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Optimization Problems for all Levels 
 
 

Introduction 

Optimization is often considered to be an advanced, highly mathematical, and a somewhat 
obscure discipline not suited for undergraduates.  While it is true that many advanced 
optimization techniques exist, optimization problems can be developed that are suitable for 
undergraduates at all levels, from freshman through seniors.  Two of these problems will be 
described in this paper, two have been described elsewhere,1 and many others are available on 
the web.2  Sophisticated mathematical techniques are not involved; instead a pedagogy is 
described that requires students to identify the trends of the components of the objective function 
and to understand how trade-offs between these components lead to the existence of the 
optimum. 
 
The ability to solve “routine” optimization problems has been simplified by advances in 
computing power over the last generation.  Earlier editions of current design textbooks3 
presented a sequence of optimization techniques aimed at minimizing the number of cases that 
had to be considered to close in on the optimum.  Now, it is possible to perform optimization 
calculations involving numerous cases with a few clicks of a mouse, and an entire chemical 
process can be simulated and results exported to a spreadsheet in a matter of minutes. 
 
Some optimization examples are routinely discussed in undergraduate textbooks; however, the 
objective function does not usually involve economics.  These examples include optimum 
interstage compressor pressure4, optimum insulation thickness5, and identifying conditions for 
the optimum selectivity.6  Qualitative representations of the economic optimum pipe diameter7 
and reflux ratio8 are also available.  The optimum interstage compressor pressure minimizes the 
work done.  The optimum insulation thickness minimizes the heat transfer rate.  The optimum 
selectivity maximizes production of the desired product.  However, these are not necessarily 
economic optima.  The problems presented here all involve an economic objective function. 
 
Types of Problems 
 
Three levels of optimization problems are available, and they are summarized in Table 1.  Those 
highlighted in italics are discussed in this paper, and the others are available on the web.2  The 
numbers in parenthesis indicate the number of different versions available for each problem.  All 
of these have been used successfully in a freshman class designed to develop computing skills 
appropriate for an undergraduate chemical engineering student.  Most of these problems would 
also be suitable for assignments or projects in unit operations classes or as problem assignments 
for the portion of a design class where optimization is taught. 
 

Table 1:  Available Optimization Problems 
Single Variable Multi-variable Projects 

Pipe diameter (2) Absorber Generic chemical process (2)
Reactor/preheater (2) Batch reactor/preheater Geothermal energy (2) 
Reflux ratio Staged compressors Fuel production from biomass (4) P
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Problem 1:  Staged Compression 
_________________________________________________________________________ 

Problem Statement 
 
Background 
 
Compressors are used to increase the pressure of a gas.  Pumps are used to increase the pressure 
of a liquid.  In general, it is less expensive to pump a liquid than to compress a gas; therefore, in 
chemical plants, it is generally less expensive to change phase to a liquid or maintain the liquid 
phase before increasing the pressure.  However, there are times when compressors cannot be 
avoided.  For example, when using air as a source of oxygen in oxidation reactions, air must be 
compressed if the reaction requires high pressures. 
 
When a gas is compressed, its density increases, but the temperature rises, lowering the density 
of the gas somewhat.  You will learn later that the least expensive gas to compress is gas that is 
already compressed, a definite conundrum, because as gas pressure increases the gas density 
increases. 
 
One method to reduce compression cost is to “stage” the compressors.  This is illustrated in 
Figure 1.  If multiple, “staged” compressors are used with intercooling, the temperature increase 
can be reduced, which keeps the gas density high and lowers the compression cost.  The 
disadvantage is the extra equipment cost. 
 
 

 
 
 

Figure 1:  Single- and Multi-stage Compressor Systems 
 

 
There are many types of compressors.  One commonly used compressor is a centrifugal 
compressor.  An equipment limitation of a centrifugal compressor is that the pressure ratio 
cannot usually exceed five. 
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Project Details 
 
When designing a staged compression system, it is necessary to minimize the cost of the system. 
This cost is termed the Equivalent Annual Operating Cost (EAOC), and it is given as Equation 
(1).  This cost includes one-time purchase costs for the compressor(s) and heat exchanger(s), the 
continuous operating (utility) costs (UCi) for the cooling water used in the heat exchangers and 
for the electricity to run the compressors. The terms in [ ] show the units for the calculation. 
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The term (A/P,i,n) is the factor to convert the one-time purchase cost of equipment into an 
equivalent annuity. You should assume that the effective annual interest rate, i, is 7% p.a., and 
that the length of the project, n, is 10 years. The equation for (A/P,i,n) is: 
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Assignment 
 
You are to optimize a compression system by determining the optimum number of stages.  A 
stage consists of one compressor and one intercooler, with no cooler for a single-stage 
compressor or after the last compressor.  Therefore, for n stages of compression, there are n – 1 
coolers.  The feed to the first compressor is air at 25°C.  The goal is to compress 4000 kg/h air 
(Cp = 1.0 J/g K) from atmospheric pressure (assume to be 1 bar = 100 kPa) to 30 bar.  As a 
general rule, the compression ratios (Pout/Pin) for all staged compressor are equal.  Cooling water 
(Cp = 4.184 J/g K) is used in the heat exchangers to cool the air, and the cooling water enters at 
30°C and is returned at 40°C.  For the first optimization, assume that the compressed air exiting 
any intercooler is at 50°C, and determine the optimum number of compressor stages.  Then, 
continue the optimization to determine both the optimum number of compressor stages and the 
optimum air temperature exiting each intercooler (assume all are the same). 
 
