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Abstract 

 

The main reason for presenting this paper is to emphasize the principle that 

engineers should not blindly use commercial software to solve industrial problems 

unless (a) the physics of the problem is understood, and (b) tests of reasonableness 

are utilized when interpreting results from the software.  This principle is 

demonstrated in teaching the use of ANSYS® (a commercial Finite Element 

package) for solving an engineering problem. 

The basic concepts taught in an applied Finite Element Analysis course were 

utilized to solve a transient heat transfer problem in a cylindrical duct whose 

thermal conductivity is temperature dependent. The problem was given to graduate 

students to be solved with commercial software (licensed for academic research) as 

a project for the final examination. A significant number of the students were 

engineers working for a company in the Rochester area. 

The students were expected to satisfy four primary goals in solving the assigned 

problem. The goals were (1) to examine the governing equation in order to 

understand the nonlinear nature of the boundary value problem, (2) to correctly 

define the mixed boundary conditions for the problem, (3) to select two appropriate 

time steps in the numerical solution of the nonlinear problem, (4) to utilize finite 

difference solution of a linearized version of the problem as a test of 

reasonableness. Analysis of thermal stresses in the cylindrical duct, though not 

required for this project, was discussed with the students as an important aspect of 

analyzing thermal gradients and stresses in pressure vessels.  

Solution of the allied tractable problem provided a feel for "orders of magnitude" 

and trends obtained from commercial software. In order to solve the linearized 

problem and to use the commercial software correctly, it was necessary that the 

physics and numerical methods utilized by the commercial software be understood. 



1. Introduction 

The subject of this paper is the solution of a nonlinear boundary value problem that 

involves thermally induced stress gradients in a cylindrical duct. The temperature 

dependent thermal conductivity of the duct introduces nonlinearity in the 

governing equation that is not readily apparent. The students were assigned this 

problem so that they could uncover the hidden details of the problem so that the 

solution of the problem with commercial software should address the nonlinearity 

of the problem. In order to have confidence in the results obtained from 

commercial software, the students were required to solve a linearized version of 

the problem numerically by using the finite difference method. Results from the 

two analyses should be compared in order to establish orders of magnitude and a 

“test of reasonableness”. The solution of an allied problem
4
 was provided to the 

students to help them with the assigned project. 

Developments of many subsystems that comprise a complex engineering system 

involve the numerical solution of boundary value problems. Many commercially 

available finite element analysis programs such as Ansys® are available to the 

engineer for solving many classes of boundary value problems. In order to 

effectively use these commercial programs, the engineering curriculum at many 

accredited engineering schools train the engineer in the use of at least one 

commercially available finite element analysis package. 

One important part of the training should enable the engineer to classify the 

governing equation as parabolic, elliptic or hyperbolic
1
 so that the expected nature 

of the solution will be known. For example, parabolic partial differential equations 

involve the first order time derivative, while hyperbolic equations involve the 

second order time derivative. 

Another important part of the training should enable the engineer to correctly 

define mathematically, the boundary conditions for the problem as of the Dirichlet, 

Neumann or Mixed type
2,3

. Unless the boundary conditions are correctly defined, 

the solution obtained will not apply to the problem that is solved. 

Yet another important part of the training that is often overlooked in an academic 

environment is a test of reasonableness or validation of the solution obtained from 

commercially available software. A test of reasonableness could involve 

experimental data acquisition, which is time consuming and costly.  An alternate 

test of reasonableness is to obtain the solution of a similar but simplified problem. 

Results from the simplified problem should provide trends and order of magnitude 

of results that should compare favorably with results obtained from commercially 

available software. 

 

 



2. Problem Description 

A long cylindrical duct (figure 1) is initially at temperature 300 K. Assume that at 

time t=0, the inner radius of the pipe is subjected to a temperature of 800
0
K, and 

maintained at this temperature thereafter. On the outer radius of the pipe, the 

bottom half is insulated. The upper half is cooled by convection, with heat transfer 

(film) coefficient of h=15 W/(m
2
-K). Ambient temperature is 300

0
K. Thermal and 

structural properties of the duct are given in table 1. 

Because thermal gradients along the length of the duct are small compared with 

radial thermal gradients, the problem will be solved as a plane thermal problem 

and as a plane strain problem. 

 
Figure 1 

The goals of this project are 

1. Obtain the transient solution for the problem by using the academically 

licensed version of the commercial finite element program Ansys®.  

2. Write the governing equations in cylindrical coordinates, and show that 

because of temperature dependent thermal conductivity of the duct, the 

governing equation is nonlinear. 

3. Obtain the steady state solution for the problem and record the temperatures  

    at the six locations a,b, …, f of figure 1. Temperatures at these locations will  

    be compared with those obtained from the solution of a linearized, steady  

    state finite difference formulation of the problem. This comparison will serve  

    as validation or a test of reasonableness. 

