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Abstract
         The recent advances in microprocessor technology and local area networks have made it easy
to put together computer systems with a large number of machines connected by a high speed
network. These systems need radically different software. In particular, the required
operating systems have to deal with new ideas such as fault tolerance, load balancing,
incremental growth, computational speed up, and transparency not found in traditional
centralized operating systems. To integrate the concepts of distributed operating systems
(DOS) in out undergraduate curriculum, a new course has been designed. It uses DOS laboratory
which contains fourteen PC/ATs running under MINIX 1.5 (with networking kernel). This paper
describes the course, the laboratory set-up, and the experiences in using the laboratory.

Introduction
         Since the mid 1980s, two major advances in computer technology have been evident. First,
powerful microprocessors (16, 32 and even 64 bit) with computing power of earlier mainframes
are abundant. Secondly, a larger number of these can be connected together through high speed
networks which allow data transfer at 10 to 100 million bits per second. 

         These have lead to increasing use of distributed systems - a large number of CPUs each in a
separate machine communicating via a high speed network that appears to the users as a single
computer (in marked contrast to the traditional centralized, single CPU systems).

         An efficient use of these distributed systems involves use of radically different
software, in particular the operating system. It has to address the issues of transparency
(single system view to users) and performance (load balancing and computational speed up) while
providing reliability (system availability and fault tolerance) and flexibility (incremental
growth) .1,2,3

         The time has come to integrate these concepts and issues involved in these Distributed
Operating Systems in the Computer Science curriculum at the Undergraduate level. To this end we
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have introduced a new course on DOS supported with a strong laboratory component. The course
addresses the basic issues in the design and implementation of DOS with specific examples from
case studies. The laboratory is used to explore and crystallize the concepts in a realistic
programming environment. This paper presents our first experiences in this endeavor.

The Course
         An undergraduate course on DOS has been introduced starting Fall 1994. It is a three credit
offering under ``Special Topics in Computer Science'' to seniors and is also available to
Masters students. A more detailed DOS course has been introduced in the MS curriculum.. The
course uses the laboratory established through an NSF/ILI grant (DUE: 9350654).

         The DOS course has the regular senior/MS level Operating Systems (OS) course as its
prerequisite. The prerequisite covers the standard OS topics (file system, process and memory
management, I/O subsystem etc.) involved in the design and implementation of standard,
centralized systems. It, too, has a strong laboratory component associated with it. Until the
DOS laboratory, we used an OS laboratory based on PC/XTs running under MINIX OS , established in4

1989 through an earlier NSF/ILI grant (USE: 8851239).

        The new DOS course builds on this background. Particular emphasis is placed on the issues of
transparency, reliability, performance and flexibility. A summary of the topics covered in the
course is given below.

þ Review of centralized systems.

þ Distributed systems - terminology, multiprocessor and multicomputer systems, network OS,
network file systems, design issues: flexibility, performance, reliability, and transparency1

(case study: SunOS NFS ).5

þ Communication in distributed systems - layered protocols, client/server model, remote
procedure call mechanism, group communications and message ordering (case studies: Amoeba ,1

SunOS RPC).

þ Synchronization in distributed systems - clocks, mutual exclusion, transaction model,
distributed deadlocks and related algorithms.

þ Threads in distributed systems - thread as opposed to a process, design issues in user and
kernel level threads (case studies: kernel-level , user-level ).1,6 7

þ Distributed file systems - file servers, stateless file servers, file service, directory
service, interface models, file sharing, file replication(case studies: Amoeba , Andrew file1

system ).8
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The Laboratory Set-up
         The laboratory consists of fourteen PC/ATs. There are four 486DX2/66s (16Mb RAM), six
486DX/33s (8Mb RAM), and four 486DLC/33s (4Mb RAM) machines. Each machine has a 520Mb IDE hard
disk, a 1.4Mb floppy drive, a 101 key keyboard, a WD8003 ethernet card, a hercules monochrome
video card and monitor. As a graphical interface is not critical in the study of operating
systems, no 
investment was made in SVGA controller cards and monitors. The machines are on a separate LAN
segment, isolated from the rest of the machines in the department.

         The machines run under MINIX 1.5 networking kernel OS. We started with MINIX for the
following reasons. It is used in the prerequisite OS course so students are already familiar
with its interface and utilities. In addition, it is an open system -- the source code is
available and can be modified if needed (see experiment 5). The networking kernel uses a
networking protocol based on the remote procedure (RPC) call mechanism  (see appendix for9

details). This protocol is compatible with the form of RPC used in the distributed OS Amoeba .10

This makes students relate their projects directly to the case study in the classroom.

         MINIX  is an open OS designed by Dr. A. S. Tanenbaum. It is a multiuser/multitasking OS4

similar to UNIX. It is system call compatible with version V7 of UNIX. It has over 170 utilities
and more than 200 library functions. It was primarily designed to teach OS and related courses.
It is available with full source (in C) and easy-to-read installation and reference manual. It
also has a Kernighan and Ritchie C compatible C compiler i.e. it is a complete programming
environment. 