The power required to run a compressor is 
 
 ( )inout TTmW −= ]kg/s[3600]W[ &&  (3) 
 
where m& is the mass flowrate of air, the temperatures are in Kelvin, and 
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The cost of electricity to run the compressors (UCelec[$/y]) can be calculated from the power in 
Equation 3 and the cost of electricity, which is 0.07/kWh.  A year is assumed to be 8000 h, 
which allows for about one month of plant shut down for maintenance. 
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The purchased cost of each compressor is given by: 
 
 ( ) 8.0W][9.15$[$] WPCcomp

&=  (5) 
 
The design equation for the heat exchanger is given by: 
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and  
 

F = 0.8 (assume that this is constant for all cases) 
 

U = overall heat transfer coefficient = 100 W/m2K 
 
The cost of the heat exchanger is based on its area, which can be calculated by solving for A in 
Equation 6.  The cost equation is 
 

 ( ) 57.02 ]m[000,12$[$] APChx =  (8) 
 
The cost of cooling water is given by: 
 
 ]kg/s[5.2]h/[$ cwcw mUC &=  (9) 
 
You should present your final results as three plots.  The first should show how each term in 
Equation 1 changes with the number of stages, and the second should show the optimization for 
a constant compressor stage inlet temperature of 50°C after the first compressor.  The third 
should show the two-variable optimization for number of compressor stages and compressor 
stage inlet temperature.  Your report should contain a physical explanation of the reason for the 
trends on these plots. 
 
 
Discussion of Problem 1 
 
In Problem 1, the optimum compressor configuration is to be determined.  There are two 
decision variables, the number of compressors and the temperature to which the stream is to be 
cooled between stages.  Since cooling water at 30°C is used as the heat sink, the temperature to 
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which the stream can be cooled is limited.  There is a trade-off, which is necessary to obtain an 
absolute maximum or minimum in the objective function (EAOC) as the number of compressors 
varies.  Figure 2 shows how the components of the objective function change with the number of 
stages.  As the number of compressors increases, the compressor cost stays roughly constant, 
since, while more compressors are needed, they are smaller.  The electricity cost decreases 
slightly, since it is always less expensive to compress a colder (more dense) stream.  With more 
interstage heat exchangers, the cooling water cost and the heat exchanger purchased cost both 
increase.  The optimization plot for an interstage temperature of 50°C is not shown here, but the 
optimum number of stages is either 3 or 4, because the EAOCs are almost identical.  Figure 3 
shows the bivariate optimization plot.  The lowest temperature shown is the optimum, based on 
the electricity cost, and four compressor stages is optimum.  Although it is not shown on this 
optimization plot, as the interstage temperature decreases below 34°C, the relative cost of the 
heat exchangers is small enough that the EAOC continues to decrease until the interstage 
temperature is below 30.5°C.  This is an artifact of keeping the log-mean temperature correction 
factor (F) constant, because, in reality, as the interstage temperature decreases, additional shell 
passes would be needed, which increase the cost of the heat exchangers.  By changing the heat 
exchanger cost or by including the effect of the close temperature approach, this optimum could 
be moved.  Hence, there are many variations possible for a single optimization problem.  
 
 

 
 

Figure 2:  Annual Cost of Components of EAOC for Multi-stage Compression 
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Figure 3:  Bivariate Optimization Plot for Compressor Optimization 
 
 

_________________________________________________________________________ 
 
Problem 2:  Chemical Process 
_________________________________________________________________________ 

Problem Statement 
 
Introduction 
 
All chemical and biochemical processes have a similar structure.  The goal is to create a more-
valuable product from a less-valuable raw material while maximizing the profit.  The generic 
process structure involves five steps:  1. reactor feed preparation, 2. reaction, 3. separator feed 
preparation, 4. separation, and 5. recycle.  In this project, you will analyze a generic process to 
determine the optimum process parameters. 
 
