Partnering Across Cultures:
Bridging the Divide between Universities and Minority High Schools

Marion Usselman1, Donna Llewellyn2, Dara O’Neil3, Gordon Kingsley3,

1Center for Education Integrating Science, Math, and Computing (CEISMC)
2Center for the Enhancement of Teaching and Learning (CETL)
3School of Public Policy
Georgia Institute of Technology

Abstract
The historical mission of most engineering-dominated Research-1 universities is to create new knowledge and to train students in technological fields. In the absence of a College of Education, and given an institutional culture prioritizing scholarly research, institutions such as Georgia Tech often do not have a long history of systemic faculty involvement in the K-12 educational community. However the current national focus, initiated by public funding agencies such as the National Science Foundation, encourages academic scientists and engineers to shoulder some of the responsibilities for the quality of science, technology, engineering and mathematics (STEM) education at the K-12 level, and to do this by developing university-K-12 “partnerships.” Unfortunately, given the vast cultural differences that exist between universities and K-12 schools, these partnerships too often flounder, never managing to bridge the divide to the point of mutual trust, mutual respect, and mutual benefit.

We are currently in the third year of an NSF-funded GK-12 project, the Student and Teacher Enhancement Partnership (STEP)*, and are preparing to embark on a five-year extension. A major part of this project has been the building, nurturing, and grooming of partnerships between Georgia Tech and local minority high schools. As part of this project we have developed a model of partnerships that is grounded in the public policy literature and that describes the evolution of the partnerships created between Georgia Tech and four minority-dominated high schools as part of STEP. In this paper we will describe the theoretical framework of the partnership model, outline ways to assess partnership outcomes, and apply this model to the STEP program case study.

Theoretical Framework of a Partnership Model
As part of a separate NSF-sponsored research project, we are examining how partnerships influence STEM educational outcomes in NSF’s Systemic Initiatives Program and Math and Science Partnerships Program.† We do so by exploring how the emergence, operation, and in some cases, dissolution of partnerships influence the process by which STEM educational

* NSF Award Number 0086420
† NSF Award Number 0231904. We are in our second year of this three-year project. For more details on this research, “Alternative Approaches to Evaluating STEM Education Partnerships: A Review of Evaluation Methods and Application of an Interorganizational Model,” please visit the project website at http://www.prism.gatech.edu/~gk18/STEM
outcomes are pursued and achieved. For the purposes of this research, we define partnerships as voluntary arrangements between organizations, anchored by agreements, to promote the exchange, sharing, or co-development of products or programs designed to stimulate STEM education. Partnerships are a particular form of interorganizational collaboration. However, they are distinctive in that participants are not merely bound by mutual interests. They have also developed agreed goals and responsibilities for achieving these goals. Such agreements are usually articulated in formal contracts, memoranda of understanding, or statements of work. However, we do not exclude the informal “hand-shake” variety of agreement in our definition. We also note that the term organization is applied loosely to include the organized interests of parents and other interest groups.

In the multi-disciplinary field of public policy research, partnerships have been studied from multiple perspectives including organizational theory and interorganizational relations. Interorganizational studies are the umbrella from which studies of organizational networks, partnerships and alliances have emerged. In other policy contexts interorganizational conceptual foundations have been used to study the relationships among firms, not-for-profits, public agencies, and in public-private partnerships. Researchers from myriad disciplines have contributed to the conceptual foundations of interorganizational studies including scholars from business, sociology, economics, public administration, and anthropology. These studies have been pursued using a wide-variety of research methods including cluster analysis, graph and network analysis, qualitative case studies and social mapping techniques, and various statistical regression techniques. Consequently, interorganizational concepts cover a wide range of partnering behavior and provide an analytic language that is sufficiently developed and useful to span the multi-disciplinary world of STEM education.

While many STEM education programs may seek to link partnership efforts to positive outcome variables such as increased student achievement, researchers and evaluators from several fields have noted that studies of interorganizational relations (such as partnerships) rarely address outcomes. It is far more common for partnership studies to try and explain the reasons for the formation and structure of relationship rather than subsequent actions and value-added to the individual partners. Alternatively, studies will posit that partnership is a positive factor and then provide evidence to support the premise.

