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Abstract—In this paper we derive the probability of error for binary-input ternary-output 
discrete memoryless channels (2,3 DMC). We analyse how the performance of the threshold 
device is determined by the choice of decision points and signal amplitude in the presence of 
Additive Gaussian White Noise (AWGN). We investigated the trade-off between the 
probability of false alarm and probability of correct detection by considering symmetric 
decision threshold around the zero decision thresholds. We considered the underwater 
acoustic wireless sensor networks where sensor nodes are limited in power, computational 
capacities and memory. We focused on the (2, 3) DMC by maximizing the detection and 
estimation of received signal by exploiting stochastic resonance effect. 
 
KEY WORDS 

Probability of error, Binary-input Ternary–output discrete memoryless channels (2, 3) DMC, 
Threshold devices, Probability of false alarm, Stochastic Resonance (SR), Signal to noise ratio 
(SNR). 

I.  INTRODUCTION 

      In Binary-Input Ternary-Output Discrete Memoryless Channels, the optimum 
detector compares the input signal with a set of three arbitrarily defined thresholds 
in the presence of Additive White Gaussian Noise [1]. The placing of the 
thresholds as shown in Fig.(1) is in such a way that minimizes the probability of 
error and maximize the probability of correct detection. 

     Threshold devices can enhance the efficiency of a distributed wireless sensor 
networks and reduce the cost of target detection by minimizing the probability of 
false alarm under noisy and realistic conditions. In underwater acoustic wireless 
sensor networks where sensor nodes are limited in power, computational capacities 
and memory [2], (2, 3) DMC plays an important role in maximizing channel 
capacity [3]-[8] and minimizing probability of error [5], [6], [8], [9]. 

      The threshold systems have been the main topic in the study and existence of 
stochastic resonance (SR) as in [3], [4], [10]. Selecting the right threshold level 
and noise power at the detector can lead into a better target location detection and 
direction finding in underwater acoustic wireless sensor networks [2]. 
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     An appropriate measure of output performance depends on the task at hand, and the form of 
input signal. For example, for periodic signals and broadband noise the SNR parameter is often 
used [11]. When the signal is random and aperiodic, SR can be observed by calculating the mutual 
information and capacity of the channel [3]-[4]. Not only that but also the  noise can be beneficial 
in bit count increase, a decrease in probability of error, or an increase in detection probability as it 
analysed in [5], [6]-[7].  

    In this paper we will consider probability of error as a performance measure and study how the 
probability of error varies with the decision threshold in the presence of AWGN. We will focus 
on the same binary input and ternary output system model as they are discussed discussed in [3]. 

      After deriving the analytic relationship for the probability of error in (2, 3) DMC, we will 
examine how the probability of error varies with respect to the arbitrarily defined threshold and 
noise standard deviation. Moreover, we will investigate the probability of correct detection 
versus false alarm for different noise intensity and decision threshold. Eventually we will 
examine stochastic resonance effect by generating three dimensional plot that relates the 
probability of correct detection, threshold, theta and noise standard deviation (sigma). 

II. SYSTEM MODEL 
      
    The input to the threshold communication channel is the signal that takes the binary values ±A 
as in [3], [4] with probability p0 and p1. The physical model is represented in Fig. (2). The  (2, 3) 
DMC detector transforms the observation into a value which is finally compared to a threshold Ɵ 
to make a decision. The DMC is completely characterized by the transition probabilities of the 
output conditioned by the input probabilities. 

    Adapting the model of [3], we derived the analytic relationship for the probability of error in 
the (2, 3) DMC. We will investigate the effect of AWGN on the probability of error of the (2, 3) 
DMC for different value of decision threshold theta and noise power sigma. 

 
 III. THE (2, 3) DMC AND THE PROBABILITY OF ERROR 
 
    The (2, 3) DMC is characterized by a binary input random variable 𝑋, a ternary output random 
variable 𝑌 and a transition probability matrix, M [3]. We know that in (2, 2) DMC the optimum 
threshold for antipodal signaling is zero independent of noise when the prior probabilities are 
equal. However if the prior probabilities can assume different values, then the optimum threshold 
becomes as a function of signal amplitude and noise variance beside the prior probabilities [12]. 
Following [4], we defined conditional probabilities as shown in Fig.(1) for an optimum system 
performance. We assumed antipodal signaling and a new symmetric decision threshold is defined 
around the optimum threshold in the (2 ,2) DMC which gives rise into three distinct regions at the 
output as shown in Fig.(2).We defined probability of miss as the conditional probability that the 
received signal is less than the threshold theta given it is greater than the zero optimum threshold 
in the (2, 2) DMC. Similarly the probability of false alarm is the conditional probability that the 
received signal is greater than  the symmetric  negative threshold theta given that the received 
signal is less than the optimum threshold in the (2, 2) DMC. We have the following relations: 
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where 𝐵 is the region for which the conditional probability 𝑓( 𝑦
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than the zero decision threshold theta as shown in Fig.(1). 
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where f(𝑦) is the probability density function of the normally distributed Gaussian random 
variable with mean µ and variance  𝛿2 
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For a Gaussian random variable, N(𝜇,𝛿2), a simple change of variable in the integral in order to 
compute 𝑝𝑟(𝑌>𝑦), results in  
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where 𝑄(𝑥)is the error function defined below: 
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Using (5), (6) and (8) we obtain 
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By using (3)   we will obtain: 
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Now, using (5) and (6) one gets 
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In accordance with (7) we obtain 
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Combining (9) and (13) we will get 
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Similarly we have: 
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where 𝐵 is the region for which the conditional probability 𝑓( 𝑦
𝑆0

