
Session 2793

Open Source Alternatives:
Thriving with (Free) UNIX on the Engineering Desktop

Gary E. Rafe, Douglas W. Fraser
University of Pittsburgh / Lucent Technologies

Abstract

The wide-spread use of commercial UNIX operating systems to run desktop workstations and
large-scale time-sharing and Internet server systems is well known, especially within the
engineering-related academic community. In part due to the “one-size fits all” philosophy of the
predominant operating system for desktop personal computers and the recent availability of
relatively low-cost alternatives, an increasing amount of interest is being given to UNIX on the
PC desktop. We offer some of our observations on the suitability of freely-available UNIX (and
UNIX-like) systems for a variety of activities commonly associated with the personal computer
domain, with particular emphasis on inter-operability across various system platforms. Included
in our discussion are the increasingly-popular Linux, which can be used on many different types
of computer hardware, FreeBSD, and Sun Microsystems’ Solaris. In addition, we discuss
AT&T’s U/WIN system, which provides robust traditional UNIX services, and facilitates the use
of many so-called open-source applications, on personal computers running Microsoft Windows.

Introduction

Our goal for this paper is to share some of our experiences and observations in the use of free
UNIX and UNIX-like operating systems on desktop personal computers in technical computing
environments, with particular emphasis in the area of engineering education. Perhaps due to the
graphical nature of the user interface provided by the X Window System and the near
ubiquitousness of audio hardware on desktop (and portable) computers, we find that these
systems are well suited to multi-media applications. For the purposes of our discussion, we
consider several classes of systems here, including: (1) systems that can be obtained without
cost, such as FreeBSD ,1 derived from Berkeley Software Distribution (BSD) UNIX released by
the Computer Systems Research Group at the University of California at Berkeley, and Linux ,2 a
UNIX-like operating system based on a kernel developed by L. Torvalds; (2) commercial UNIX
systems that are available at media costs to individuals for personal, non-commercial use, such
as Sun Microsystems’ Solaris (on SPARC- and Intel-based systems) and SCO’s UnixWare (on
Intel-based systems); (3) packages that run on existing Microsoft Windows systems such as
AT&T’s U/WIN3 and Cygnus Solution’s Cygwin ,4 also available at no cost to individuals for
personal use in educational and research environments. We refer to these systems collectively in
the remainder of our discussion as UNIX , except where we need to refer to a specific system or
environment.

Our presentation is not intended to be a tutorial in the use of any one particular desktop UNIX
environment. Rather, we are interested in the ability to accomplish our work on a variety of

P
age 5.478.1



systems with (more-or-less) the same paradigm, with the added benefit that the product of our
work can be shared easily with others through the use of portable code and architecture-
independent file formats.

Background

We bring to this presentation a long familiarity of UNIX systems, having nearly 30 years
combined experience with them between us. Our first exposures to the UNIX system began in
the mid-1980’s when one of us (DWF) went to work for AT&T Bell Laboratories where AT&T
UNIX Version 7 ran on a timesharing DEC PDP 11/70; access to this system was via 1200 baud
dial-up modems and character display terminals. Such humble beginnings taught us the
importance of treating bandwidth frugally, a lesson that continues with us to this day in our
preference for mostly simple, character-based interfaces. In the next several years, the PDP was
replaced by a VAX 750 running UNIX System V.2 with switched 9600 baud connections, which,
in turn, was replaced by a workgroup of AT&T 3B2/1000 servers running UNIX System V.3.
During this time, the other’s (GER) department obtained a small multi-user AT&T 3B2/300
desktop system for use in FORTRAN programming courses running UNIX System V.3. Such
was our affinity for the UNIX paradigm that our home personal computers at the time were the
exotic AT&T UNIX PC7300 (Figure 1), which ran a variant of BSD UNIX.

