
Pair Programming: More Learning and Less Anxiety
in a First Programming Course

Susan F. Freeman, Ph.D. *, Beverly K. Jaeger, Ph.D.*, Jennifer C. Broughamª

*Northeastern University, ªMonash University

Pair Programming is a recent development in education designed to enhance the student’s learning experience through
teamwork. Specifically, it involves the students undertaking and completing some aspect of their programming work as a
team of two. In engineering it is generally utilized for computer coding projects, such that partners work conjointly on the
same design, algorithm, code, or assignment. For this study, this approach was used in a first programming course entitled
“Engineering Problem Solving with Computation” by adapting the XP: eXtreme Programming method that is used in
industry. The objective of this course is to teach first-year engineering students logic and problem solving skills through
algorithmic programming. The programming language in the course of interest was C++. Pair programming was a
voluntary element of the course and the students, under certain conditions, could opt in or out of it. The primary objective
in offering this option was to reduce students' frustration when programming for the first time, as this often causes them to
abandon attempts to understand the nuances of programming logic and syntax, and thereby the intended educational value
of the course is lost. Pair-programming methodology requires that participants assume specified roles in a partnership. The
course is administered and this option is selected with this understanding. Through various assessment tools, it was found
that pair programming inspired confidence in the students, specifically in their ability to achieve the task at hand. Students
reported that they benefited from being exposed to their partner’s ideas and suggestions, and that they therefore broadened
their understanding of the assignments’ requirements. The students indicated that it was easier and quicker to complete
their work and there was an overwhelming belief expressed that it helped them identify errors more readily and consider
alternative approaches to problem solving. Objective analyses taking into consideration the students’ grades and
timesheets support, at a prima facie level, the students’ accounts of their experiences. From a pedagogical perspective, pair
programming offered better use of the university’s facilities, whereby fewer workstations were required, and the
instructors' time was better utilized, reducing the number of potential inquiries and improving the quality of inquiry to be
addressed. Foremost, the students themselves also reported a positive experience of being able to solve minor problems,
such as syntax errors, by the immediate presence of their partner, which enabled higher levels of learning to be achieved.
In addition to the qualitative and quantitative advantages of pair programming, this paper will discuss challenges and
difficulties that surfaced and will outline the projected future of this methodology for engineering education.

INTRODUCTION

A large percentage of engineering success is built on
teamwork. The benefits of collaboration are particularly
evident when developing computer code to solve
complex problems, provided that the programmers
possess a base level of engineering logic, computer
language literacy, and communication skills. With this
in mind, are there potential benefits to be derived from
teamwork for novice programmers? Is it possible and is
it easier to teach computer-based problem solving to
new engineers by having them work in pairs?

Recent literature supports the notion that student
programmers who participate in team learning and
practice pair programming tend to perform better on
coding projects and are more likely to succeed in early
code development than if they had worked alone
(Williams et al., 2001). Based on multiple reports from
research in this methodology, it was anticipated that an
adapted pair-programming experience, if properly
implemented and observed, would improve logical
thinking, code quality, and the confidence of working
partners in a first-year engineering programming
course. Other potential benefits in both professional and
academic settings are outlined below and evaluated in
this investigation.

BACKGROUND

Advantages of structured collaborative programming
are well established in the literature and in its
application in industry. This technique, known as the
eXtreme Programming (XP) method, (Beck, 2000) was
initiated for software development in a corporate
setting. XP promotes a systematic and shared approach
to generating computer code. With XP, programmers
follow a code development structure and take on
predefined responsibilities to generate code as a team.
Pair programming adapts the XP approach to attain
educational results and enhance the learning process
primarily through role assignment.

Some established benefits of XP and its adaptations,
such as pair programming, include an increase in
coding error detection, a reduction in final program
coding defects and a reported increase in collaborator
learning and satisfaction. Participants in pair
programming also note improved morale with enhanced
team-building and problem-solving skills (Williams &
Upchurch, 2001). Some corporate advocates of the
structured XP methodology are so convinced of the
advantages of structured and paired code development
that they have declared that all production code must be
written in partnerships (Wikki, 1999).

P
age 8.912.1

The Roles: Driver and Navigator

Pair programming is not merely an exercise in dividing
up required work on a coding project. For each
program, a member of the pair has a specifically
defined role of being either driver or navigator as set
forth by Williams and Kessler (2000). In the definition
of roles, students are expected to adhere to stipulated
operative guidelines: The driver has control of the
pencil, mouse, or keyboard and writes the code. The
navigator continuously and actively monitors the work
of the driver, watching for defects, thinking of
alternatives, consulting resources, and considering
strategic implications of the work. The team members
are not to break the assignment into parts and integrate
it later. Partners are expected to schedule time together
for the purpose of completing programming work.

