Online Learning Environment Design: A Heuristic Evaluation

Emily A Hildebrand, Arizona State University
Jennifer M Bekki, Arizona State University
Dr. Bianca L. Bernstein, Arizona State University
Dr. Caroline J Harrison, Arizona State University
Online Learning Environment Design: A Heuristic Evaluation

Abstract

The purpose of this paper is to demonstrate the feasibility of using a heuristic evaluation to evaluate the quality of and suggest improvements to an online learning environment. The website evaluated in this study is a resilience training website targeting doctoral students in science, technology, engineering, and math (STEM). Findings from the heuristics evaluation are shown to provide a baseline of potential human factors issues related to user experience with the website and to suggest some preliminary design recommendations. Implications of utilizing a heuristic evaluation to improve the user-centered design of an online learning environment are further discussed.

Introduction

The use of educational technology and online learning environments (OLEs) are increasing at a rapid rate. In fact, it is estimated that by 2025 there will be between 30-80 million online students\(^1\). Not only is student enrollment going up, but the types of online resources available to students are expanding. For example, there are online learning systems that fall into the category of course management systems (e.g., Blackboards and Moodle), massive open online courses (MOOCS), as well as an increasing number of informal online learning environments that provide support to more structured, class-based learning. The growing use of and variety of formats for online learning both demonstrate its value and underscore the fact that its use is increasingly necessary in order to meet the demands of today’s learners.

Given their widespread use, the design principles and usability evaluation metrics for OLEs are of great interest. Recent research has suggested that the design of an OLE can influence the student learning experience\(^2\). Further, poor design and usability have been found to lead to high rates of attrition\(^3,4\). These findings are not surprising given that OLEs are highly variable in terms of accessibility, formatting, and levels of user control. While much of the literature is calling for the development of design guidance\(^5,6,7,8\), there is still much to learn about best practices when it comes to designing for optimal usability in OLEs, and it is not yet known what works best\(^9,10\). With a field that is fast paced and continually changing to meet educational needs, the research to validate best practices has not caught up, creating the fear that “today’s best practices may soon be embedded in antiquated technology”\(^10\).

In human factors engineering, practitioners often rely on the tenets of user centered design to optimize the efficiency of users’ tasks and performance. However, the literature suggests that there may be a distinct difference when designing for basic user tasks and tasks to facilitate learning\(^10\). It is not only important to recognize that there is a difference, but to understand the characteristics, expectations, and needs of this unique “learner” population. Quintana, et al. (2003) noted that traditional user centered design is focused on helping people complete specific tasks that they typically already know, whereas learner centered design is focused on helping people develop an understanding of novel knowledge. Thus, integrating theories from...
pedagogical design with human factors design principles will be critical for achieving the
greatest learning outcomes from an OLE2,10.

While the users and developers of OLEs lack agreement about what learner centered design
involves and/or how it should be undertaken4, there are many usability evaluation methods in
human factors engineering that could provide a useful starting point. Traditionally, these
methods are used as an efficient way to understand where design may be creating difficulty for
end users and impacting performance. Once trouble areas are established and evaluated across
OLE disciplines, general solutions can be developed. One methodology that has already been
suggested as appropriate for evaluating the quality of an OLE is the heuristic evaluation2,4,8,11.

Developed by Nielsen11,12, a heuristic evaluation involves expert raters applying a usability
checklist to a user interface in order to identify potential usability problems that may result in
users not finding the information they need or not being able to execute their desired task. A
traditional heuristic evaluation primarily involves comparing the user interface with a checklist
made up of ten general design criteria11,12, or “rules-of-thumb,” that should be followed when
designing a product or process in order to optimize the user experience.

Case Study

The primary goal of this study was to demonstrate the feasibility of using a heuristic evaluation
to gauge the quality of and suggest improvements to a psychological education website
(http://careerwise.asu.edu)13. The \textit{CareerWISE} resource is an OLE designed to provide
resilience training to women doctoral students in the fields of Science, Technology, Engineering,
and Mathematics (STEM). For the purposes of this research, \textit{CareerWISE} serves as a prototype,
providing a vehicle to demonstrate the proof-of-concept for how different approaches to user-
centered design could be applied to an OLE. Findings from the case-study heuristic evaluation
are shown to provide a baseline of potential human factors issues related to user interaction with
the \textit{CareerWISE} website and to suggest some preliminary design recommendations.