         MINIX 1.5 is distributed by Prentice-Hall. It comes on eleven 3.5" disks which include the
source files. Using MINIX directly from floppies as distributed is cumbersome. We have
installed it on a 32Mb hard disk partition . A backup copy is kept on another hard disk partition11

of same size. A student only needs a boot disk to use the system. The students are not allowed to
save their work on the hard disk, they use their own floppies.

         Based on our experience we make the following observations on setting up the laboratory.

1. Use PC/ATs with 4Mb or more RAM to accommodate a larger size kernel and leave enough memory
for user processes (MINIX does not support virtual memory or swapping).

2. If a PC has 16Mb or more RAM, the kernel has to be patched to work correctly. One has to get the
patch from the MINIX interest group and then use the patch program to apply it to the
kernel.

3. WD8003 (8-bit) ethernet card is the only one supported under Amoeba networking protocol.
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4. MINIX can only recognize primary MS-DOS partitions on hard disk. It can not access a
partition larger than 32Mb.

5. The cluster of machines should be on a separate LAN segment as Amoeba RPC tries to use the full
bandwidth of the ethernet which may interfere with other systems on the LAN.

6. Installation and maintenance requires some knowledge and system administration experience
of UNIX.

7. Most of the information needed is available in MINIX 1.5 reference manual. Generally, Dr.
Tanenbaum is willing and prompt in answering questions, but he is not always available.
Some help can be obtained on the MINIX interest group comp.os.minix on the Internet.

Details of Experiments
         The experiments for the laboratory work are designed to clarify the basic concepts of
flexibility (system scales easily to accommodate increase in number of machines with
corresponding increase in performance), performance (running an application should not be
appreciably worse than running it on a single CPU system), reliability (system should be
available and functional in presence of failures), and transparency (system should provide a
single system image) as applied to DOS. They explore the following ideas.

þ Load distribution - the system should try to balance and distribute the work load on a number
of machines (experiment 3 and 8).

þ Fault tolerance - the system should continue to provide service in presence of failures
(experiment 4).

þ Computational speed-up - the system should use faster remote CPUs for compute intensive
applications where computational time is larger than network overheads (experiment 5).

þ Access transparency - the system should provide same mechanism to access local or remote
resources (experiment 6).

þ Performance transparency - there should be no appreciable reduction in performance due to
communication overheads (experiment 5 and 9).

         Experiment 1 is designed to (re)acquaint the students to MINIX, and to see the `basic'
structure of a `client' and a `server' program using the Amoeba RPC primitives (see appendix for
details). The students are given predesigned  client and server programs. These programs
provide the basic framework for the remaining experiments. The students study, compile, and
execute them on the system (the client and server run on separate machines).
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         Experiment 2 involves writing a simple client/server application using the RPC primitives
studied in the previous experiment. The client reads a message from the keyboard, sends it to
the server, and displays the reply received on the screen. The server echoes back whatever it
got from the client.

         Experiment 3 allows the study of incremental growth. The client sends a 16Kb message to the
server several times, and measures the time taken. The server keeps echoing back the message
received. The scenario involves two identical clients. First there is only one server, and
client completion time is measured. Next the situation is repeated with two identical servers.
Now the service time for the clients is less, due to load sharing by the two servers.

         Experiment 4 explores the idea of fault tolerance. The client used in experiment 3 is
modified to not quit on failure of a transaction. If the server fails to respond, the client
waits (sleeps for 10 seconds) and retries the transaction. This allows ample time for
simulating a server crash. The server machine is powered down and a new server started on a
another machine which starts providing service when the client retries the failed transaction.

         Experiment 5 allows the study of nature of local and remote computations. The idea is to
compare the cost (time taken) of local and remote computations for the same computing problem
(of exponential complexity). Programs are written to find (recursively) the nth Fibonacci
number locally (on the same machine) and as a remote computation (on a remote but faster CPU --
using client/server model). The client runs on a 486DX/33 and the server on a 486DX2/66 machine.
A graph between n and time taken to compute it is plotted. After some value of n, the remote
computations start giving better performance. This happens when computation time is higher
than communication overhead.  To see the cross over point from local to remote computations,
system clock resolution had to be enhanced by modifying the CLOCK_TASK in the kernel.

         Experiment 6 permits the study of access transparency. A client stub `rfib()' (for
recursive calculation of nth Fibonacci number) is written and placed in the system library. A
client/server application is written in which the client can call rfib(). The computation
scenario involves two cases. First, when the server runs on the same machine as the client.
Second, when the server runs on a separate machine. In either case, the client has no knowledge
of the server's location.