Williams (2000) surveyed professional programmers on
this practice, finding that 100% agreed that they had
more confidence in their solutions when engaging in
pair programming than when programming alone and
96% agreed that they enjoy their job more when
programming in pairs. As reported by Beck (2000) and
Wikki (1999), many attribute their professional coding
success to the teamwork approach.

Pair programming has been applied and tested in the
university classrooms as well. Two upper level
programming courses at the University of Utah utilized
the collaborative approach in web and software
development courses. In both courses it was found that
paired students performed much more consistently and
produced higher quality work than they did
individually. Two compelling responses emerged from
student surveys as motivating factors. They were:
"between us we could figure most things out" (74%)
and "there was pair-pressure to not let my partner
down" (63%). An overwhelming 95% of students felt
that they were more confident in their assignments
because they pair programmed and in general felt they
were more productive in the collaborative setting. A
large majority of students agreed that they remained
more focused and enjoyed the assignments more
because of pair programming.

In the University of Utah work, pair learners passed
significantly more post development test cases than
those who performed and learned individually. The
Utah study reported that the total hours invested
working on programs was, in effect, the same across
each of the groups.

Similar research was done at North Carolina (NC) State
University to evaluate the efficacy of pair programming
in an introductory computer science course (Williams et
al., 2001). Of note was the higher success rate in the
course and significantly better performance on 2 out of
3 programming projects by pairs. They further reported
that there were no significant differences between the
paired and solo course sections on midterm and final
exam scores. This indicates that pair programming did
not detract from the students’ educational experience.

The NC State study also evaluated perceived course
and instructor effectiveness, finding that the students
who engaged in pair programming rated both the course
and the instructor as more effective. Surveys
administered to measure self confidence, motivation,
and attitudes toward course elements surprisingly
revealed no differences between groups exposed to
paired versus solo learning modes.
Novice undergraduate programmers at the University of
California Santa Cruz demonstrated better performance
on programming assignments when working in pairs.
Also, improved retention rates have been attributed to
team programming techniques (McDowell et al., 2002).
They found that an appreciably higher percentage of
students in the partnered class took the final exam as
compared with the solo students. Yet, they found no
significant difference between groups on exam scores.

Objective Outcomes
As noted, quantifiable outcomes that could arise from
pair programming which are potentially beneficial to
the team are: (1) earn better grades on programs and in
the course overall, with a possible carry-over effect to
quizzes and exams, depending upon their progra mming
content; (2) demonstrate more efficient completion time
for programs; (3) utilize fewer workstations, less
computing and possibly less printing resources; (4)
enhance the teacher/team and teacher/program ratios in
the instructional environment.

Subjective Effects
The benefits described above were anticipated in
addition to those more specific to first-year engineering
students, including that pair programming would: (1)
decrease anxieties of writing first program for novice
programmers, (2) minimize high frustration levels often
observed with novice programming activities, (3)
reduce non-approved collaboration behavior and
academic dishonesty temptations and issues, and (4)
provide a more supportive and less competitive
environment in terms of academic achievement.
Initial experimentation with pair learning has produced
benefits for instructors as well (Williams & Kessler,
2002). Students working in pairs are able to answer one
another's questions, since the faculty is no longer their
only source of technical guidance. The classroom tone
is calmer because students are more self-sufficient and,
as noted above, the teacher/team ratio is lower. Also,
the grading load is substantially reduced as pairs submit
one assignment.

Applied Effects

Teamwork is advocated and encouraged in many
engineering educational settings, which include project
work, tutoring, study groups and co-op assignments
(work in industry outside the school setting). Since
collaboration is encouraged in engineering industry
practices and programming projects in the corporate
sector, this approach compliments the students’ desire
to prepare for subsequent entrance into their careers.

P
age 8.912.2

METHODOLOGY
Participants

A total of 128 students enrolled in five sections of an
introductory engineering course, Engineering Problem
Solving with Computation, participated in the study.
This is a required course taken in the third quarter of
the first year engineering program at Northeastern
University. This module of the curriculum possesses a
dual emphasis on learning a programming language and
solving and analyzing real-world problems through the
formulation of computer code.

Procedures

The pair programming and solo options were described
to all students verbally and on a document that was
distributed early in the course. Part of an initial
homework assignment was to develop a list of concerns
and questions about teamwork versus solo alternatives.
Each of these issues was addressed across the course
sections to ensure that all students obtained the same
introductory information about the available options.