Another issue is that partnerships are often treated as rational, strategic acts which organizations form to control or influence their working environment. From this perspective organizations enter into the partnership as a means of gaining information, control over their strategic environment, or to secure vital resource flows. However, this is an under-socialized, overly rational point of view that does not account for existing relationships in which an organization is embedded. Partnerships also emerge because organizations have a long-standing working relationship and one is persuaded by another to participate. Organizational institutionalists argue that rationales for participation in a partnership may be strategic, but they may also be coercive, mimetic, or persuasive as well.

* This definition draws from Gulati and Gargiulo’s (1999) definition of alliances among firms. Their work provides a general summary of how alliances emerge and develop products, technologies and services.
There is also a difficulty in interorganizational studies in articulating when a failure has occurred. Studies have found a high incidence of failure amongst partnerships and joint ventures. However, there has been a good deal of uncertainty regarding when a partnership has failed. For example, studies have concluded that failure is represented by the end of the partnership. If the individual parties to the partnership have achieved their goals and agreed to dissolution then it does not seem appropriate to label such an experience a failure. Even if only a few of the participants to a partnership benefit while others do not, then the result can be ambiguous. In the case of STEM educational outcomes the ultimate determination of success for many political and educational leaders is improvement in the performance of students in their abilities and on test scores. Even partnerships that have dissolved may have served their purpose in creating a climate to engender and sustain these improvements.

A final issue in evaluating partnerships is the transportability of successful partnerships from one setting to another. A form of partnership that is found to be effective in a rural setting may not apply well in an urban area. Affluence, community culture, or ethnic diversity may act as additional contingencies affecting the link between partnership and educational outcomes. Essex (2001) offers seven characteristics of effective partnerships between a K-12 school and a university but cautions against one-size-fits-all application. Sirotnik and Goodlad (1988) also warn against becoming too focused on a single model of effective collaboration.

To develop a useful tool for evaluating STEM partnerships, models must be robust enough to address these challenges. This means that the model should attempt to establish clear relationships between the partnership and the desired outcomes. There must also be a clear focal relationship (e.g., a particular dyadic partnership, or a network of organizations, or an individual organization). Success and failure need to be judged in terms of the overall objectives of partnership rather than measuring failure through the participation of individual members. And studies must build towards robustness by being comparative not only between highly embedded and non-embedded organizations, but also among partnerships in different types of communities (e.g., advantaged vs. disadvantaged; homogenous vs. heterogeneous; large vs. small school system; or rural vs. urban geographic location).

Partnership Conceptual Model

Through this research, we are developing a conceptual model for linking partnerships and outcomes. Six concepts are drawn from organizational and interorganizational relations studies into a conceptual model that links the pre-conditions for partnership, with partnering activities, and finally partnership outcomes.
Partnership Conceptual Model

Stage One
This model captures the pre-existing conditions in terms of strategic needs and the embeddedness in relations among organizations prior to the partnership.

- **Embeddedness** describes the number and types of relationships that organizations have with one another prior to the development of a partnership.
- **Strategic needs** describes the types of resource and legitimacy needs confronting individual organizations prior to a partnership and whether there is a congruence or complimentarity in these needs.

The concepts of embeddedness and strategic needs are not mutually exclusive and are likely to work in concert. In Table 1, we offer a two by two matrix describing some of the possible combinations. Each partnership or set of partnerships within a STEM project can be classified according to this chart.

Table 1: Positive Embeddedness and Congruent Strategic Needs

<table>
<thead>
<tr>
<th>Level of Embeddedness</th>
<th>Congruence of Strategic Needs of Partners</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>High</td>
<td>III</td>
<td>IV</td>
<td></td>
</tr>
</tbody>
</table>

Embeddedness may occur in either a positive or negative form. Two organizations may know each other well, have lots of experience working together, yet really dislike and distrust the
other. Thus, each partnership will have to be classified as high (negative) or high (positive) in terms of embeddedness. In Table 1, low levels of embeddedness may signify that the two organizations have little history of working together. Similarly, all organizations have strategic needs. The issue in this model is whether those needs are 1) strategically related to the objectives of the partnership, and 2) congruent or complementary.

Just because partnerships fall outside of quadrant IV does not predict that they will be a failure in terms of process and performance outcomes. But it does indicate that the nature of partnership needs to be adapted to reflect these conditions. For example, partnerships in quadrant II exhibit high levels of congruence among partners in their ability to satisfy strategic needs through the project. But these organizations are low on embedding meaning that they do not have a history of working together. We would anticipate that the partnership process variables of stage two will exhibit higher transaction costs and formalization of agreements if this partnership is to be successful. Similarly, partnerships in quadrant III have high levels of embeddedness but low congruence of strategic interests. In order to achieve successful outcomes the partnership must devise ways of building on the pre-existing trust among organizations with incentives that motivate the partners to fulfill their duties to the partnership. Finally in quadrant I partners do not have embedded relationships nor is there much in the way of congruent interests. Such partnerships are likely to be marriages of convenience bound by the desire to secure grant monies or other resources.