) is greater than the –Ɵ threshold 
as shown in Fig.(1). Also 𝐴 is the region for which the conditional probability 𝑓( 𝑦
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)  is less than 

the zero decision threshold theta as shown in Fig.(1). 
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The average probability of error for the (2, 3) DMC can be calculated as follows  
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Letting   𝐴𝛿=√𝑆𝑁𝑅  , (22) can be written as  

𝑃�𝑒𝜃� = 𝑝0
𝑄(√𝑆𝑁𝑅(1−Ɵ𝐴))−𝑄�√𝑆𝑁𝑅�

1−𝑄�√𝑆𝑁𝑅�
 + 𝑝1

1−𝑄(√𝑆𝑁𝑅  (𝜃𝐴−1))−𝑄(√𝑆𝑁𝑅)
1−𝑄(√𝑆𝑁𝑅)

                                                           (23) 



IV. RESULTS AND CONCLUSIONS 

      Equation (22) clearly shows the average probability of error is a function of signal amplitude, 
noise intensity and decision threshold theta. Using this analytic relationship we studied how the 
probability of error varies as a function of signal to noise ratio (SNR) by  either varying the signal 
amplitude and fixing the threshold or vice versa.  We examined how the amplitude of the signal is 
related to the decision threshold by exploiting the probability of error curves as a function of 
signal to noise ratio as shown in Fig (3)-(4). 
      A three dimensional surface that relates the three parameters namely the  probability of correct 
detection, threshold (theta) and noise intensity (sigma) is generated in Matlab in order to 
investigate the effect of noise intensity in the detection and estimation of received signal in (2,3) 
DMC. These channels play an important role in underwater acoustic wireless sensor networks 
where sensor nodes are subject to operational constraints such as power and bandwidth. 
     As it is shown in the Fig.(3)-(4) we can achieve the same probability of error by either fixing 
the threshold or the signal amplitude needs to increase in order to compensate the decrease in the 
Euclidian distance between the threshold and signal amplitude. Alternatively for the same power 
the probability of error increases as the threshold approaches the amplitude of the signal. 
However, if we increase the Euclidian distance between the signal amplitude and the threshold 
beyond a certain limit, the probability of error will increase. Further increase will have a 
negligible effect on the reduction of the probability of error only increasing our operating costs 
as shown in Fig.(5). Thus to achieve a minimum probability of error the system need to be sub 
threshold; the threshold theta should be somewhere between the zero optimum threshold of the 
(2, 3) DMC and the signal amplitude, 0<α<A. 

  As it is depicted in Fig.(6)-(7), for a fixed value of noise standard deviation, the probability of 
error increase with increase in the decision threshold theta. When the threshold theta is much 
greater than our signal amplitude we end up of making a total error and there is no reliable 
communication between the device communicating devices. 

 The (2,3)DMC exhibits a remarkable boost in the detection probability of the received signal for 
an optimum value of the noise intensity and the decision threshold theta as shown in Fig.(8). 
There is a region where the probability of correct detection of the received signal increases with 
increase of the noise intensity. However beyond a certain limit, the effect of adding noise 
becomes useless and the detection performance of the detector deteriorates and we end up of 
making intolerable errors.  
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Fig.(1).  Represents the Gaussian PDF 𝐟( 𝒚

𝑺𝟎
)  and 𝐟( 𝒚

𝑺𝟏
) with the symmetric decision threshold 

 

Fig.(2). Physical model of binary-input ternary-output channel with zero mean Gaussian noise 
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Fig.(3). Probability of error for the (2, 3) DMC as a function of SNRDB for fixed value of threshold, theta=0.75 

 

 

Fig(4). Probability of error for the (2,3) DMC as a function of SNRDB for fixed value of signal amplitude ,A=1 

 

Fig(5). Probability of error for the (2,3) DMC as a function of SNRDB for fixed value of threshold theta=0.5

 

Fig(6). Probability of error for the (2,3) DMC as a function of theta for fixed values of noise standard deviation 
sigma. 



 

Fig(7). (2,3) DMC probabilities of error as function of decision threshold theta. 

 

Fig(8). Probability of correct detection as a function of threshold theta and noise standard deviation sigma. 

 