Figure 1 AT&T UNIX PC7300

Since that time, we have used a wide range of commercial UNIX systems, including HP servers
and workstations running HP/UX, IBM servers running AIX, generic desktop personal computers
(PCs) running Microport System V/386 , Sun i386 workstations running SunOS, Sun SPARC
servers and workstations running SunOS 4.1 and Solaris 2, and SGI workstations running IRIX.

We conclude this summary by describing our various current UNIX desktops. At the University
of Pittsburgh, we use a Sun Ultra 1 Creator3D workstation running the Solaris 7 operating
system. This operating system is available to students, faculty members, and researchers for
personal use for the cost of media and shipping from Sun Microsystems.5 To build new binary

P
age 5.478.2



applications and programs from source code, we use a pre-compiled version of the GNU C/C++
compiler, gcc/g++.6 At Lucent Technologies, our most recent (true) UNIX desktop was a Sun
Ultra 30 workstation running Solaris 2.5.1; at present, we use Intel-based PCs running Microsoft
Windows NT for our software development activities. The transition from the UNIX to the
Windows paradigm was not painless. The recent availability of environments like AT&T’s
U/WIN package,7 which includes the Korn shell (ksh93)8 and over 200 standard UNIX utilities,
has eased this transition greatly.

When not at our respective workplaces, one of us (GER) prefers the FreeBSD system9 running on
various notebook computers, while the other (DWF) has used SCO UnixWare 2.13, Solaris 2.5
x86, and Caldera OpenLinux 2.3 on a desktop system with varying degrees of success. An
important aspect of the FreeBSD and UnixWare systems are their ability to run programs
compiled for Linux systems through compatibility packages; this allows us to use the growing
number of commercial applications being released for Linux (e.g., Netscape Communicator and
Navigator, Corel WordPerfect, RealPlayer, etc.) on our preferred systems.

In the remaining sections, we survey a broad range of applications, tools, and utilities that allow
us consistent and flexible user interfaces across the various systems with which we work.

Cross-Platform Applications

User Interfaces . One of our primary interests is the ability to share and use information across
multiple platforms. This includes sharing our user interfaces across systems. The X Window
System (X), which is now standard with all desktop UNIX systems, provides a consistent base
across systems. The actual look-and-feel of the X desktop (e.g., menus, window controls, and
frames) is given by a separate window manager program. We have used the window manager
fvwm10 on all of our systems for several years (version 2.2, fvwm2, was released in May 1999).
Figure 2 illustrates a fvwm2 desktop running on our SPARC-based Solaris 7 system.

We find this X window manager appealing because of its relatively low memory usage, the
simplicity and flexibility of its configuration, and its ability to manage multiple virtual desktops.
Other popular open-source X window managers are described by Chapmann.11

While not typically part of the user interface, the X desktop background is, in fact, a window
(i.e., the root window). Rather than leaving it blank or filled with a static image, we typically
run the xearth program by K.L. Johnson.12 This little program displays a customizable view of
Earth from space based on the current time-of-day and location (timezone) in the current
display’s root window, and is updated periodically. Thus, xearth not only helps reduce
premature monitor failure (since it changes frequently and displays mostly dark colors on a black
deep-space background), it also offers free daily remainders of Earth’s geography! We chose not
to include it in the screendumps presented here because its required black background is not
printer-friendly.

Before we leave the topic of standard, efficient user interfaces, we note that our preferred UNIX
shell is the Korn shell (ksh). The standard shell on Solaris systems is ksh, as is the case with the
U/WIN package; on our FreeBSD systems, we use a public domain implementation of ksh88
from the Memorial University of Newfoundland.13 Thus, we have both consistent and effective
command-line and graphical user interfaces on all of our various systems.