Stage Two
The third and fourth concepts describe the types of partnering activities that develop. These concepts are designed to describe the process of partnering and include the following:

- **Partnership formation** describes the types of agreements regarding the goals, resource allocations, and responsibilities of each party to the partnership. This concept captures the collective intent of the partnership and includes the following ideas:

 - **Partnership Goal** – Partnerships take aim by setting objectives that engage the full complexity of the problem or may focus on a narrower slice of the issue. The wider the focus the more likely the partnership is to require the intervention, reinforcement, and support of resources outside the school system. For example, it is not uncommon in math-science education (or in other subjects as well) for students to have a view of their life and development that does not include the application of these basic educational tools. Challenging this perception requires not only the personal interventions of the schools but also may require challenging a community culture that lacks of vision of the possibilities associated with these tools. Effectively addressing a student’s need for math-science education may require enlisting role models and resources beyond those the school can provide.

 - **Partnership Agreement** – Refers to the number and types of formal agreements that are entered into among the partners as a means of achieving process and performance outcomes. In general, researchers have found that embedded relationships require less formalization over time\(^\text{12}\). Thus, we might predict that partnerships with positive patterns
of embeddedness would require fewer agreements in order to reach positive outcomes. Attempts to formalize such arrangements may actually work to hinder such good results.

- **Partnership Focus** – Organizations are not monoliths. Instead they are comprised of groups of professions, coalitions, and operating divisions. Partnerships vary in terms of the types of different groups that have some form of interaction with one another. For example, organizations may be highly embedded but not in the relationships that are critical for the objectives of the project. For example, school system administrators may have excellent working relationships with universities. But their teachers may have no experience in interacting with university representatives. This means that for the purposes of improving teacher performance the high levels of pre-existing embedding may not produce the normal types of benefits associated with these relationships. One way of capturing this is to identify the number and types of different groups engaged in each partnership.

- **Partnership Complexity** – refers to the number of different organizations and activities within the partnership. Complexity has been posited to have four dimensions: vertical, horizontal, sectoral and spatial. Vertical refers to whether the partnership is organized into a hierarchy with clear lead organizations and clear followers. Horizontal complexity refers to the number of peer organizations operating at the same level and on similar tasks. Sector-based complexity refers to the number of organizations drawn from the public, private, and not-for-profit sectors participating in the partnership. Spatial complexity is the number of different geographic locations involved in the partnership. Highly complex partnerships are more difficult to operate and keep focused on partnership objectives, but there are also more opportunities for spillover benefits due to additional extra-partnership collaboration.

- **Partnership operations** describe the actual behaviors in which the partners engaged as they pursue the goals and duties of the partnership. This concept includes the following:

 - **Partnership Interdependence** -- refers to the extent that partners depend upon each other for resources or materials to accomplish the partnership objectives. Three types of interdependence have been identified: pooled, sequential and reciprocal. Pooled refers to relationships that are not highly interdependent where each partner works fairly independently. Sequential refers to relationships where the work of one partner feeds into the work of another partner and this second partner is not able to proceed until the work of the first partner is accomplished. Under reciprocal interdependence each partner must share work back and forth until it is completed. Reciprocal relationships are the most interdependent form of partnership.

 - **Transaction Costs** -- these are the costs that organizations absorb in the implementation of a task. In partnerships transaction costs are almost always high because the participating organizations have to adapt to each other’s method of doing business. Transaction costs can be higher if individuals from different professions are interacting (usually requiring that each learn a bit of each other's language) or if different sectors are
involved (as individuals from the private and public sectors adapt to the particular rules that govern their home organizations).

- **Partnership Communication** – this refers to the frequency with which partners interact and the direction of these interactions. One of the more common complaints in university-school partnerships is that the communication flows are largely one-way with universities providing information and resources to schools. These patterns may be highly embedded and even be high in congruent interests if they contribute to the professional development of school systems and/or teachers. However, when confronted with a challenge as difficult as reforming STEM education outcomes, greater dialogue may be required in order to achieve positive outcomes.