The first coding assignment was a programming tutorial
in which all students worked independently by design.
The second assignment required the students to engage
in pair programming roles to develop two basic
computer programs. The pairs were to trade driver/
navigator roles after the first program and keep time
logs on a table provided by the professors. After the
second programming assignment, students could opt to
work with a classmate of their preference under the
pair-programming guidelines or decide to remain solo.

A survey was administered after 3 assignments to
determine if any student requested a change of status or
partner, although participants were expected to work
within their selected options and keep time logs for a
total of 6 programming assignments. The students were
made aware of this option in the introductory sessions.
All students elected to retain their pair or solo status;
some indicated a willingness to change partners, but
there were no formal requests for new partners at the
midpoint. Consequentially, no shifts were made other
than two students who discontinued in the course. Their
data is not included in this study.

Students worked on weekly assignments, either solo or
in their teams. At least one class period of 3 hours per
week was allocated for students to work on their
assignments. Student teams were requested to arrange
weekly meeting times prior to leaving the computer lab
and to honor them outside of class. Primary
requirements for the two options were: (1) to adhere to
driver and navigator roles as pairs or refrain from
unauthorized collaboration as solos, and (2) keep
accurate records of time invested in each portion of the
assignment. Pairs also confidentially reported the
perceived contribution by their partner to each
assignment. At the instructor’s discretion, a student’s
participation in pair programming was contingent upon

acceptable progress, contribution and performance in
the course.

All students took the weekly quizzes and the final exam
individually. Only the assigned homework programs
were completed under the elective status conditions of
paired or solo. All students completed time logs, which
reflected the time spent on each programming project in
and out of class. Teams responded to questionnaires
and surveys about their exp eriences.
Data Collected

Periodic qualitative and quantitative assessment tools
were used to evaluate the students' progress and
satisfaction, as well as the program’s effectiveness.
Four types of data were collected during the course of
this investigation: (1) average grade values, (2) time
and contribution records, (3) results from preference
and opinion surveys, and (4) responses from open-
ended questionnaires.

Pairs versus solos were compared on the objective
metrics. Comparisons were also made using cohort data
from previous classes taught by one of the author
instructors on the extent of topics covered and grades
achieved. Faculty and student commentary from
traditional sections (all solo) were also reviewed.

RESULTS & DISCUSSION
The division of students across the learning modes is
presented in Table 1. The numbers translate to a 41%
reduction in computer workstation requirements and
concomitant computer processing resources. This also
resulted in an appreciable reduction in the number of
inquiries made to the instructor and projects to grade.

Table 1. Paired vs. Solo Selections Across All Sections

Total # of
Students

Total

Pairs

Total

Solos

Required #
of Work-
stations

% Reduction
in Resources

128 53 22 75 41%

Material Covered - Learned Topics

The instructors conducting this course are members of a
cohesive teaching team so as to ensure that the students
across all sections of the course are exposed to the same
foundation of subject matter. Each concurrent section
covered material comparable to previous years and
comparable to one another in extent and detail. As such,
all predetermined topics were presented and a common
final exam was administered across all sections.
Grades

Table 2 show students’ average grades for homework,
weekly quizzes, the final exam and the overall course
average. In each grade category, a t-test was performed
to compare the pairs and solos for the current course
sections. The t-test results show that each group’s
performance on the quizzes, final exam and overall
course grade were not significantly different.

P
age 8.912.3

Table 2. Grade Comparisons Across Groups

GROUP
AVERAGES
 (out of 100)

Home-
work
Average

Weekly
Quiz
Average

Final
Exam
Average

Overall
Course
Average

Average Pairs 91.26 79.58 79.34 85.05
Average Solo 79.68 80.22 78.11 80.27
Average
Previous Year 85.60 80.37 82.14 84.18

t-test:
Pair vs. Solo .056 .89 .80 .29

The mean achievement for pair programmers on coding
homework is visibly better than that of the solo
programming group, and the difference is nearly
significant at p=.056. These outcomes are similar to the
results of McDowell et al. (2002) and Williams et al.
(2001), who did not find significant differences in work
quality between pairs and solos.

The instructors note that the majority of solo
programmers were more experienced in programming,
and/or comprised a small percentage who were not
motivated and therefore not desirable project partners.
That may explain why the solo quiz average is slightly
higher, but their homework averages are lower. Such
students tended to be apathetic about homework, yet
were sufficiently knowledgeable to achieve well on the
quizzes. The first year student's course load is quite
heavy, so they often make a decision not to do
homework that they perceive as tedious. Comparing
last year’s averages to the current year in the four grade
categories, the values lie between the pair and solo
averages except for performance on the final exam.
Variations in the exam itself could account for the
differences on this metric.