P
age 5.478.3



Figure 2 Fvwm2 desktop and X applications

Text and Word Processing . In most cases, we prepare our documents using the plain-text editor
vi, and generate preview and final documents using the GNU groff package.14 This package
implements most of AT&T’s classic Documenter’s Workbench ® (DWB), including the tools pic
(for describing simple line drawings and diagrams), eqn (for describing mathematical equations),
tbl (for describing tabular information), device-independent troff (the typesetter), and
postprocessors for converting troff’s output to an appropriate output device or file format (e.g.,
PostScript). We have written troff-compatible macro packages for formatting our papers,
theses, viewgraphs, and other documents into PostScript and Hypertext Markup Language
(HTML) documents, which run identically on our SPARC-based Solaris and Intel-based FreeBSD
systems. In addition, we use T. Faber’s implementation of grap15 for generating graphs in our
troff documents. While we have not used it extensively, the popular TEX system and its
extensions are generally available for the UNIX systems described here.

We occasionally receive electronic documents that arrive in a common PC word processing
format (e.g., Microsoft Word or WordPerfect) rather than an application independent format
such as Adobe’s PostScript or Portable Document Format (PDF). On such occasions, we make
use of Corel’s WordPerfect 8 for Linux16 on our Linux-compatible Intel-based systems (Figure
3), which can read and write a wide range of wordprocessing file formats. While not an open-
source application, a free personal edition of WordPerfect 8 for Linux is available for non-
commercial use by individuals from several Internet sites.

P
age 5.478.4



Figure 3 Corel WordPerfect 8 for Linux

Since the printing resources to which we have access are generally PostScript-ready, we make
frequent use of various open-source PostScript-related tools. These include a set of PostScript
utilities by A.J.C. Duggan,17 which includes a useful program for arranging multiple logical
pages on a single physical page (psnup); C. Southeren’s nenscript18 program for formatting
plain-text (e.g., source code listings and electronic mail messages) as PostScript output for
printing; and the popular Ghostscript program gs from the University of Wisconsin.19 The gs

program is a PostScript language interpreter that produces a output for a wide range of devices
and file formats. We use this program most often to preview PostScript documents (using the X
front-end programs ghostview and gv20) and to generate architecture-neutral PDF files (e.g., the
final form of this paper). We also use gs to print various PostScript jobs on non-PostScript
printers, as needed.

We described earlier our desire to share information without regard to the choice of system on
either end. In many cases, simple, plain text documents are sufficient to accomplish this.
Documents composed in HTML are useful when more complicated formatting and the inclusion
of bitmapped images are required. In cases where strict control of page layout is desired, we
advocate the use of Adobe’s PDF. As we note above, the freely-available Ghostscript program
can output PDF from corresponding PostScript input. Of course, the wide-spread availability of
PDF interpreters and readers (e.g., Adobe Acrobat Reader21 and Ghostscript itself) makes this
possible.

Electronic Mail . Many diverse configurations are possible for exchanging and managing
electronic mail messages. We limit our description to our present University arrangement. After
many years, we continue to use the standard mailx command on our University desktop,
typically running in an X-based terminal window. Because mailx uses a simple text interface, it

P
age 5.478.5



is well suited for use of slow dial-up or network connections from remote locations. Since
mailx (and other electronic mail interfaces) pre-dates the proposed Multipurpose Internet Mail
Extension (MIME) standard, we have N.S. Borenstein’s metamail package22 installed on our
University desktop system. This package includes command-line tools for composing, sending,
reading, and processing electronic mail messages with MIME attachments. In addition to having
electronic mail messages delivered directly to our desktop system, we maintain an IMAP
mailbox with the University’s central electronic post office service. To retrieve messages sent to
this service, we use E.S. Raymond’s fetchmail program,23 which can be configured to retrieve
mail messages from multiple remote mail services using a variety of messaging protocols. The
standard UNIX cron facility is used to run the fetchmail utility at regular intervals throughout
the day without our direct intervention.

We conclude these remarks by mentioning the MIME-enabled, character-based pine24 electronic
mail client from the University of Washington, often standard on many university time-sharing
services, may be configured to suit many different operating environments. Also, the Netscape
Communicator program, described below, supports both POP and IMAP remote messaging
protocols in its Messenger utility.