Stage Three

The final two concepts describe the types of outcomes that develop from the partnership. These concepts are designed to capture the results of the partnership.

- **Process outcomes** describe the qualitative and quantitative assessments that measure whether the partnership actually achieved the goals and duties of operation. For example, under process outcomes we may observe whether partners were able to implement a common curriculum across schools, marshal resources among partners, bring together the support and talents of universities, parents, businesses and not-for-profits, or achieve congruence among policies.

- **Performance outcomes** assess such improvements as in the working environments of teachers, enhancements in their ability to engage in STEM education, and assessments of the performance of students on STEM topics.

Stage One and Two variables in the partnership model describe how pre-existing conditions and strategies of partnering need to be matched in order to produce positive outcomes. This is particularly true with process outcomes. Under Stage Two partnership variables we observe the types of interactions, agreements, resources, foci, transaction costs, etc. that are associated with a project. Stage Three outcome variables capture the degree to which these efforts are translated into conditions for successful STEM partnerships.

The Student and Teacher Enhancement Partnership (STEP) Program—Case study

The Student and Teacher Enhancement Partnership (STEP) program, funded for three years by the National Science Foundation as part of the GK-12 program, with a continuation for another five years (as STEP Up!*), partners Georgia Tech graduate and undergraduate students with teams of teachers at six metro-Atlanta high schools per year. The discussion that follows applies the conceptual model of partnerships to the STEP program, analyzing the program based on the theoretical concepts described. A total of ten high schools, widely distributed geographically throughout the Atlanta metropolitan area and in terms of socio-economic status, have participated in the STEP program over the past two and one-half years. We will limit the current

* NSF Award Number 0338261
discussion to the partnership with four primarily African American schools in Fulton and DeKalb Counties.

In this report we examine the body of data collected during the STEP evaluations and organize this information using our partnership model. In doing so, we attempt to observe both the variance in partnering-related activities and the evolution of the partnership over time.

Partnership Assessment Strategy for STEP

The findings for this study are drawn from the on-going evaluation of the STEP program. Because the STEP program is in the early stages of development the assessment strategy is currently formative in nature, emphasizing qualitative data collection methods and descriptive analysis of the partnerships. The key evaluation issue is whether the STEP program enhances math and science partnerships (in this case between Georgia Tech, the school districts and the high schools) by introducing Fellows as a resource for teachers. Thus, in addition to the variables described above, several key relationships served as the focus for the larger evaluation:

1) Evidence of enhanced math and science partnerships between Georgia Tech, the school districts, and the high schools.
2) Evidence of effective working relationships between high school teachers and the STEP Fellows.
3) Evidence of benefits to teachers, Fellows, and high school students from participating in the STEP program.
4) Identification of factors that facilitate or hinder the achievement of the impacts identified in previous three points.

The principle evaluation method employed during the first few years is to develop case studies of each of the high schools participating in the STEP program. The narrative in each case describes the implementation of STEP from the perspective of each of the partners. In addition to the case studies, the data is examined according to the roles that individuals play within STEP. Thus, aggregate narratives are developed for Fellows, Teachers, Coordinators, and Advisers. A variety of data sources are used in this study including:

- Semi-structured interviews with Fellows, teachers, advisers, coordinators, and STEP administrators.
- Surveys of Fellows following the summer training programs for STEP.
- Document reviews of the action plans for each high school.
- Document reviews of lesson plans and assessment tools developed by the STEP Fellows.
- In-class observations of the STEP Fellows.
- Review of journals maintained by the STEP Fellows of their experiences within the high schools.

Input from high school students was also compiled through presentations and information from the STEP Fellows, such as videotapes and student evaluations conducted by individual teachers or STEP Fellows.
Stage One: Embeddedness
The STEP program has provided a way to partner Georgia Tech with four primarily African American high schools in which it historically has had few ties. It is worth mentioning that many of the local African American-majority schools view the local majority-white universities with a large amount of distrust, a point of view rooted in segregation and in the fact that minority schools in the southern United States have traditionally been forced to operate with far fewer resources than their white counterparts. In addition, universities often initiate “reforms” in local schools that are short-lived, leading to a healthy skepticism by veteran teachers about the university’s long-term commitment. University academic faculty often approach projects presuming that they know better than the school personnel how to solve the problems of K-12 education, causing teachers to be suspicious that university involvement will just create additional work for them. The distrust is also fueled by the legacy of segregated southern universities (including Georgia Tech), by the current debate about affirmative action and the fairness of standardized exams such as the SAT, and by the lack of cross-cultural dialog between African American and Caucasian students who have never sat next to, nor competed academically with, students from the other race. So in many ways, the pre-existing relationships between the individual majority-black schools and the majority white universities are fraught with historical baggage, are examples of communities with vastly differing cultures and expectations, and therefore exhibit very low levels of embeddedness. However the central administration of these large, urban, school systems are often experienced at partnering with local universities, which provides an effective initial point of entry.