         Experiment 7 is useful in studying the concept of a stateless server. A stateless server
does not keep track of the state of transactions with the clients, and hence, makes recovery
from a crash much easier. The goal is to write a simple stateless file server/client
application. The server provides read and write services on files. The client program requests
four operations on files: ropen -- open a file on server for read or write operation, rclose --
close an already open file, rread -- read a specified number of bytes at the given offset from a
file already opened for reading, and rwrite  -- write a specified number of bytes at the given

P
age 1.343.5



1996 ASEE Annual Conference Proceedings

offset to an already opened file for writing. The client maintains all the information needed on
the state of its transactions with the server. If a server fails and comes back up, it does not
have to know what it was doing when it crashed.

         Experiment 8 allows one to explore the concept of a centralized name server (maps a service
to the server providing it). Such a server permits other servers to register their services with
it, and provides server identification to clients desiring a specific service. A name server to
keep track of the services of experiments 2 and 6 is written. Modifications are made to the
servers (of experiments 2 and 6) so that they register their services before accepting any
client requests. The clients on the other hand, are modified to ask the name server to identify
the specific server before transacting with it.

         Experiment 9 allows the study of workload distribution and parallel nature of
computations. Suppose that it is desired to find the sum of each row of a 10x10 matrix of
integers. The problem needs one client and ten identical servers. The client distributes the
rows to ten servers (one per row), waits for results to
come back and displays them on screen. Each server sums up the row received and sends the results
back.

Conclusion and Future Plans
         In the first offering of the course there were sixteen students in the class. They worked in
groups of twos, and completed all the experiments. A majority of the students found it a novel
experience. Over all, the students gained a better understanding of the design and
implementation issues in distributed OS as a
result of the work done in the laboratory.

        MINIX 1.5 networking kernel only provides a network OS environment. It is not suitable for a
complete exploration of the some distributed OS concepts.

þ Data transparency -- ability to access data (from a file) in a manner transparent to an
application. It can only be achieved if the system supports a remote file server.

þ Migration transparency -- ability of resources and processes to move around and still be
accessible to an application under the same name.

þ Concurrency transparency -- ability for a number of applications to share resources
automatically.

þ Parallelism transparency -- ability of activities associated with an application to happen in
parallel in a transparent manner.
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         To explore the above issues to some extent, a real distributed OS is needed in the
laboratory. We plan to use Amoeba 5.2. Amoeba  is a general-purpose operating system designed10

to take a collection of machines and make them act together as a single integrated system. It has
a `microkernel' based architecture. The kernel supports basic process, communication, and
object primitives. Everything else is built on top of this with user-space `server' processes.
Amoeba uses a novel idea of a pool of processors. The processors are dynamically allocated to
processes as needed. We plan to run all server processes on a dual processor Sparc-Station 20
and use the 486DXs as processors in the pool. Some of features of Amoeba that allow to enhance
the laboratory experiments are:

þ  Mutli-threaded processes.

þ File replication facility.

þ Group communication with complete ordering of messages.

þ Fast local internet protocol.

þ Parallel programming language Orca.

         As of now, we have Amoeba installed and running on a cluster of a Sparc-Station 20 and
486DX2/66s. The system is being tested and is expected to be used in the next offering of the
course.
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Appendix
         RPC allows a program to call procedures located on other machines. When a process on
machine A calls a procedure on machine B the calling process is blocked and invocation of the
procedure on B takes
place. Information can be transported from caller to callee in procedure parameters and can
come back as procedure results. No message passing or I/O is visible to the programmer. This
transparency is achieved via stub modules - special procedures that marshall and unmarshall the
parameters in a message and invoke kernel primitives for sending the message. These stubs are
placed in the library. On client side, a client stub and on the server side a server stub
(procedural interface that a client can call) is used. In a program, invocation of the server
stub looks like a local procedure call. In order for a client to do RPC with a server, it must
know the server's address. This is done by allowing a server to choose a unique port, used as the
address for the messages sent to it. Amoeba networking protocol is a stop and wait protocol that
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guarantees at most once delivery of a message. It has four kernel primitives which provide the
basic interface between two transacting processes. These are:

1. getreq(): used by a server process to get a request from a client. It indicates a server's
willingness to listen to a port.

2. putrep(): used by a server to send a reply to a client.

3. trans(): used by a client to do a transaction with a server. The client is blocked till the
reply comes back.

4. timeout(): sets the time limit at which a trans() gives up - relates to locating the sever
process.

         The typical structures for a server and client under Amoeba RPC are given below.

Server:
   Ignore signals.
   Repeat
      Have the server listen to a specific port.
      Wait for a request to come in for that port.
      If no errors occurred then

 Carry out the work.
 Send back the reply.

      Fi
   Forever

Client:
   Initialize the server port.
   send a message to the server listening at that port.
   If no errors occurred then

Transaction was successful.
   Else

Transaction failed.
   Fi
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