Grades are only one indication of what the students
have learned. The goal was for the students to learn at
least as much as they would have learned without pair
programming, but with the added bonus of less
frustration for all involved. As discussed previously, the
amount learned in the course was at least equivalent to
that learned by the cohort sections. The higher level of
performance on homework indicates that the students
are practicing programming more, and giving up less.
Instructors have reported in previous years that the
students would encounter difficult areas and abandon
projects out of frustration, whereas, as noted in sections
of this paper and in other studies as referred to above,
under the pair-programming paradigm, the paired
students did not want to let their partner down and
therefore completed their work. Further, because of the
teamwork, pairs were able to get past roadblocks more
easily that would normally require assistance from
teaching staff, using their own combined knowledge as
tools. This increased success resulted in more
homework being completed, more being turned in, in
better form, and consequentially earning higher scores.

Time Invested
All students, regardless of status, were required to
maintain and submit time logs. Participants recorded
the date, location, hours worked, student's name(s) and
on which component of the assignment they worked.
Table 3 shows that there is no strong pattern for the
difference in time spent on the assignment between solo
and pair programmers, with no significant time
diffe rences found between the learning modes at the
p<.05 level of significance.

Table 3. Average Time Spent on a Programming Project

Section
Number

Average*
for class

Average*
for pairs

Average*
for solo

 1‡ 6.2 6.3 6.1

 2‡ 4.2 3.7 5.0

3 4.4 4.4 N/A

 4‡ 4.4 4.2 5.1

 5‡ 4.2 4.3 4.1

*All values were in hours, recorded to nearest 15-minute increment
‡ No significant differences were found, a=0.05

In one class, solo programmers took longer, and in
another, the pair programmers took longer. The
diffe rences are small, indicating that pair programming
does not result in an overall reduced time investment by
the team members. As evidenced by their feedback
below, the majority of students perceive that pair
programming is procedurally more efficient, but there
is no quantitative evidence to support this notion. There
are two confounding factors to consider here: (1) since
the solos tended to reportedly excel at programming
logic and/or had significant prior coding experience and
preferred to work alone, the time invested may be an
artifact of the elective solo status, and (2) it may be that
each member of a pair, if working solo, may have
individually taken longer, but this cannot be measured.

It is important to note that pair programming did not
result in an overall increased time investment by the
team members. Initial concerns of the students that
discussion by the pair members will add undue
additional time to their workload can be countered by
this data. Reduction and detection of errors and
concurrent research facilitated by the navigator helps in
this respect. To this extent, as with the students’ grades,
we can say that pair programming does not detract from
the students’ educational experience on a time basis,
and therefore its other benefits can still be enjoyed.

Given that more homework was submitted under pair
programming, it is likely that it was completed earlier
and with a decreased need for instructor intervention.
Since fewer students needed to wait to have questions
answered outside of class, they could proceed and
finish sooner on a more efficient basis rather than
utilizing the same time period spread across several

P
age 8.912.4

days while waiting to obtain answers from faculty. This
advantage is not measured in this study, but has been
reported anecdotally by the students and may also
explain the difference between the actual time and
efficiency perception of the students.

Partner Contribution

On a number of assignments, pair programmers were
asked to confidentially report the percentage of work
each partner had contributed. Each team member was
asked to respond separately and independently. This
was done to assess whether the structured roles and
rules of pair programming were being followed and to
address any imbalances or scheduling problems with
partnered teams. All of these responses were combined
and tallied and are presented in Figure 1.

Over all of the contribution responses, 91% reported
that the workload was distributed evenly (50/50 +.05).
A small percent (7%) felt that the distribution of the
workload was closer to 60/40. There were a few 100/0
occurrences (<1%). In these rare instances, the team
and its status were re-evaluated by the instructor to
resolve the imbalance. In general, students were sharing
the workload evenly, thereby achieving one of the goals
identified and sought at the outset, and confirming a
proposed benefit of pair programming.

Student Surveys

Students who voluntarily engaged in pair programming
responded to a series of survey questions. From content
analysis of responses to the open inquiry, "What did
you like about pair programming?", distinct categories
emerged. As seen in Figure 2, the majority of remarks
revolved around three clusters of response types:
effective learning, teamwork, and time efficiency.

The categories seen in Figure 2 emphasize some of the
important benefits of pair programming, which the
participants identified without instructor prompting. In
the first cluster, 47% stated that they felt this was a
more effective method of learning for them; while
almost as many, 43%, enjoyed the teamwork and
collaborative dynamics of pair programming. Over 20%
believed that they were more efficient due to the team
approach. A large number used the word "enjoyed" in
connection with their feelings for a programming class
which, in one instructor’s experience, has never
happened before. Since students could make numerous
comments spanning multiple categories, the total is
over 100%.