Web Browsing . The ever-expanding World-Wide Web continues to play an important role in
many aspects of engineering education. Our own research at the University of Pittsburgh makes
use of several web-related technologies. Documents formatted in standard HTML are available
to a large audience, due primarily to the availability of robust web browsers across many
different platforms. The lynx text browser,25 while not terribly sexy, offers good performance
over character-based displays (or in X-based terminal windows). The Netscape Navigator and
Communicator26 browsers are generally released simultaneously for the major UNIX platforms
(e.g., Intel Linux, SPARC and Intel Solaris, SGI IRIX, etc.). We appreciate having access to both
versions of Netscape’s browser (i.e., the stand-alone Navigator and the full Communicator) on
each of our systems, so each may be called as needed. Since we generally read news groups with
the text-based trn news reader, read electronic mail with the bundled Solaris mailx program,
and compose HTML with our own troff macros, we rarely run the much larger Communicator
browser, though it is available on all our systems. The stand-alone Navigator browser running
on our Solaris system can be seen in Figure 2.

Multimedia Applications . We next describe a small collection of capable utilities that we use
regularly to work with various electronic media. Perhaps the most useful of these tools is the the
well-known xv program by J. Bradley.27 This X program is used for interactive image display,
editing, and conversion from and to a wide variety of bit-mapped image formats; Figure 4
illustrates xv running on our Solaris system. We note also that the screen images presented here
were captured with the xv program running on the respective system.

P
age 5.478.6



Figure 4 Image display, editing, and conversion with xv

For more complex interactive image processing, we use the GNU Image Processing Program
(GIMP).28 Figure 5 illustrates the gimp running on our Intel-based FreeBSD system.

Figure 5 The GNU Image Manipulation Program (GIMP)

P
age 5.478.7



For command-line image file processing and conversion, we use the so-called netpbm29 package,
which is based on J. Poskanzer’s original Pbmplus software. The utilities in this package are
most often applied in combination with other tools in shell scripts.

We create original photographic images from digital cameras using the small command-line
utility photopc written by E. Crosser.30 We have used this utility with Epson and Olympus
digital cameras connected to both our FreeBSD and Solaris systems. Other original digital
images have been created using scanners attached to networked PCs. While researching this
paper, we discovered the open-source Scanner Access Now Easy (SANE)31 project. This effort
coordinates the development of back-end drivers for various SCSI scanners, and several front-
end applications. We hope to investigate the use of the SANE drivers and utilities on our
portable FreeBSD systems as time permits.

Finally, we consider the playback of various animation, audio, and video formats on our UNIX
systems. M. Podlipec’s xanim program32 supports a wide range of audio and video codec file
formats. For the playback of streaming audio and video on our Intel-based systems, we use Real
Networks’ RealPlayer G2 for Linux ,33 while on our SPARC-based Solaris systems, we use the
RealPlayer (v5.0).34

Computational Tools . During our graduate studies in industrial engineering at the University of
Pittsburgh, we have used an assortment of open-source computational tools and applications, in
addition to the normal set of shell tools that comprise UNIX system (e.g., awk, sed, grep, etc.),
often in place of the typical PC-based solutions suggested by course instructors. These have
included M. Berkelaar’s lp_solve35 for solving mixed integer linear programming problems in
an operations research course; J.W. Eaton’s GNU Octave36 application for numerical
computations in an applied linear regression course; and the Stuttgart Neural Network Simulator
(SNNS)37 in an applied neural networks course. We note here that as the Linux system continues
to gain popularity, more commercial applications are being ported to it. With significance to
engineering education, we find that the popular Mathematica38 and MATLAB39 each have low-
cost student versions available for Linux systems. Other applications are sure to follow.

Programming Environments . A rich set of programming environments and toolsets that span
architectures and platforms are readily available to both academic and professional software
developers in addition to the well-known GNU suite of open-source compilers and related
utilities. We consider two such environments here, and a third toolset that facilitates a
distributed software development process: Java, the Practical Extraction and Report Language
(perl), and the Concurrent Versions System (CVS).

