: Mozilla/4.7 [en] (Win98; U)
X-Comments: ===
Content-Length: 653
Status: R

(webpage) http://cs.bluffton.edu/~jstudent/shapetest/home.html
(next-url) http://cs.bluffton.edu/~jstudent/shapetest/home.html
(subject) Portfolio Feedback
(name) Laurie Sue
(email) holstein@cs.bluffton.edu
(webPageDesign) B
(codingStyle) B
(interfaceDesign) B
(quality) A
(documentation) C
(comments)

Great example of polymorphic behavior.
Is it easy to add more shapes? Could
use more comments in the code to tell
what’s going on. There’s no reflection
given in your portfolio entry; however,
you might not yet have had time to look
back on what you did.

(Submit) Submit Evaluation Form

Figure 3. Sample mail generated from posting of evaluation form.

P
age 5.475.8

what is going on. The treatment does not have to be exhaustive, but should be appropriate to the
task at hand. A score of ½ is used to indicate an incomplete understanding of the concept or skill
being evaluated. Things may be performed inconsistently, not used properly, overcomplicated,
stated vaguely, and so on. A score of 0 is used when the student has made little to no attempt to
address the concept or skill being evaluated or when the work is of poor quality. Each rubric
category contains four scored questions; these scores are added together and a letter "grade" is
assigned using the traditional four-point scale. It is this letter grade that is mailed back to the
student for the result of that particular rubric. Note that this is not a grade that will be marked
into a grade book by the instructor; it is used because being evaluated on a letter grade scale is
something to which a student can easily relate.

Figure 4. On-line rubric for portfolio entry example quality.

P
age 5.475.9

The evaluation by the instructor of the IPP needs to be performed carefully. One does not want
to counteract the learning experiences obtained via the portfolio method by a display of
authoritarianism. A better approach is to use instructor-student conferences as a means to
demonstrate an interactive, collaborative process between student and instructor. The focus of
the instructor should be on the big picture: Does the portfolio reveal thoughtful reflections? Is
there insight regarding areas of strengths and weaknesses? Has the student demonstrated
evidence of learning? Asking questions such as these as the portfolio is examined with the
student can help point the way for the student’s future goals and demonstrates the commitment
that the instructor has for the student’s educational fulfillment.

For the actual scoring of the IPP as part of the student's overall grade, another evaluation rubric
is used. The rubric used for the IPP is based on a rubric developed in 1997 for traditional
portfolio assessment8. This rubric, shown in Figure 5, is distributed to the students on the first
day of class so that they are aware as to how their efforts will be judged. An important thing to
note is that students are not scored on each individual entry; the grade assigned is for the
composite body of work. The result of this evaluation is a value on the five-point scale; this
value is converted as necessary and incorporated into the overall grading scheme. The criteria
areas reflect the basic tasks involved with the construction of a portfolio. The portfolio should
demonstrate a wide range of ability on the part of the student. The self-reflections contained in
the entries should contain insight into what the student has learned and accomplished with
writing the program associated with this entry. Thoughtful attention to the development and
documentation process should be evident. Students should talk about the problems encountered
while writing a program and what was done in order to solve those problems. The overall
content, form, and mechanics of the portfolio should clearly indicate that the student has
ownership of the portfolio, and treats it accordingly.

Criteria Strong – 1 point Average – ½ point Weak – 0 points

Versatility Portfolio shows student's wide
range of interests and abilities.

Portfolio shows an adequate
range of student's interests and
abilities.

Portfolio shows little range of
interests and abilities.

Reflections Reflections are thoughtful.
Student reveals strong insights
about areas of strengths and
improvement; has future goals.

Reflections are reasonable.
Student shows some insights
about areas of strength and
improvement; indicates
reasonable goals for future.

Reflections show little attention.
Insights are lacking about areas of
strength and improvement; lacking
goals for the future.

Process Entries show thoughtful
attention to process. Indicates
that student has gained some
from the experience.

Entries show some attention to
process. Indicates that student
has gained some from the
experience.

Entries lack examples of process.
Indicates that student has learned
little or nothing from the experience.

Problem Solving Entries indicate that student
recognizes most problems or
responds to those pointed out
through the review process.
Shows resourcefulness in
solving problems.

Entries indicate that student
recognizes some problems or
responds to some of those
problems pointed out through
the review process. Shows
some resourcefulness in solving
problems.

Entries indicate that student is
unwilling or unable to deal with
problems. Student does not
identify own problems and ignores
those pointed out during the review
process.

Content, Form,
and Mechanics

Student shows thoughtful
attention to final product. Has
strong command of content,
form, and mechanics.