At the end of the course, several sections of students
were given the list of comments shown in Table 4 and
could check off as many of them as they felt applied.
Admittedly, it was easy to check them all off, but
students were given time to consider each one. The
results show resoundingly that the participants felt very
positively about pair programming.

Over 90% felt that they had done better quality work,
were more confident about their work, and would
recommend that it be continued. Nearly 90% praised
the efficiency element and felt that they had learned
more. Combined with the other comments that were
reviewed, and the large volume of written material
where the students praised the method, this chart
reinforces the inference that students had a highly
positive experience using pair progra mming.

REPORTED PERCENTAGES of CONTRIBUTION
TO WORK for ALL ASSIGNMENTS

0%

20%

40%

60%

80%

100%

45 to
55%

55 to
65%

65 to
75%

75 to
85%

85 to
95%

100%

Percent Contribution

P
er

ce
n

t o
f S

tu
d

en
ts

REPORTED PERCENTAGES of CONTRIBUTION
TO WORK for ALL ASSIGNMENTS

0%

20%

40%

60%

80%

100%

45 to
55%

55 to
65%

65 to
75%

75 to
85%

85 to
95%

100%

Percent Contribution

P
er

ce
n

t o
f S

tu
d

en
ts

Figure 1. Reported percentage of contribution to work.

RESPONSES by CATEGORY to
"WHAT DID YOU LIKE ABOUT

PAIR PROGRAMMING?"

0%
5%

10%
15%

20%
25%

30%
35%
40%
45%
50%

Effective
learning

Teamwork Time
efficient

P
er

ce
n

t
o

f
R

es
p

o
n

se
s

RESPONSES by CATEGORY to
"WHAT DID YOU LIKE ABOUT

PAIR PROGRAMMING?"

0%
5%

10%
15%
20%
25%
30%

35%
40%
45%
50%

Effective
learning

Teamwork Time
efficient

P
er

ce
nt

 o
f

R
es

po
ns

es

Figure 2. Response clusters to open inquiry, "What did
you like about pair programming?" at course conclusion.

P
age 8.912.5

Table 4: Checklist Survey Responses

 Response Selections for
 Pair-Programming Students

Percent

Our programs were of better quality
because we pair programmed.

93.88%

I was more confident in our assignments
because we pair programmed.

91.87%

I would recommend pair programming be
continued in future classes.

91.84%

We were more productive or efficient
because of pair programming.

89.80%

I learned more from explaining my work to
my partner.

85.71%

I learned more because my partner
explained their work to me.

85.71%

I enjoyed doing the assignments more
because of pair programming.

75.51%

Use of Resources: Anecdotal Information

The calculated 41% decrease in computer demand was
accomp anied by an equivalent reduction in the number
of programs that an instructor was required to oversee.
Fewer questions were posed to the instructors, who
also reported that the nature of the inquiries was more
advanced and of higher quality than those encountered
in previous solo courses. Further, the individuals who
elected to work independently enjoyed the benefit of
the professors' enhanced availability, which improved
their learning potential as well.

Many of the open responses to what students liked
about pair programming were so similar as to be
considered identical and were collected for Figure 3.
All of the positive comments could not be recorded
here, but this chart shows that the majority of the
feedback was very encouraging, when considering the
effect on their learning, their time, and the quality of
the experience.

There was a large volume of written material from the
student surveys and in memorandums written about
the course to their instructors. A sampling of these
quotes summarizes the positive feedback and general
attitude of the majority of the students:

• When we work in pairs, there are two points of view
which can provide richness and solve problems easily.

• Without the roles that we were working in, finishing
this assignment would have been much more difficult.
Instead of working with one person’s ideas, we used
two sets of ideas, and pooled them together in order to
produce an answer to the assignment.

• It helps your communication between fellow students,
and improves your ability to work with others.

• Not only are the assignments less stressful and more
time efficient, but also it is a better way to learn
material because the [partner] acts as another
resource

• The pair program seems to be a success because it is
easier to collaborate between two people instead of
just asking for help on our work from one another.

• Through pooled efforts we taught each other sections
of the material that may have been unclear to us.

• We were less frustrated than working alone. Many
times when one person has been working on
something, he cannot tell what he did wrong. As soon
as another person steps in, he may see what is wrong.

• The pair programming is a great way to learn
teamwork and get to know the other students.

Class Demeanor: Anecdotal Information

The instructors, experienced in teaching programming,
noted that the tone of the lab environment was
distinctly more collegial and less stressful than in past
courses. Students conveyed a higher perceived level of
satisfaction in the course and with the projects under
the elective pairing paradigm. As evidenced by the
homework averages, students reportedly gave up less
and were more likely to submit more complete
projects than when working alone. Not surprisingly,
there were no instances of confirmed or suspected
academic dishonesty. All of these outcomes were
personally and professionally rewarding for the
instructors.