Stage One: Strategic Needs
For the High Schools--The four schools participating in this partnership all post low standardized test scores, and on most measures of academic achievement (including the percent of students requiring academic remediation in college) they perform well below their majority-white suburban peer schools. The demographics and 2001-2002 academic performances of the partner schools are listed in the table below.

<table>
<thead>
<tr>
<th>High School</th>
<th>School System</th>
<th># students</th>
<th>% Under-rep. Minorities</th>
<th>% Reduced lunch</th>
<th>Ave. SAT</th>
<th>% passing AP test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Grove</td>
<td>DeKalb</td>
<td>1585</td>
<td>100%</td>
<td>47%</td>
<td>884</td>
<td>7%</td>
</tr>
<tr>
<td>Stone Mountain</td>
<td>DeKalb</td>
<td>1400</td>
<td>92%</td>
<td>54%</td>
<td>888</td>
<td>6%</td>
</tr>
<tr>
<td>Tri-Cities</td>
<td>Fulton</td>
<td>1893</td>
<td>94%</td>
<td>42%</td>
<td>868</td>
<td>22%</td>
</tr>
<tr>
<td>Westlake</td>
<td>Fulton</td>
<td>1266</td>
<td>99%</td>
<td>33%</td>
<td>898</td>
<td>22%</td>
</tr>
</tbody>
</table>

The need for increased academic achievement is therefore easily demonstrable. However precisely which strategic needs are addressed by the STEP partnership? They are the needs endemic in low performing schools where the teachers are under great stress to improve academic performance at the same time as they are coping with student disengagement, transient student populations, and lack of parent involvement or support. In other words, they are:
• The need for extra adults to assist with developing and implementing laboratory exercises.
• The need for assistance with locating and coordinating educational excursions, and for planning after school clubs and organizations.
• The need for assistance in taking advantage of educational and funding opportunities.
• The need for role models and mentors for students.
• The need for expert content resource people to aid both teachers and students.
• The need for support for the use of educational technology.

On the other side, what are the strategic needs of Georgia Tech that are satisfied by STEP, and are these needs congruent and/or complementary to the needs of the schools system? Georgia Tech’s needs are:

• The need for opportunities for graduate students to gain leadership, communication, and teaching skills.
• The need for graduate students and faculty members to have approved avenues for engaging with and giving back to the community. This is particularly true for our African American graduate students.
• The need for faculty to engage in educational outreach and workforce development activities to help them attract external research grants.

The needs of the two partners are therefore largely congruent since the university partners satisfy their needs through interacting with the school system partners.

Stage Two: Partnership Formation

Partnership Goals

• To use the unique talents and energy of the Georgia Tech students to help address the pressing needs at the schools;
• To promote long-term, mutually beneficial, and multi-faceted partnerships at these schools; and
• To provide the Georgia Tech students with a teaching internship experience that will benefit their professional growth and subsequent career, whether in academia, industry, or education.

Partnership Agreements

The Science Coordinator or Deputy Superintendent for Curriculum from each participating school system selected schools to participate in the STEP Program. The schools selected were ones that had demonstrated need, but that also had well-functioning leadership and the capacity to partner. Because of the disproportionately high participation rate by Georgia Tech African American graduate students and the high level of need in the predominantly black Atlanta-area schools, we decided after Year 2 to concentrate most of our efforts on the issues of the primarily black schools.

Partnership Focus

Two Graduate Fellows and a teacher coordinator form the initial central core of the STEP team at each school. As the partnership progresses at a school and the capacity of the school to
effectively expand the partnership increases, undergraduate students are added to the mix, or new ventures, such as a pilot using a social science graduate student, are added. This increased school capacity usually takes the form of an increase in the number of teachers who claim ownership of the school-Georgia Tech partnership and who understand the value of, and the optimal ways of interacting with, the graduate Fellows. In each school the partnership has evolved differently. The STEP staff provides guidance and consultation, but the central philosophy of STEP is that the nature of the partnership is defined by the people directly involved. The STEP co-PIs choose the graduate Fellows, give them training, and put them into the field to work in ways that best fit their talents and inclinations and that most effectively address school needs.