Student shows adequate
attention to final product. Has
growing command of contents,
form, and mechanics.

Student shows little or no attention
to final product. Significant
improvement needed for content,
form, and mechanics.

Figure 5. Instructor’s rubric for portfolio evaluation.

P
age 5.475.10

4. Drawbacks and Potential Pitfalls

Using a Web-based programming portfolio does have its drawbacks. Currently, the greatest
drawback for the IPP is that it can interactively showcase only those programs written in Java. If
a student wants to include examples from other languages into the portfolio, the old static format
of program listings and downloadable code must be used. Preliminary research is being
conducted into the writing of compilers for languages other than Java that will produce bytecode
for use with the Java Virtual Machine. These compilers, along with supplemental modules to
provide appropriate interface support, will allow programs written in other languages to be
displayed interactively.

Another potential problem is plagiarism. As noted in a recent article, there is an increasing
number of “cybercheaters” who abuse electronic media by first using a Web search engine to
easily sift through millions of on-line documents, then perform cut and paste operations from
relevant sources to produce their “original” work7. There are many Java applet repositories
already available on the Web that can be easily found using any Web search engine. Several of
these sites provide the source code for the displayed applets. Additionally, there is the potential
for visiting other student IPPs and copying the code presented there. Fortunately, the same tools
that allow cybercheaters to operate can be used to verify suspicions of plagiarism. Fragments of
suspicious code can be entered into a search engine, either a typical one such as
www.hotbot.com or one specialized toward detecting fraudulent submissions such as
www.plagiarism.org, in order to determine if it has been lifted from a listing available on the
Web. For those foolish enough to copy and modify a classmate's submission, detection is no
different than that practiced for the submissions of traditional programming assignments. Any
competent, experienced instructor is capable of detecting plagiarized programs within the same
submission set, as long as the set is not too large or the borrowed code is a small part of a large
program. For those cases where there are a lot of submissions, there is a large amount of code to
process, or comparisons need to be made with previous submissions, automated software
plagiarism detection systems such as Moss1 are very capable of finding and documenting
examples of cheating. It is preferable, however, to curb plagiarism via preventative measures.
The key method employed to prevent plagiarism is the simple fact that individual portfolio
entries are not scored by the instructor. It is the entire body of work that is judged, and part of the
evaluation process is performed with both student and instructor looking together at the portfolio.
Another effective method for combating plagiarism is the use of the closed laboratory session,
where the instructor is present in the lab and interacts with the students. It is rather difficult to
perform an act of plagiarism while under the instructor's direct supervision. It is not necessary
for all programming sessions to be conducted in this manner; an occasional closed laboratory
session or two is sufficient to discourage this type of plagiarism. Having short conversations
with one's students regarding their programs is also sufficient to expose a case of plagiarism.
Regardless of how adept one is at modifying code to hide its true source, the student who
plagiarizes code is unable to explain the workings of the program and the logic behind the code.
This methodology is highly effective in a small class setting as the instructor quickly learns of
student's abilities and so is better able to assist students in their learning efforts. Being able to
actively engage and interact with one's students in the learning process and displaying a
willingness to assist the student in their efforts renders moot the need for plagiarism on the part
of the student.

P
age 5.475.11

One of the problems always encountered in the classroom is the lack of motivation among
students. The IPP actually improves the performance of some of these students. There is usually
a group of students whose lack of motivation is due to boredom; they find the traditional
programming assignment approach to be trivial and uninspiring. The IPP allows these students
to explore the areas that they have an interest in, in part because of the many bells and whistles
that the Java programming language features. Through their explorations, they learn the
concepts that are being covered in class, but they do this in a context that is acceptable to them.
This behavior has been observed in some of our students. For weaker students, it is a different
story. If left to their own ways, these students will write few, if any, programs on their own. It is
difficult for them to initially buy into the concept of an open-ended portfolio; they will
frequently try to coerce the instructor into specifying the quantity of programs that must be
written to ensure their passing of the course. If one succumbs to this pressure the inevitable result
is an IPP consisting of the minimum number of programs, most of which are of inferior quality.
In an idealistic setting it would be nice to have students write their own programs to learn and
explore the various aspects of programming as they progress through the course material.
Unfortunately, the reality is that these students are often unsure as to what to do or are in a
procrastination mode since there is usually no ominously approaching deadline staring them in
the face. There are a couple of solutions to this problem. First is to incorporate periodic
evaluations of student portfolios into the assessment scheme; a firm deadline is a good
motivational tool and allows the instructor to systematically monitor student progress. This has
been implemented in our OOP classes and has worked well. To assist students in determining
what programs to write, a list of objective goals can be presented at the beginning of the course.
A second list containing assignments that illustrate how some of the goals can be met can now be
given. A simple example assignment would be to ask students to write a Java applet that will
dynamically modify the text of a displayed component. This could involve changing the text, the
font type, style, or size that the text appears in, or the color of the text. This would address such
subjects as using text fields, font objects and color objects. By providing this information the
struggling student now has some general guidance that is usually sufficient for getting started on
a program.