Figure 3. Open responses from students advocating pair
programming methods.

 OPEN RESPONSES to "WHAT DID YOU LIKE
ABOUT PAIR PROGRAMMING?"

0% 20% 40% 60%

Share experience

2 minds solving 1 problem

Help partner with own knowledge

Use strengths for common good

More ideas, more creativity

Easier to find errors

Help on weaknesses

Discussion good

Time efficient

Easier to do assignment

Smaller workload

Learn more

More likely to get correct answer

Percent of Students

 OPEN RESPONSES to "WHAT DID YOU LIKE
ABOUT PAIR PROGRAMMING?"

0% 20% 40% 60%

Share experience

2 minds solving 1 problem

Help partner with own knowledge

Use strengths for common good

More ideas, more creativity

Easier to find errors

Help on weaknesses

Discussion good

Time efficient

Easier to do assignment

Smaller workload

Learn more

More likely to get correct answer

Percent of Students

P
age 8.912.6

Concerns and Challenges

Implementing a collaborative learning methodology as
described in this work does not occur in the absence of
obstacles and drawbacks. Some of the concerns that
were expressed by the students in their initial inquiries
and recognized by the instructors at the outset were
unavoidable. Those issues that were not entirely
resolvable are listed in Figure 4 along with further
recommendations from the paired participants.

In addition to asking the students what they liked
about pair programming, they were also asked, “What
would you change about the pair-programming
system?” Over 75% of the paired students answered
"nothing" or made no comment and such responses
were combined into one joint category in the data
results. These responses were combined for 2 reasons:
first, as these students were asked for a large volume
of feedback and they generally provided such details
when a problem was perceived, 'no response' was
taken as indicating no problem existed, and second, as
first year students, this category of students are
generally inclined to respond if and when there is a
problem and no additional response is volunteered.
Accordingly, in most if not all cases, “no comment”
does equate with the reply of “nothing".

A variety of recommendations were proposed by the
participants. There were concerns with partners having
scheduling difficulties and finding a mutual time to
meet. Some responses revolved around role problems
with their partners and the requirements of the driver
and navigator. Other suggestions concerned the
division of tasks; it was generally agreed that
collaboration should be reserved for the programming
component of the projects and that it should not be
compulsory to work jointly on the remainder of the
work elements, such as letters and summaries. Even
with these comments, the majority of students did not
identify any serious issues with programming in pairs.

As noted, a few comments reveal that some partners
were experiencing scheduling difficulties given their
busy schedules:

• It’s easier with my schedule to do things when I can –
meeting times have been hard to do and I feel like I
could finish the programs faster on my own.

• I couldn’t find a lot of time to meet with my partner
because I am commuting.

• We had difficulties in trying to arrange a time to meet
and a place to work.

• On the other hand arranging a time for working as a
pair is not easy since everybody has his own schedule.
Also there can be problems about meeting on time…

From the instructor's perspective it is impossible to
monitor pair behavior, “role-keeping”, and scheduling
outside of class, regardless of how well defined the
responsibilities may be. Likewise, some of the
assignments were less cohesive when students divided
up administrative tasks, resulting in a more fragmented
distribution of labor. This was partially managed by
dedicating class time and scheduling supervised lab
sessions during the students' free time and by
reviewing time logs and peer evaluations.

Most pairs were able to overcome the scheduling
challenge, but some decided to divert from the
directive that they must always work together in
defined roles. The following comments regarding
problems and areas of change in pair programming
illustrate this other area of concern:

• Maybe have the roles divided a little more clearly.
• I would not make it mandatory for the pair to work

together on every task.

• To attempt to evenly divide the workload, we each
chose the assignments that we were more comfortable
with. This made it easier to finish the assignment, and
it was accomplished in a more timely manner..

• Navigator interfering by asking too many questions
about your logic.

The comments indicated that at times the pairs split
the work into tasks, which they then did separately. As
a result, some of the assignments were not as cohesive
when students divided up the administrative tasks.

Figure 4. Recommendations from students for mod-
ifications to pair programming implementation.

RESPONSES to "WHAT WOULD YOU CHANGE
ABOUT PAIR PROGRAMMING?"