Partnership Complexity

Vertical Complexity—Georgia Tech is the lead STEP organization, maintaining partnerships with multiple high schools. However substantial effort has been invested in moving the relationship away from a leader and follower status, and encouraging the high schools and teachers to take the lead on initiating projects. However the central STEP administration effectively holds the project together.

Horizontal Complexity—STEP involves multiple high schools, and multiple Georgia Tech academic units, centers, and laboratories. In this regard, the project is highly complex, and relies on creating multiple horizontal connections between independent entities. However since only one university is involved, this decreases the problems of multiple collaborations between peer institutions.

Sectoral Complexity—STEP is primarily a partnership between the university and the schools. However long-term sustainability probably requires that additional partners be added from the private sector. STEP has initiated a campaign to attract private sponsors, which will undoubtedly add to the complexity of the general partnership.

Geographic Complexity—STEP operates only in metro-Atlanta, within commuting distance for the graduate Fellows. This simplifies many aspects of the partnership.

Stage Two: Partnership Operation

Partnership Interdependence

The STEP PI and co-PI do not dictate what the team is to do, but instead serve to “run interference” and ensure that the program runs smoothly, that the activities are consistent with the goals of the program, and that all of the team members are communicating effectively. The partnerships with each school are reciprocal, requiring that each side initiate actions, and follow through with support for the other side.

Transaction Costs

The most substantial cost of STEP is in the graduate Fellow stipends, tuition, and other associated cost-of-education expenses. Money is also invested in the form of staff salaries. Therefore in this partnership, components with “high transaction costs” are usually defined as those that take lots of time and energy from the STEP staff and from the graduate Fellows.

At the school level, each STEP team is led by a Teacher Coordinator who is paid a $2,500 stipend. That teacher is responsible for recruiting colleagues into the program, and for
overseeing the placement and activities of the STEP Fellows. Each Teacher Coordinator is provided with $2,000 for materials and supplies, and $1,000 to support teacher professional development activities. Additional teachers who become involved with the program are provided with financial compensation, up to a total of $2,000 per school. In addition, each STEP Fellow is provided with money for supplies—$500 per graduate student, and $250 per undergraduate student.

Partnership Communication
Many of the most serious problems that have arisen during STEP can be traced to a breakdown in communication that leads to different expectations between participants, such as between a Fellow and a teacher. We have learned that prompt and regular communication, regular monitoring of graduate Fellow activities, and a willingness to quickly change course when people are dissatisfied serves to minimize the problems that stem from poor communication. One problem of partnering with minority schools is that the school personnel often are not comfortable using e-mail, which is the primary mode of communication at the university. This state appears to be changing, however, making the communication routes much easier.

Stage Three: Process Outcomes
As indicated in the Partnership Assessment Strategy section above, STEP outcomes at this stage are primarily: 1) evidence of enhanced partnerships, 2) evidence of effective working relationships, and 3) evidence of benefits to teachers, Fellows, and high school students. These outcomes are described under Performance Outcomes. Process Outcomes include the actual operation of the partnership, and the infrastructure developed to support the program. These are detailed below.

STEP Summer Training Course
Before they are placed in the classroom, STEP Fellows receive ten weeks of training during the summer at the start of their fellowship period. The goals of this training are threefold: to start the work of building partnership teams and planning for the academic year; to give the Fellows a “toolbox” of knowledge and resources to use once they arrived at the high schools; and to provide ample opportunity to explore relevant topics in education and to practice using the tools that they are learning. The expectation is that at the end of the ten weeks the Fellows will be ready to be fully participating members of the teams at the schools, ready to act as content expert resources and to engage with the teachers as partners in the educational mission of the high school classroom.

School-Based Partnering Activities
The action plan, developed by each school team, details the types of activities that best fit the needs of the school and the talents and professional and personal desires of the Fellows. Examples of the activities include:

- **Student Instruction**—Fellows can assist partner teachers with instruction in the classroom in the form of hands-on laboratory experiments, group research projects, active group discussions of science topics, and/or short lectures on content.
- **Instructional Materials Development**—Fellows can develop instructional materials, or adapt existing materials to reflect more inquiry learning. The learning objectives covered depend completely upon the needs of the specific classroom.
• **Student Enrichment and Mentoring**—Fellows are often involved in direct tutoring and mentoring of students, and in coordinating activities such as high school chapters of the National Society of Black Engineers (NSBE Jr.) and Science Olympiad.