Background 
 
The generic process flow diagram is shown in Figure 4.  The raw material is A, but the feed 
stream contains 20 mole% inerts, I (non-reactive impurities), at a total flowrate of 100 kmol/h 
and 50°C.  The feed stream is mixed with recycled, unreacted A and then preheated to at least 

P
age 22.1127.7



 
 

 
 

Figure 4:  Generic Process Flow Diagram for Unit 200
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75°C but no more than 155°C before entering the reactor.  The heat source is low-pressure steam 
at 160°C that condenses at constant temperature.  In the reactor, the reaction that occurs is A→B, 
with a maximum possible conversion of 95%.  The reactor is adiabatic (meaning that no heat is 
added or removed), and it may be assumed that the temperature rise within the reactor is 50°C.  
The reactor effluent must be cooled to 50°C, in E-202, using cooling water (Cp = 4.184 kJ/kg°C) 
entering at 30°C and exiting at 40°C.  The separator is assumed to be ideal (There is no such 
thing in reality!), and pure product B leaves in Stream 7, while all A and I go to Stream 8.  Since 
not all of the valuable reactant, A, is reacted, it can be recycled rather than discarded (Stream 2).  
However, since there is some inert, i.e., a component that does not react, there must be a purge 
stream (Stream 9) to avoid an uncontrolled increase of I in the system.  It may be assumed that 
all process streams have the same properties:  ρ = 900 kg/m3 and Cp = 2.1 kJ/kg°C.  The 
molecular weights of A and B are 100 kg/kmol and the molecular weight of I is 50 kg/kmol.  The 
heat of vaporization of condensing steam is 2100 kJ/kg. 
 
An Excel file has been provided that does the material balance calculations for this process.  As 
you change the fractional conversion in the reactor and/or the fraction of Stream 8 that is 
recycled to Stream 2, the molar flowrates of each stream are updated.  You should use this 
spreadsheet as your starting point and add the additional calculations necessary to optimize the 
process. 
 
Economic Data 
 
As in previous projects, the objective function for your optimizations is the equivalent annual 
operating cost (EAOC) of purchasing and installing the equipment and operating the process.  
 
 ∑ ∑+= ]/[$]/1)[,,/[$](]$/y[ yOCyniPAPCEAOC ii  (10) 
 
where PCi is the cost of each piece of equipment, and OCi is each operating “cost,” which 
includes the revenue from selling B (a negative cost), the cost of purchasing A, the cost of steam, 
and the cost of cooling water. 
 
You should assume that the project lifetime is 12 years at an interest rate of 11%.  A year is 
assumed to be 8000 hours 
 
Capital Investment Costs and Method for Calculation 
 
The reaction rate for this reaction, -rA, is given in terms of the concentration of reactant A (CA) 
by 

 A Ar kC− =  (11) 
 
where 
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and T  is the average temperature in the reactor.  The design equation for the reactor is given by: 
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where V is the reactor volume (m3), vo is the volumetric flowrate of fluid into the reactor (m3/s), 
and XA is the fractional conversion.  The design equation for the heat exchangers is given by 
 
 ( ) lminoutipi TFAUTTCmQ Δ=−= ]m[K]W/m[K]J/kg[]kg/s[][W 22

,&  (14) 
 
for streams undergoing a temperature change, or for streams undergoing a phase change (either 
evaporating or condensing) 
 
 [ ] lmvapi TAUHmQ Δ=Δ= ]m[K]W/m[kJ/kg]kg/s[][W 22&  (15) 
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and  
F = 1.0 for E-201, F = 0.8 for E-202  

U = overall heat transfer coefficient = 1000 W/m2K 
c, h = cold and hot stream, respectively 

 
The cost of a heat exchanger is based on its area, which can be calculated by solving for A in 
either Equation 14 or 15.  The cost equation is 
 

 ( ) 57.02 ]m[000,12$[$] APChx =  (17) 
 
The cost of the reactor may be estimated by 
 

 ( ) 85.03 ]m[000,20$[$] VPCreactor =  (18) 
 
The cost of the separator may be estimated by 
 
 ( ) 65.0]kg/h[000,2[$] mPCtower &=  (19) 
 
Operating Costs 
 
The cost of cooling water is 
 
 51048.1]$/kg[ −×=cwUC  (20) 
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and the cost of steam is  
 
 00.13$]$/GJ[ =stmUC  (21) 
 
The raw material A (containing I) is valued at $0.50/kg (total stream flowrate), and the product B 
is valued at $0.70/kg (revenue, hence a negative cost). 
 
Stream 9 is a waste stream, and its fate must be considered.  At this time, we are unsure of how 
this stream will be handled.  If it can be burned for fuel, the fuel value is 
 
 6.0$]A of $/kg[ =burnUC  (22) 
 
based on the amount of A in the stream, since the inert will not burn.  This is a revenue (a 
negative cost).  If it has to be treated, the cost is  
 
 036.0$]$/kg[ =treatUC  (23) 
 
You should feel free to suggest additional process improvements that would enhance 
profitability. 
 