4.  Use the steady state thermal gradients obtained from the FE solution to  

     compute thermal stress distribution in the duct.  



 

Table 1 

Thermal Conductivity, 4.78)ln(6.21)( −= TTk  W/(m-K), 

                                     where  T=temperature  in [300,800] K 

Specific Heat, 950=pc  J/(kg-K) 

Density, 2400=ρ  kg/m
3 

Young’s Modulus, 150=E  GPa 

Poisson’s Ratio, 25.0=ν  

Coefficient of thermal expansivity, 60.20 −= eα 1−K  

 

 

3. Governing Equations and Boundary Conditions 

The governing equation is 
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where  4.78)ln(6.21)( −= TTk  )/( KmW − ; 2400=ρ  3/ mkg ; 950=pc )/( KkgJ −  are 

thermal conductivity, density and specific heat respectively (see figure 1 and  

table 1). 

Because the problem is considered as a plane problem, variations along the z-axis 

will be ignored. In cylindrical coordinates, the governing equation is 
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The presence of the terms 
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nonlinear. Because the problem is nonlinear, Ansys® needs small time steps for 

the early part of the solution. Iteratively, the nonlinear product terms are evaluated 

as a linear approximation until convergence is obtained before another time step is 

taken. 

As an example, at a given time step, the product term 
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because all quantities at the previous 

iteration level (k) are known. In the early stages of the solution, when gradients are 

rapidly changing, it is necessary to take small time steps. As the solution 

approaches steady state conditions, the gradients will be changing very slowly, and 

large time steps may be taken. 



For the solution in Ansys®, the PLANE77 thermal element is selected. Thermal 

properties for specific heat and density are entered as constants. Thermal 

conductivity is calculated from the given relationship and entered in tabular form 
T (K) 300 400 500 600 700 800 

k(T), W/(m-K) 45 51 56 60 63 66 

The boundary conditions, for the cylindrical coordinate system (figure 1) are 

wallTtRT =),,( 1 θ , ( wallT =temperature at the inner radius)   (3) 
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Nodes at ),,( 2 tR θ  for 0=θ  or πθ =  carry two different boundary conditions. They 

are singular nodes. Typically, one of the two boundary conditions is applied 

because the boundary conditions are Natural Boundary Conditions. The error 

incurred by making the approximation is negligible if the meshing is refined.  

Because of symmetry about the vertical axis, half of the problem, for 

]2/,2/[ ππθ −∈  could be solved.  

 

4. Finite Element Solution 

The transient solution uses two time steps. The first time step of 1.0=∆t s is used 

for the initial portion of the solution where the nonlinear terms are most important. 

The second time step of 100=∆t s is used for the long term solution. 

Results for the transient solution (t=[0, 5000] s) are shown in figures 2 and 3. 

Notice that because the bottom half of the duct is insulated, temperatures in the 

bottom half of the pipe are higher than in the top half.  Minimum temperature after 

5000s is 753 K, which is reasonably close to the steady state value (obtained in a 

separate FE solution). 

Contour plot for steady state temperature distribution is shown in figure 4. The 

solution was saved to be used in subsequent thermal stress analysis. 

The thermal solution was saved into a database file, and the element type was 

switched from the 8-node 2-dimensional thermal PLANE77 element
5
 into its 

equivalent 8-node structural PLANE82 element
6
 with the plane strain solution

7
 

option. All thermal loads were removed and the outer diameter of the cylindrical 

duct was fixed in all degrees of freedom. 

The steady state structural solution yields Maximum Von Mises stress and strain of 

3.90 Gpa and 0.03 respectively. The maximum stress and strain occur at the lowest 

point of the inner diameter of the duct ( 1Rr = , 2/πθ −= ). 

 



 
Figure 2: Contour plot for T(r,θ,t) after 5000 s 

 

 
Figure 3: Transient thermal response at selected locations 

 



 
Figure 4: Contour plot for steady state temperature distribution 

 

5. Finite Difference Solution 

As a test of reasonableness, another method of solution for the problem was 

pursued. Experimental verification was not a desirable option because the 

resources that will be required will be expensive, and an exact mathematical 

solution was not pursued because of time constraints. A finite difference 

solution was the most reasonable option. 

The governing equation for solving the steady state problem is  
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where ],0[];,[( 21 πθ ==⇒Ω RRr , because symmetry about the plane y-y is used 

to solve half of the problem as shown in figure 5. 