• **Educational Technologies**—Fellows can provide teachers and students with assistance in implementing educational technologies in classroom projects and curricula, including initiating web-based classroom resource and discussion pages.

• **Student Research and Science Fair Projects**—Fellows provide invaluable assistance to students in conceptualizing a viable science experiment, providing feedback on the appropriate uses of the scientific method, assisting with locating appropriate research equipment and supplies, reviewing experimental progress and data, and advising on presentation of results.

• **Teacher Professional Development**—Fellows have designed and implemented staff development activities for teachers, often focusing on the use of educational technology.

• **Georgia Tech Connections**—Fellows are very effective at increasing the linkages between Georgia Tech and the partner schools. Graduate students are plugged into the events in their departments and in the broader university community, and are constantly reviewing these connections with an eye towards applicability to the high school community.

Graduate Fellow Participation

Recruitment: Despite initial skepticism by Georgia Tech faculty and administrators, the STEP program has become increasingly and highly popular among graduate students, particularly among the African American graduate students (see chart below). We attribute this to the strong involvement by black graduate students in community involvement and civic leadership activities, and to a powerful “word of mouth” promotion of the program within the minority community at the institute. The table below shows the ethnic and gender breakdown of the applicants and participants in the program for the first three years. Note the progressive increase in application number. (B=black, W=white, O=other, M=male, F=female.)

<table>
<thead>
<tr>
<th></th>
<th>BM</th>
<th>BF</th>
<th>WM</th>
<th>WF</th>
<th>OM</th>
<th>OF</th>
<th>??</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP Applicants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year One</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Year Two</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Year Three</td>
<td>15</td>
<td>7</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>STEP Participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year One</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Year Two</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Year Three</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

Between years one and three, the number of academic units represented by those applicants grew from five departments in two colleges to eleven departments in four colleges.

Stage Three: Performance Outcomes

STEP is, in essence, a grand experiment in partnership building. Can a highly technical, majority white, university, over an eight-year period, build meaningful partnerships with low-income and predominantly minority schools that will outlast the individual people and the external support, and that will yield quantifiable benefits to both sides?
Indications of Partnership Building
Sustainable partnerships must be built upon the efforts, concerns, and agendas of many people if they are to survive the departure of the original players. Bearing this in mind, our philosophy has been to encourage all STEP participants to expand the partnership network whenever possible, and to include academic departments, individual laboratories, campus offices, student organizations, business and industry partners, and professional societies on the university end, and as many teachers, school clubs, administrators, and students as possible on the K-12 end. Thus far, the most noteworthy aspects of this partnership infrastructure include:

• Involvement by Large Numbers of Academic Units at Georgia Tech, including:
 o 9 academic units in the College of Engineering
 o 4 academic units in the College of Sciences
 o The College of Computing
 o 2 academic units in the Ivan Allen College (for Liberal Arts and Social Science).

• Active Participation by Minority Organizations. Georgia Tech graduates more black engineers than any other institution in the country, and the Georgia Tech Black Graduate Student Association, and the National Society of Black Engineers (NSBE) have been two of our strongest partners. The black graduate students have also involved the FOCUS program (which encourages minority participation in graduate school), the FACES program (Facilitating Academic Careers in Engineering and Science), EMERGE (Empowering Minority Engineers to Reach for Graduate Education), as well as 100 Black Men of Atlanta.

• Involvement by NSF-funded Engineering and Science Research Centers.

• Direct School-University Lab Partnerships to foster research opportunities for teachers and high school students.

• Involvement by Georgia Tech Offices and Organizations, notably the Office of Undergraduate Admissions, the Women’s Resource Center, and the Division of Professional Practice.

• Involvement by Increasing Numbers of Teachers at Partner Schools.

• Involvement by High School Students in Georgia Tech-Sponsored Enrichment Activities.