0%

10%

20%

30%

40%

50%

No
th

in
g

No
 C

om
m

en
t

Ac
co

m
m

od
at

e d
iff

 sc
he

du
les

Al
lo

w
m

or
e

cla
ss

 ti
m

e

Co
lla

bo
ra

te
 m

or
e

lo
os

el
y

Tr
y

ro
ta

tin
g

pa
rtn

er
s

De
fin

e
ro

le
s

m
or

e
cl

ea
rly

Av
oi

d
eg

o
cla

sh
es

G
ive

 le
ss

 h
om

ew
or

k

Pe
rm

it
di

vi
si

on
 o

f w
or

k

Co
lla

bo
ra

te
 o

nl
y

on
 p

ro
gr

am
m

in
g

P
er

ce
n

t
o

f
S

tu
d

en
ts

 R
es

p
o

n
d

in
g

RESPONSES to "WHAT WOULD YOU CHANGE
ABOUT PAIR PROGRAMMING?"

0%

10%

20%

30%

40%

50%

No
th

in
g

No
 C

om
m

en
t

Ac
co

m
m

od
at

e d
iff

 sc
he

du
les

Al
lo

w
m

or
e

cla
ss

 ti
m

e

Co
lla

bo
ra

te
 m

or
e

lo
os

el
y

Tr
y

ro
ta

tin
g

pa
rtn

er
s

De
fin

e
ro

le
s

m
or

e
cl

ea
rly

Av
oi

d
eg

o
cla

sh
es

G
ive

 le
ss

 h
om

ew
or

k

Pe
rm

it
di

vi
si

on
 o

f w
or

k

Co
lla

bo
ra

te
 o

nl
y

on
 p

ro
gr

am
m

in
g

P
er

ce
n

t
o

f
S

tu
d

en
ts

 R
es

p
o

n
d

in
g

P
age 8.912.7

Several pairs mentioned that writing memorandums
and letters together was difficult and would like to
relax that constraint. A few of the statements noted
conflicts and difficulties merging ideas into one
program. Sometimes the concern was dividing the
work, and finding a switching point. A few students
reported that they were not always clear on the roles of
driver and navigator, and it seems some may not have
switched roles as often as directed. It is important to
note that the comments identifying problems were rare
in comparison to the number of positive responses
received throughout the study. These comments also
remind the instructor of the importance of initially
defining the roles and then regularly reinforcing those
roles to the students to ensure compliance.

Another area of concern is how to accurately and
objectively evaluate a student's competency and
progress with the course content. As described, weekly
quizzes and the final course exam were administered
independently and had significant contribution to each
student's final course average, along with daily
assignments and attendance. Weekly programming
projects accounted for 35% of the student's course
grade. It was decided that any large discrepancies in
individual grades or attendance problems would be
addressed immediately by the professor and could
jeopardize a student's status in the program.

Recommendations

Upon reflection on the feedback from the students and
the instructors’ experiences, we recommend providing
the students with a detailed document to read about the
course, noting its benefits and how the course is to be
conducted, to reduce some of the concerns with
students adhering to the specified roles in pair
programming. The document should include specific
guidelines with explanatory samples of the documents
to be completed by the students, and include testimony
and commentary from past participants. The written
information should be followed by a session allowing
students to ask questions. These procedures can be
complimented with reminders throughout the course
regarding the importance of time logs, and how and
when to divide work and swap roles.

It would also be helpful to provide more time in class
under supervision to have students engage in pair-
programming activities. Open lab sessions in which
the instructor was available to help were piloted and
were well utilized by the students, and appeared to
increase the percentage of time they worked
effectively as pairs. This could be implemented more
rigorously in future endeavors, with regular reminders
to the students of its availability.

To better understand whether there are time benefits
from pair programming, a counterbalanced course
could be taught where each student is required to do
both solo and paired work, so a time comparison can
be made on the specific students themselves, rather

than across different groups with their own different
internal skill levels. The students may be reluctant to
do unpaired work, but this would provide better data
for evaluating the time effectiveness of pair
programming.

Further research efforts to support and expand the
implementation of pair programming should include a
longitudinal study to evaluate the long-term
effectiveness of the method in subsequent academic or
professional application. This should be accompanied
by continued assessment of the existing methods,
implementation of necessary adaptations, and review
of the utility of any modifications.

CONCLUSIONS

The objectives of pair programming are to benefit the
students by enhancing the quality and quantity of their
learning and also allow the Engineering instructors to
be more effective in their educational roles.

Benefits for Students

One of the principal objectives in developing the
course to incorporate pair programming was that it
was hoped that it would provide “improved success on
programs and better performance on tests, [and]
decreased frustration”. Whilst there are method
problems in specifically evaluating the grades of the
students, it is fair to say that the paired teams certainly
performed as well as the solo programmers and, in
some instances, the partnered students were able to be
more successful because of their work done in pairs. It
gave them the opportunity and capacity to achieve
under more supportive circumstances.