The thermal conductivity, considered as a constant value, is obtained as the 

integrated average value 
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The boundary conditions are as follows: 

Because the lower half of the duct is insulated at the outer radius 
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Because the upper half of the duct is subjected to convective heat flux at the 

outer radius 



    0])0,([ 2

2

=−+






∂

∂
∞

=

TRTh
r

T
k

Rr

    (8b) 

h =heat transfer (film) coefficient and ∞T =ambient (bulk) temperature. 

Because a wall temperature, wT , is specified on the inner radius of the duct 

    KTRT w
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Because of symmetry 
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Figure 5: Discretization scheme 

 

The problem is discretized in the ),( θr  coordinate system as 

0
)(

]2[1

)(

]2[

2

][1
2

,1,1,

22

,,1,1,1,1
=

∆

−+
+

∆

−+
+

∆

− −+−+−+

θ

jijiji

i

jijijijiji

i

TTT

rr

TTT

r

TT

r
 

or   0][)1(2][ 1,1,,,1,1,1,1 =+++−++− −+−+−+ jijiijiijijijijii TTTTTTT ββα   (9) 

where  riRri ∆−+= )1(1 ,  Ni ,...,2,1=  

   θπθ ∆−+−= )1(2/ jj , Mj ,...,2,1=  

   NRRr /)( 12 −=∆ , M/πθ =∆  

   N , M  are the number of divisions in r andθ  respectively. 

In discretized form, the boundary conditions are 
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wj TT =,1 ,  Mj ,...,2,1=  (wall temperature)    (10c) 



jNjN TT ,1,1 −+ =  and 2,0, ii TT = , Ni ,...,2,1= , Mj ,1=  (symmetry)  (10d) 

The numerical solution was implemented in Matlab®. Results are given in the next 

section. 
 

6. Results and Discussion 

Most of the students did a reasonably good job at meeting the goals of the assigned 

project. 

The majority of the students had little difficulty in obtaining the transient solution 

for the problem by using the academically licensed version of the commercial 

finite element program Ansys®.  The reason was that many lab sessions and 

tutorials had provided the students with the skills necessary for performing the 

finite element analysis. 

However, many students had difficulty writing the governing equations in 

cylindrical coordinates, and showing that because of temperature dependent 

thermal conductivity of the duct, the governing equation is nonlinear. Perhaps 

better preparation in engineering mathematics and heat transfer should be a 

prerequisite for this course. 

Many students could not formulate the finite difference form of the governing 

equations. The instructor had to provide much help to many of the students. The 

students who did not have much difficulty had taken courses in advanced 

engineering mathematics, heat transfer and CFD (Computational Fluid Dynamics). 

 
Figure 6: Solution from Matlab® code 

 



 
Figure 7: Contour plots from Matlab® code 

 

 
Fig 8: Comparison of FE and FD solutions 

 

Most of the students needed help in writing the code in Matlab®. Similar code 

from an allied problem
4
 was provided to the students to guide them in writing 

the Matlab® code. Furthermore, the instructor was available to consult with the 

students and to help them debug computer code. About 80 percent of the 

students had taken a course in Numerical Methods with the instructor and had 

been trained to write Matlab® code, therefore the coding aspect of the project 

was a reasonable assignment. 

 

7. Conclusions 

The results from the finite difference solution are shown in figures 6-8. 

The agreement between the finite element and finite difference results is much 

better than was expected. Because the problem was linearized for the finite 

difference solution, significant differences were expected between the two 

solutions. The probable reason for the good agreement is that nonlinear effects 



diminish as the solution approaches steady state, as was demonstrated in figures 

2 and 4 of the finite element solutions. On the other hand, nonlinear effects are 

very significant at the beginning stages of the solution. In the solution of the 

transient problem, Ansys® required small time steps and performed several 

iterations in the early stages of solving the problem. 

 

As a practical problem, the skills acquired from the solution of the assigned 

problem could be utilized in the design and analysis of pressure vessels, pipes 

for transporting liquids, or the design of molds for curing thermoplastic or 

thermoset resins. 

 

This project is a worthwhile project for senior undergraduate and graduate 

students who on graduation, may be expected to provide finite element 

solutions to many types of engineering problems in research and development.  

 

The students understood from this project that  

• It is necessary to understand the physics and the fundamentals behind 

governing equations that define a boundary value problem, and the 

assumptions made in deriving the governing equations, 

• It is necessary that boundary and initial conditions be correctly defined 

for boundary value problems, 

• It is necessary to have reasonable knowledge about equations that are 

solved by a commercial finite element software package in order to input 

correct data into the software.   

• It is necessary to validate finite element solutions obtained from 

commercial software by applying tests of reasonableness. The validation 

could mean solving an allied tractable version of the actual problem in 

order to have “a feel” for trends and orders of magnitude obtained from 

commercial software. In some cases, experimental data acquisition may 

be required. 
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