The Java programming language is having a profound effect on how applications are developed
and delivered. In the current context of engineering education, we believe that the Java
programming language can be applied effectively throughout and across the curriculum. Current
releases of Sun Microsystems’ Java Development Kit (JDK) are available for our Solaris systems
without cost.40 Similarly, free and fully-functional JDKs are available for FreeBSD41 and
Linux42 systems. Additionally, the educational and research communities have free access to the
open-source jikes Compiler Project from IBM Research.43 This fast Java compiler is available
either as source code or pre-compiled binaries for IBM AIX, Intel-based Linux, Sun SPARC-
based Solaris, and Microsoft Windows 95/NT systems.

P
age 5.478.8



In the Spring 1999 term, one of us (GER) worked in a graduate-level distributed database
systems course at the University. All of the assigned work in this course implemented various
Java applets, culminating in a small three-tier database application using Remote Method
Invocation (RMI) and Java Database Connectivity (JDBC). Since all of the students in the course
chose to develop their applets and RMI servers on Microsoft Windows 95 PCs, on-site testing of
their finished work was necessary. We accomplished this by bringing our FreeBSD notebook to
the appropriate laboratory, connecting to the laboratory’s LAN, and running each of the Java
applets against Netscape Navigator. To the surprise of many in the course, some of whom were
troubled by the need to consider the issue of architecture independence, all of the applets ran
correctly on the FreeBSD notebook.

While it may not receive the same level of attention as the Java language, perl deserves mention
here because of its ubiquitousness and its usefulness. As the the language’s name implies, perl
is well suited to many tasks involving plain-text files. One of us (DWF) has found the language
to be useful for the rapid development of relatively small utilities that do useful tasks in a
production environment. An example of one such utility generates an editor-specific project file
from an existing source code directory tree. This project file subsequently enables the editor to
highlight language syntax and browse symbols throughout the source tree, avoiding the odious
task of walking the directory hierarchy through the editor’s mouse driven, menu popping, file
dragging quagmire. The output of a perl program need not be simply plain text for it to be
useful, either. In our current research at the University, we make frequent use of the open-source
FreeWRL,44 a Virtual Reality Modeling Language (VRML) browser written in perl, which uses
OpenGL to render three-dimensional graphics. We find this perl application useful to test Java
interface applets on our Solaris and FreeBSD systems prior to their deployment on a Windows
NT PC; Figure 6 depicts a small Java applet driving a simple VRML scene rendered by the
FreeWRL browser running on our University Sun workstation.

We next consider an open-source solution to the problem of managing large, distributed software
development projects. At Lucent Technologies, we work in a mixed Windows/UNIX
environment. Our Windows NT desktops are used for all of our daily tasks (e.g., software
development, documentation, e-mail, etc.). These desktops are not backed up centrally, so each
employee is also provided with a public share on our UNIX server, a Sun SPARCstation 20
running Solaris 2.5.1. It is then the individual’s responsibility to copy critical files to the public
share or to his/her UNIX account and to maintain proper access permissions there. This may
work fine for personal files and such, but is a hindrance to shared development on a common
target, as is the case in our project environment. Some people use home spun tools to interface
to the Source Code Control System (SCCS) on UNIX while others use Microsoft’s Visual
SourceSafe version control system product. Both of these solutions have their own quirks and
limitations. An alternative solution to the problem of software version control across
development teams has been offered by the open-source community, which has settled on the
Concurrent Versions System (CVS)45 almost exclusively. Binary ports of this tool are available
for most platforms, as is the source code.46

P
age 5.478.9



Figure 6 Java Applet and FreeWRL VRML browser

We use CVS in a client/server environment with the server running on our UNIX host. Our
Windows clients use standard CVS methods to manage the source code stored on the server. To
date, this tool has proven to be robust and very simple to use. Administration on the UNIX host
is accomplished through plain text files that are themselves maintained through CVS. The tool is
flexible, which means that all development practices must be established locally. Although that
means setting the ground rules for the process, it also means that teams have the freedom to use
the process with which they are most comfortable. The tool does not enforce a process, it simply
enables it. Much like perl, CVS is another example of a free tool that has origins in the UNIX
environment that has found its way to the Windows world to enable useful activity on the
Windows platform.