 
Discussion of Problem 2 
 
In this problem, there are three decision variables, the single-pass conversion, the recycle/purge 
split, and the reactor inlet temperature.  Therefore, it is difficult to illustrate the solution on a 
single plot.  Figure 5 is a plot of the effect of reactor inlet temperature on the EAOC for different 
recycle fractions (fraction of Stream 8 recycled).  The fractional, single-pass conversion is at a 
constant value of 0.93, which further investigation would demonstrate is the optimum.  
Illustration of this three-variable optimum would require either multiple plots or a three-
dimensional plot.  Figure 5 is illustrative, because the optimum is not an absolute maximum or 
minimum with temperature.  In this problem, since low-pressure steam at 160°C is the heating 
utility, 155°C was set as the maximum allowable reactor inlet temperature.  Of course, the 
problem could be changed to allow different steam levels. 
 
The trade offs are as follows.  The highest reactor temperature is best because the reactor cost is 
large and the highest allowable temperature minimizes the reactor cost.  If the single-pass 
conversion is too low at a fixed recycle/purge split, more reactant is needed to produce a fixed 
amount of product, or less product is produced for a fixed feed.  As the recycle/purge split 
increases, the load on the reactor preheater increases as does the reactor volume, due to the larger 
amount of material within the recycle loop.  As the recycle split decreases, more reactant is lost, 
so the cost increases.   
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Figure 5: Parametric Optimization of Reactor Inlet Temperature and Recycle Fraction 
 

 
_________________________________________________________________________ 
 
General Discussion 
 
The problems discussed here are among the more complex of the optimization problems 
available.  Univariate optimization problems like reflux ratio optimization and pipe diameter 
optimization are available on the web site,2 and a univariate optimization problem is discussed in 
more detail elsewhere.1  In these simpler problems, it is expected that students would be able to 
explain the trade off between number of stages and reflux ratio, or the trade-off between pump 
cost plus pumping utility cost and pipe cost. 
 
It is also observed that these problems have been simplified somewhat, since they are used 
mostly in a freshman class.  It would not be difficult to add complexity to these problems in 
higher level classes.  For example, the compressor problem could be made more complex by 
allowing refrigerated water as an option, and the chemical process problem could be made more 
complex by allowing different types of steam.  Our seniors are expected to be able to analyze an 
entire chemical process, taking results from a process simulator and performing a comprehensive 
economic analysis to that in Problem 2.  Problems like those illustrated here provide training so 
that students can perform the more advanced process economic analysis.  
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We believe that an important part of the pedagogy of optimization is for students to understand 
the trends of the components of the objective function and to understand how trade-offs between 
these components lead to the existence of the optimum.  That is why methods, such as using the 
Excel solver, are not emphasized, and making plots to investigate trends is emphasized.  Once 
the trends are understood, the Excel solver can be used to obtain a more exact value of the 
optimum. 
 
Assessment 
 
We have used these problems as part of a freshman class taken by students who know that they 
are interested in chemical engineering.  Other students take a college-wide programming class.  
In our class, students are taught computer skills applicable to chemical engineering, mostly using 
the advanced features of Excel in addition to some elementary programming techniques and 
algorithms.  All assignments are based on industrially relevant chemical engineering problems.  
Since these problems have been used successfully in a freshman class for several years, we 
believe they can be used anywhere in the curriculum.  Some of these problems also appear as 
end-of-chapter problems in our design textbook.9 

 
The successful use of these problems in the freshman class, where successful is defined as the 
students being able to obtain a valid solution, is the only assessment currently available.  When a 
“simple” optimization problem (usually single variable, perhaps some two-variable problems for 
students in our Honors College) is assigned, students are coached until they obtain a valid 
solution.  The level of coaching required differs, depending on the individual’s computing 
background and ability.  When a more complex, multivariate problem is subsequently assigned, 
there is less coaching needed on the optimization portion, but more coaching needed on the 
technical aspects of the problem, since the students are only freshmen.  Feedback suggests that 
the freshmen appreciate the chemical engineering applications compared to their peers in the 
programming class.  Design problems involving optimization are assigned throughout our 
curriculum.10  Optimization is taught again in a sophomore numerical methods class, and we 
believe that optimization is a skill that all of our graduates possess.  Since all students in 
chemical engineering do not take the freshman class in which these problems are assigned, and 
since the topic is taught again, assessment of the long-term impact of including these problems in 
the freshman class is difficult. 
 
Conclusion 
 
An array of optimization problems that are believed to be suitable for all levels of chemical 
engineering students are available.  These problems do not require advanced mathematical 
techniques; they can be solved using typical software used by students and practitioners, such as 
Excel.  These problems involve an economic objective function with component capital and 
operating cost terms.  An important part of the pedagogy of these problems is an understanding 
how the trends of the components terms in the objective function contribute to the trade-off 
involved in most optimization problems. 
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