Methods

Participants
Five expert raters conducted a heuristic evaluation of the \textit{CareerWISE} website. The raters were
all female graduate students with a background in human factors and previous experience with
the foundations of the heuristic evaluation methodology.

Materials and Procedure
The procedure for this study followed the guidelines and heuristics (shown in Table 1)
established by Nielsen11,12 for evaluating user interfaces. When completing a heuristic
evaluation, it’s important to have the raters carry out tasks that are most common for typical
users to do when interacting with the website. This ensures that the rater gets a comprehensive
look at the user interface and its functionality. In this study, each rater was asked to review the
\textit{CareerWISE} website by completing the following standard user tasks:
1. Go to careerwise.asu.edu, create a free account, and login.
2. Click through all steps of the problem solving model.
3. View a HerStory video from someone in the Physics field and read the biographical information for the interviewee.
4. Find the “Make good decisions” skill page. From that page, watch a HerStory video clip that is related to the common concern “Advisor Issues”.
5. Search for information on “starting a family in grad school”
6. Spend 30 minutes freely searching through the site.

Using the standardized worksheet shown in Figure 1, the five raters independently reviewed the CareerWISE website, completing the five common tasks in order to identify violations of the heuristics shown in Table 1. Each rater completed a separate worksheet, listing the task they were completing when they noticed the violation, the heuristic from Table 1 that was violated, the location of the violation within the website, and a description of the problem.

<table>
<thead>
<tr>
<th>TASK</th>
<th>HEURISTIC</th>
<th>LOCATION / PAGE TITLE</th>
<th>DESCRIPTION</th>
<th>SEVERITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Homepage</td>
<td>Users cannot see past the first page without logging in or creating an account</td>
<td>X</td>
</tr>
</tbody>
</table>

Figure 1. Raters used the above worksheet to record heuristic violation, severity ratings, and design recommendations.

Following the initial evaluation, the worksheets from each of the reviewers were compiled into a single master list of violations by the experimenter, and redundancies were edited out. Any usability problem that was found by multiple reviewers to violate the same heuristic was considered a redundancy. Each of the original raters then reviewed the master list independently and assigned severity ratings to the violated heuristics. Wherever possible, they also provided a redesign recommendation. The severity ratings were based on the magnitude and criticality of the usability problems that could occur as a consequence of the heuristic violation and were made based on the following scale:

1 = I don’t agree that is a usability problem
2 = Cosmetic problem only
3 = Minor usability problem – low priority
4 = Major usability problem – high priority
5 = Usability catastrophe – Fix prior to product release

The results for this study are presented in the following section in several distinct ways. First, the frequency of the violations found for the CareerWISE website is summarized according to the ten categories of usability heuristics shown in Table 1. Second, the severity ratings across all violations are summarized according to the frequency with which they were assigned (e.g., a
violation of severity level 5 was identified x number of times). Third, a summary of the data according to the frequency, severity, and location of all heuristic violations is presented. Finally, we provide specific examples from the CareerWISE website for three heuristics (from Table 1) that were found to be violated the most frequently.

Table 1. Nielsen heuristics.12.