Security . We comment here briefly on the topic of Internet security, primarily because our
University Solaris desktop is connected to a open network, as are our FreeBSD systems when
they are connected to the same network, either by modem or Ethernet. We take basic
precautions to discourage uninvited access to our systems by persons outside the University’s IP
domain. The tcp wrappers47 developed by W.Z. Venema are used to control access to various
Internet services (e.g., telnet and ftp servers) when are our systems are connected to the
Internet. We also use the encrypted Secure Shell (SSH)48 to communicate (typically via remote
login sessions and file transfers) among our various UNIX systems and the University’s public
UNIX services. P

age 5.478.10



UNIX on Windows

The choice of computer platform often is dependent on the major applications and tools required
for specific projects, or other organizational criteria. In our cases, we each have the need to
access applications that run solely on Microsoft Windows NT PCs regularly. Having strong
preferences for the UNIX environment, we investigated several approaches that attempt to give
Microsoft Windows PCs a more UNIX-like console interface (and its accompanying extensibility
through the use of shell scripts, shell functions, and aliases). The recently released U/WIN
package from AT&T appears to provide this functionality. We have U/WIN installed on our
Windows NT office desktop at Lucent Technologies and on select project PCs in our department
at the University, and find that it provides a reasonable ksh console window and most of the
common UNIX commands. In addition, U/WIN includes a dynamic library (DLL) that allows us
to compile most UNIX utilities using a port of the GNU C compiler gcc for Windows49 with a
minimum of modification. At Lucent Technologies, we also make extensive use of the open-
source Cygwin50 port of the GNU development toolset for the Windows platform. In this
instance, the Cygwin package provides the foundation for a commercial cross-platform
development environment we use for our own embedded system software projects.

Summary and Conclusion

We believe that the UNIX operating system model lends itself to the development of efficient
problem-solving techniques, particularly in engineering-related disciplines. Our presentation
here considered a broad range of software applications available to the engineering education
community that operate within the UNIX system model, and in many cases, are not limited to
UNIX systems exclusively. Indeed, the UNIX applications and operation systems and
environments we considered here are available at no (or low) cost to the educational and research
community.

The consistency of user interfaces and portable tools across operating systems and hardware
architectures allows us to fashion solutions to problems that run with no (or minimal) changes on
our various systems quickly. More importantly, the application of common, architecture-neutral
file formats allows us to share information easily and effectively with others. In conclusion, we
find that the free UNIX desktop can be a powerful teaching and research tool for the engineering
educator.

Bibliography

1. Lehey, G. The Complete FreeBSD . Walnut Creek, CA: Walnut Creek CDROM (1997).
2. Weigand, J. The cooperative development of Linux. In Proceedings of the 1993 IEEE International

Professional Communication Conference. New York: IEEE (1993).
3. Korn, D.G. Porting UNIX to Windows NT. In Proceedings of the USENIX 1997 Annual Technical Conference.