The remarks from the students themselves provide us
with a better view as to how pair programming was
working for them. There were frequent comments that
the students felt that it was less stressful for them and
they agreed that there was decreased frustration.
Further, participants noted that it helped them to learn
more by being able to identify the errors more readily
and being able to solve the problems with the
assistance of a partner. They enjoyed being exposed to
an alternative perspective in problem solving and often
expressed a viewpoint that the course was enjoyable
and successful for them.

The prime value of the option to pair program lies in
its ability to help the students focus on the engineering
objectives of the course and not be burdened and
effectively overwhelmed by minor typographical and
syntax issues. In this sense, the role of the navigator
was particularly valuable. It was this aspect that
helped the students minimize their error rate and
provided them with the opportunity to view the work
being completed from a different perspective whilst
still being involved with the project. The ability to
stand back and “see the forest” without having to deal
directly with each individual “tree” seemed to be a
positive and constructive educational experience not
consistently experienced by solo novice programmers.

P
age 8.912.8

Benefits to the Engineering Department

The goals of this project also included improving
conditions for the faculty, so that they can be better
utilized in the lab and improving the teacher/program
ratio. Accordingly, it is possible to have increased
class sizes without detrimentally affecting the students'
learning. A direct economic benefit from pair
programming is the reduced number of computer
stations and licenses that would be required for the
course. These numbers also have an immediate effect
on the faculty, in that it would be unlikely that all of
the paired students would seek individual help on a
constant basis; it would be more likely that they would
consult the faculty on assignment issues in pairs,
therefore the number of inquiries and assistance
sought from the faculty would be and was reduced
substantially.

In addition to the resource reduction, the students in
their own commentary noted that they had to seek the
assistance of the instructors less because of the
combined knowledge of the team. Therefore, the
larger information base provided by each pair reduced
the number of problems that remained unresolved.
Likewise, their increased capacity to detect errors
resulted in fewer issues created by minor syntax,
typographical, or grammatical mistakes. All of these
factors combined meant that the faculty were left with
more time to address issues of substance and properly
address them without the pressure of leaving other
students stranded waiting for their attention. In this
sense, it provided a potentially higher quality
academic experience for all students, paired or solo.

With pair programming, leveraging the power of two
minds in this role-driven team approach can make
computer coding more accessible to those with
minimal or no background in this field. In the
educational realm, it also has the potential to enhance
the collaborative work experience for all levels of
programming aptitude, contributing to program quality
and programmer confidence.

REFERENCES

Beck, K. (2000). Extreme Programming Explained:
Embrace Change. Reading, MA: Addison-Wesley.

Bennis, W., Biederman, P. (1998). Organizing Genius: The
Secrets of Creative Collaboration. Cambridge, MA:
Perseus Publishing.

Nawrocki, J. & Wojciechowski, A. (2001). Technical Paper,
KBN Grant 8T11AO1618.

McDowell, C., Werner, L. Bullock, H., & Fernald, J. (2002).
The Effects of Pair Programming on Performance in an
Introductory Programming Course. Proceedings of the
Conference of the Special Interest Group of Computer
Science Educators (SIGCSE).

Nosek, J.T. (1998). The Case for Collaborative
Programming. Communications of the ACM, 41:3, 105-
108.0

Wikki, (1999). Pair Programming. Portland Pattern
Repository, June.
http://c2.com/cgi/wiki/ProgrammingInPairs.

Williams, L.A. (2000). The Collaborative Software Process.
Ph.D. Dissertation. University of Utah, Salt Lake City.

Williams, L.A., Kessler, R.R., & Cunningham, W, &
Jeffries, R. (2000). Strengthening the Case for Pair
Programming. IEEE Software 17:4, 19-25.

Williams, L.A. & Kessler, R.R. (2001). The Effects of "Pair-
Pressure" and "Pair-Learning" on Software Engineering
Education. Conference on Software Engineering
Education and Training 2000.

Williams, L.A. & Kessler, R.R. (2000) Experimenting with
Industry's "Pair-Programming" model in the computer
science classroom. Journal of Computer Science
Education, December.

Williams, L.A. & Upchurch, R.L. (2001). In Support of
Student Pair Programming. 2001 SIGCSE Conference on
Computer Science Education, Charlotte, NC, February
2001.

Williams, L.A, Wiebe, E. Yang, K., Ferzli, Miller, C.
(2001). In support of Pair Programming in the
Introductory Computer Science Course. Computer
Science Education, September, 2002.

Williams, L. Pair Programming Questionnaire, 1999.
Available at http:\\www.pairprogramming.com.

http://www.cs.put.pl/awojciechowski/research/pair_program
ming/ Reviewed January 2003.

P
age 8.912.9