<table>
<thead>
<tr>
<th>#</th>
<th>Heuristic</th>
<th>Abbreviation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Visibility of system status</td>
<td>Visibility</td>
<td>· The website keeps the user informed about what is going on through constructive, appropriate and timely feedback.</td>
</tr>
</tbody>
</table>
| 2 | Match between the system and the real world | Match | · Language usage, such as terms, phrases, symbols, and concepts, is similar to that used by the users in their day-to-day environment.
 | | | · Information is arranged in a natural and logical order. |
| 3 | User control and freedom | Control | · Users control the system. |
| | | | · Users can exit the system at any time even when they have made mistakes.
 | | | · There are facilities for Undo and Redo. |
| 4 | Consistency and adherence to standards | Consistency | · Concepts, words, symbols, situations, or actions refer to the same thing.
 | | | · Common platform standards are followed. |
| 5 | Error prevention, specifically prevention usability-related errors | Error | · The system is designed in such a way that the users cannot easily make serious usability errors.
 | | | · When a user makes an error, the application gives an appropriate error message. |
| 6 | Recognition rather than recall | Recognition | · Objects to be manipulated, options for selection, and actions to be taken, are visible.
 | | | · The user does not need to recall information from one part of a dialogue to another.
 | | | · Instructions on how to use the system are visible or easily retrievable whenever appropriate. |
| 7 | Flexibility and efficiency of use | Flexibility | · The site caters to different levels of users, from novice to experts.
 | | | · Shortcuts or accelerators, unseen by the novice users, are provided to speed up interaction and task completion by frequent users. |
| 8 | Aesthetic and minimalism in design | Aesthetics | · Site dialogues do not contain irrelevant or rarely needed information, which could distract users as they perform tasks.
 | | | · Displays are simple and multiple page displays are minimized. | |
| 9 | Recognition, diagnosis, and recovery from errors | Recovery | · Error messages are expressed in plain language. |
| | | | · Error messages indicate precisely what the problem is and give quick, simple, constructive, specific instructions for recovery. |
| 10 | Help and documentation | Help | · The site has a help facility and other documentation to support the users’ needs.
 | | | · The information in these documents is easy to search, focused on the user’s task, and lists concrete steps to be carried out to accomplish a task. |
Results

In total, there were 50 unique usability problems identified within the CareerWISE website. Since each usability problem could violate more than one heuristic, there were 91 actual heuristic violations. Figure 2 displays the frequency of violations according to heuristic category (Note: heuristic abbreviations are defined in Table 1).

![Frequency of Heuristic Violations by Category](image)

Figure 2. Frequencies of the heuristic violations by category averaged across raters.

Three heuristics accounted for 66% of the total violations. Match, which evaluates the correspondence between the website and the real world, was the most violated heuristic (24 times), with Consistency and Aesthetics following closely behind (20 and 16 respectively). The Recovery heuristic, which assesses the appropriateness of error messages, was found to have no violation within the CareerWISE website.

Figure 3 shows the frequency of the severity ratings assigned to the usability problems. Of the 50 total usability problems identified, the raters found 81% to be between a minor usability problem and a catastrophic problem. For example, one usability problem rated as severe was the lack of a consistent navigation making it difficult for the user to know what page they had last come from. Conversely, 19% of problems were found to be either not a usability problem or only a cosmetic issue. An example of a cosmetic issue that the raters identified was inconsistent header alignment on some of the pages. Overall, the severity findings are notable because, typically, when a large percentage of the usability problems are rated as moderate to severe, it implies that the user’s experience and, perhaps more importantly in the case of an OLE, the user’s learning from the site, may be suffering.

Finally, to give an overall view of the results, Figure 4 combines the frequency, average severity, and respective common task where the heuristic violation was found within the CareerWISE website. There was little variance in the number of violations identified by raters across the
common tasks. Similarly, severity was not focused in one area over another, implying that usability issues may be affecting the user experience across the website instead of being focused in a single task area. The results shown in Figure 4 make it apparent that usability problems were not inherent in a single task, but were found throughout the website. To begin addressing the findings, it is often best strategy to remedy those issues with the highest severity ratings and those issues which continually violate multiple heuristics at a time. The following section will highlight some examples of the most severe heuristic violations and discuss possible strategies to improve the design.

Figure 3. Frequency of severity ratings applied to usability problems.

Figure 4. Frequency and Average Severity ratings by Common Task.
Example Heuristic Violations

As mentioned previously, the three most frequently violated heuristics were “Match”, “Consistency”, and “Aesthetics”. Following are examples of a specific violation for each of the three heuristics.