Berkeley, CA: USENIX Assoc. (1997).
4. Noer, G.J. Cygwin: A Free Win32 Porting Layer for UNIX Applications. In 1998 USENIX Windows NT

Workshop Proceedings. Berkeley, CA: USENIX Assoc. (1998).
5. http://www.sun.com/edu/solaris/individual.html P

age 5.478.11



6. http://sunfreeware.com/
7. http://www.research.att.com/sw/tools/uwin/
8. Bolsky, M.I., & D.G. Korn. New KornShell Command and Programming Language, 2nd Ed. New York:

Prentice Hall PTR (1995).
9. http://www.freebsd.org/

10. http://www.fvwm.org/
11. http://www.plig.org/xwinman/
12. http://www.cs.colorado.edu/˜tuna/xearth/
13. http://www.cs.mun.ca/˜michael/pdksh/
14. http://www.gnu.org/software/groff/groff.html
15. http://www.lunabase.org/˜faber/Vault/software/grap/
16. http://linux.corel.com/products/linuxproducts_wp8.htm
17. ftp://ftp.dcs.ed.ec.uk/ajcd/psutils-p17.ta.gz
18. http://www.im.lcs.mit.edu/˜magnus/nenscript/
19. http://www.cs.wisc.edu/˜ghost/
20. http://wwwthep.physik.uni-mainz.de/˜plass/gv/
21. http://www.adobe.com/products/acrobat/alternate.html
22. ftp://thumper.bellcore.com/pub/nsb/README
23. http://www.tuxedo.org/˜esr/fetchmail/
24. http://www.washington.edu/pine/
25. http://lynx.browser.org/
26. http://home.netscape.com/download/selectplatform_1_702.html
27. http://www.trilon.com/xv/xv.html
28. http://www.gimp.org/
29. ftp://metalab.unc.edu/pub/Linux/apps/graphics/convert/netpbm-8.0.tar.gz
30. http://www.average.org/digicam/
31. http://www.mostang.com/sane/
32. http://xanim.va.pubnix.com/
33. http://proforma.real.com/real/player/linuxplayer.html
34. http://proforma.real.com/real/player/blackjack.html
35. ftp://ftp.es.ele.tue.nl/pub/lp_solve/README
36. http://www.che.wisc.edu/octave/
37. http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html
38. http://www.wolfram.com/products/student/mathforstudents/
39. http://www.mathworks.com/products/studentversion/
40. http://www.sun.com/solaris/java/download.html
41. http://www.freebsd.org/java/
42. http://www.blackdown.org/
43. http://www.research.ibm.com/jikes/
44. http://www.crc.ca/FreeWRL/
45. Fogel, K.F. Open Source Development with CVS. Scottdale, AZ: The Coriolis Group (1999).
46. http://www.sourcegear.com/CVS/
47. ftp://ftp.porcupine.org/pub/security/index.html
48. http://www.ssh.org/
49. ftp://ftp.xraylith.wisc.edu/pub/khan/gnu-win32/uwin/
50. http://sourceware.cygnus.com/cygwin/

GARY E. RAFE
Gary Rafe is a Ph.D. candidate in the Industrial Engineering Department at the University of Pittsburgh. He
received the B.S.I.E. degree from Alfred University, and the M.S. in Manufacturing Systems Engineering from the
University of Pittsburgh. Previously, Mr. Rafe was on the faculty of the State University of New York’s College of
Technology at Alfred, teaching courses in computer and industrial control programming, computer-aided-design and

P
age 5.478.12



manufacturing, and mechanical engineering technology, and managed the College’s workstation laboratory network.
In addition to his desire to eschew the hegemonic personal computer operating system, his research interests include
the application of information system technology in manufacturing enterprises, automating the product design-to-
manufacturing process, CAD/CAM integration, and the use of telecommunication technology for training and
education.

DOUGLAS W. FRASER
Douglas Fraser has worked as a developer for AT&T and Lucent Technologies for sixteen years. He learned to
develop embedded systems using C in the UNIX environment there and has continued to practice that craft with brief
forays into UNIX application development. Most of his career has concentrated on remote distributed telephony test
systems using both intrusive digital tests and non-intrusive voice band tests over digital T-carrier systems. Mr.
Fraser’s recent work has included infrastructure development for an eighty channel DWDM optical line system for
Lucent’s Optical Networking Group. He is currently part of a team developing reference designs for DSL broadband
modems at the Microelectronics division of Lucent Technologies.

P
age 5.478.13