One perceived difficulty with the use of the IPP is with the potential of a student receiving
detrimentally negative feedback in an evaluation. This could be the result of a deliberate attempt
to belittle one’s efforts or unconsciously done by a student who naively believes that he or she
knows everything there is to know about Java programming. As part of this research the CGI
script used to mail the results of a submitted evaluation to a student will also mail a copy of the
results to a central repository for later analysis. A careful review of all submitted evaluations has
shown that this concern has not been a problem. While there has been critical remarks made,
they have always been of a constructive nature, encouraging the recipient to improve upon the
current work. Part of this is due to our computer science program having small class sizes where
the students all know and work with each other. Additionally, we have spent a couple of closed
laboratory sessions where the students evaluated each other’s portfolio under the instructor’s
supervision and guidance. Most students are sophisticated enough to know that there will be
cases where they will receive a poor evaluation from a clueless reviewer. However, this negative
review does not affect their score and will be more than offset by the several favorable reviews
that they receive for that same portfolio entry. P

age 5.475.12

5. Conclusion

The use of the interactive programming portfolio at our institution has shown itself to be an
effective assessment and professional development tool for both the student and the instructor.
However, it must be noted that the development of this methodology is still in its infancy; the
full potential of this approach has yet to be realized. While at the present time only programs
written in Java are truly interactive when featured on a web page, the production of Java Virtual
Machine compliant compilers for other languages along with appropriate support modules will
open up greater possibilities. Even in its current limited state the IPP offers benefits that
traditional portfolio methods lack as its use of the Web embodies the visions of documents
formed with structures of association proposed by Bush and Nelson decades ago.

Student use of the IPP has been favorable. The key difficulty for student acceptance of this new
paradigm is getting them to understand and appreciate the long-term benefits. It has helped that
the IPP has shown itself to be useful as part of a resume. One of our former students received a
job partially due to his employer being impressed with his Java programming skills. On his
resume the student included the URL of his IPP, which was visited by his soon-to-be employer
during the hiring process and its contents commented favorably upon during his interview.

As the need for assessment tools greaten, methodologies must be developed to successfully
address the concerns of the various interested communities. With the continuing rise in stature
of Web-based documents, the use of the electronic portfolio, with its benefits of accessibility and
association, is becoming increasingly more common. As it grows and matures, the interactive
programming portfolio will play a greater role in documenting and demonstrating the
competency and ability of computer programmers.

Bibliography
1. Aiken, A. URL: http://www.cs.berkeley.edu/~aiken/moss.html; “Moss: A System for Detecting Software

Plagiarism.”
2. Arnold, K. and Gosling, J. The Java Programming Language. Addison-Wesley, Reading, Mass., 1996.
3. Bush, V. As We May Think. The Atlantic Monthly 176, 1 (July 1945), 101-108.
4. Nelson, T. Dream Machines, Microsoft Press, Redmond, Wash., 1987.
5. Porter, C. and Cleland, J. The Portfolio as a Learning Strategy. Boynton/Cook Publishers, Portsmouth, N.H.,

1995.
6. Rogers, G. M. and Williams, J. “Building a Better Portfolio,” ASEE Prism 8, 5 (January 1999), 30-32.
7. Ryan, J. J. C. H. “Student Plagiarism in an Online World,” ASEE Prism 8, 4 (December 1998), 20-24.
8. Supernault, P., Project Leader, Portfolios for Teaching and Learning, URL:

http://www.monroe2boces.org/shared/instruct/portfolios/porteval.htm; “Rubric: Portfolio Evaluation.”

JOHN K. ESTELL
John K. Estell joined Bluffton College as an associate professor of computer science in 1996. He was previously an
associate professor at The University of Toledo. He received a B.S. (1984) degree in computer science and
engineering from Toledo and received both his M.S. (1987) and Ph.D. (1991) degrees in computer science from the
University of Illinois at Urbana-Champaign. His areas of interest include computer science education, the social
impact of computers, programming development tools, and interface design. Dr. Estell is a member of ACM,
ASEE, IEEE, Tau Beta Pi, and Eta Kappa Nu.

P
age 5.475.13