Match
A violation of the heuristic “Match between the system and the real world” signifies that language, terms, and phrases do not “match” the terms employed by users on a daily basis or that the information is arranged in an unnatural or illogical order. During the heuristic evaluation, multiple raters noted that at times the CareerWISE website used terms that were unfamiliar. For example, the term “Briefs”, which is used within the CareerWISE site to represent a page with a short write-up related to a particular topic, was found to be confusing to raters. Figure 5 provides a screen shot highlighting such a violation. A potential solution to this usability problem could be to work with a focus group comprised of end users to identify more appropriate and familiar language that would better represent that type of content on the website.

![Violation of Match Heuristic](image)

Figure 5. A screenshot from the CareerWISE website shows a violation of the Match Heuristic.

Consistency
A violation of the heuristic “Consistency and adherence to standards” most typically occurs when the same concepts, words, symbols or actions do not refer to the same thing. An example of this that occurred during this heuristic evaluation was that the CareerWISE homepage has two links within the same textbox that are labeled the same, but when clicked lead to different
locations within the site. This is highlighted by the two links title “More” in the screen shot provided with Figure 6. To improve upon this usability problem it is important to ensure that the two links, which lead to different content, are easily distinguishable from one another. This could be accomplished by changing the text, color, and/or location of the link.

![ASU CareerWISE](Image)

Figure 6. A screenshot from the CareerWISE website shows a violation of the Consistency Heuristic.

Aesthetics

A violation of the heuristic “aesthetic and minimalism in design” occurs when site dialogue contains irrelevant information that is distracting to users, when displays are overly complex, and/or when page displays are not minimized. For example, during this heuristic evaluation, there were multiple times when menus and search results required an excessive amount of pages for the user to search through in order to access information. Figure 6 shows a menu of related videos that spans 6 pages. To remedy this usability problem, it is best to consolidate all links for the same “menu” on one page. Human factors design principles can offer many strategies to accomplish this, for example using nested menus.

Discussion and Conclusions

The present study explored the application of usability evaluation methods in an online learning environment (OLE). Specifically, we intended to demonstrate the feasibility of heuristic evaluation as a methodology for evaluating an OLE. The CareerWISE OLE was used as a test case for this study, and a baseline of potential human factors issues related to the site were identified. With the three most violated heuristics being Match, Consistency, and Aesthetics, this evaluation indicated that CareerWISE may have many potential issues related to a mismatch between the existing interface and user expectations for site usability. Furthermore, since none of the common tasks completed by the raters during the heuristic evaluation acquired a majority of violations, the data also suggests that the problems are more inherent within the overall structure of the website than within specific task areas. If an OLE designer lacked time and funds to do
further research, the results from a heuristic evaluation could highlight potential problem areas that could then be amended using general user-centered design principles, as demonstrated through this study. However, if additional time and/or funds were available, follow-up usability studies should focus on what and where these “mismatches” are within the website.

Figure 7. A screenshot from the CareerWISE website shows a violation of the Aesthetic Heuristic.

Of note is that while the heuristic evaluation confirmed that the current user interface may have a number of potential usability problems, we still do not know which problems pose negative consequences for learning outcomes. Other research shows that OLEs that are not designed to meet student needs can result in suboptimal learning outcomes by users\(^2,3,4\), so it will be important moving forward to identify frameworks and guidelines that can inform the OLE design principles that best support learning. Thus, a next important step in this research will be to perform formal usability tests and observation-based studies to determine which problems are in fact most troublesome with relation to key learning outcomes.

While findings from this study are in fact specific to the CareerWISE website, the process followed is applicable to any OLE. However, the findings from an evaluation of another OLE
could be completely different in terms of the types and severity of heuristic violations. As such, more research is needed across platforms and domains in order to continue developing a "baseline" of human factors issues present in OLEs to aid website designers in improving existing and newly created OLEs.

Finally, there are many "bigger picture" questions that need to be answered in order to truly improve both the usability of and resultant learning from OLEs. First, as noted by Quintana, et al. (2003), there needs to be a shift from user centered design to learner centered design. In order to develop effective design principles, frameworks and guidelines, the goals, expectations, and needs for these "learners" need to be established2,5,7,10. Furthermore, beyond establishing criteria for one type of learner or OLE, research suggests that a paradigm shift to "universal design for learning" is necessary14 in order to meets the diverse needs of a wider variety of learners across different OLE domains.

Bibliography