Graduate Student Outcomes
All Fellows, at the end of their tenure, answer the journal question “What did you gain from being a STEP Fellow?” In answer, the graduate students wrote:

“An extreme sense of satisfaction at the contribution I made to my students’ lives - no matter how small it was. It was also the first experience I’ve had that has made me seriously consider teaching as a career. I’ve even recommended it to several people.” Black female, 4th year chemistry Ph.D. student

“The biggest thing that I gained was confidence. I have no problem standing in front of a class and lecturing.” White female, 2nd year mechanical engineering Masters student

“The STEP program has changed my career objectives. I now want to, ultimately, use my Ph.D. to develop educational programs for high schools. I want to create partnerships between industry and high schools. Don’t ask me how just yet; my thoughts are still evolving.” Black male, 5th year physics Ph.D. student.
“I gained teaching and leadership experience. This experience has shown me how much I really enjoy teaching despite the shyness in my personality. The joy of seeing a student learn supersedes my insecurities. The burden I feel when I look at the problems that face our communities, compels me to share what I have learned from school, so that other can break cycles and achieve the best in life.”

Black male, 5th year Ph.D. electrical engineering student

Teachers also provided unsolicited comments about the partnership:

“I need to tell you how much [the Fellow’s] presence has meant to me. This has been my first year back in teaching after 23 years in industry and I had little idea of the level of the problems I would encounter. [The Fellow] has served as a confidant, a sounding board, another set of eyes, and a friend during this year. Further he has added a creative element by way of his ideas and suggestions. His contribution has been significant, not only to the program here but also to my sanity. I have had a sense of isolation because of the limited adult interaction available here and even though [the Fellow’s] days here were limited, they were a breath of adult communication. His insight and willingness to delve into what we were seeing was useful. We have evolved many understandings of the problems here … and after the summer break I will be refreshed to start again.”

Written by a participating physics teacher

“Hi. Last day of school here. Paperwork completed, reflecting for a moment. Wanted to commend to you on [the two Fellows’] work. They made this old teacher a believer. [One Fellow] brought a steadiness and steadfastness with her. Dedicated to labs, and slugging it out. [The other Fellow] brought fire and brimstone. He gave us 100-plus summer enrichment programs of which our kids are attending..., brought us to Calvin Mackie’s talk, Lego Mindstorm, aided in interviewing Governor’s Honors nominee, and big-brothered one of our students helping him gain admittance to NC A&T. I would term this year a success. See you soon!”

Written by a participating chemistry teacher

Evaluation of the STEP program’s effect on graduate students, using the assessment methodology described earlier, has revealed positive outcomes in:

- **Academic Content Mastery**: Graduate students teaching high school students must convey knowledge so that it is comprehensible to students who come from varying achievement levels and backgrounds. This requires that knowledge be thoroughly understood, condensed and distilled to improve its efficacy, a skill that has incomparable value for graduate students.

- **Teaching Interests**: Hands-on teaching experiences provide graduate Fellows with early opportunities to elucidate their interests in teaching as a profession - whether at a high school or college level. These teaching experiences require novel approaches to conveying knowledge to students, thereby encouraging creativity in a Fellow’s own research objectives.

- **Academic Efficiency**: A graduate student’s skill at time management strengthens through time spent with students - both inside and outside of the classroom. Most graduate Fellows
willingly spend more time contributing to the program than is required. To accommodate this, graduate students conduct their research and schoolwork in a more efficient manner.

- **Professional Skills:** Working in a high school classroom helps Fellows improve their leadership, communication, and pedagogical skills and better-define their future professional and academic goals and objectives. It also provides them with models of rewarding community service that are applicable to their future career, whether in education or industry.

- **Presentation and Publications:** During the first two years of the project STEP Fellows have participated in seven professional presentations, co-authored three conference papers, and attended three NSF workshops and seven professional meetings in their role as STEP Fellows.

Teacher and School Outcomes

The teachers and school administrators have all been highly enthusiastic about their participation with the STEP program. Many have stated that STEP is unlike any other school enhancement program they have ever seen, and that among all of their school “partners”, Georgia Tech is their best one and is the only one that actually provides meaningful classroom help. The benefits to the school, teacher, and students most often mentioned to the evaluation team have been:

- The injection of fresh energy into the classroom by the Fellows.
- The value to teachers of understanding the cutting-edge research that takes place at the university, and the value to high school students of being exposed to what the science and mathematics are used for at a higher level.
- The ability of the Fellows to provide novel and different ways of thinking about, and presenting, science and mathematics content, and to introduce the students to educational enrichment opportunities outside of their school.
- The access that the teachers and students gain to science materials, supplies, and equipment.
- The effectiveness with which the Fellows are able to transform the high school students’ thinking about science from a view that science is a bunch of facts, to an understanding that science is a process, and a way of thinking.
- The additional time the Fellows provide for teachers to do other necessary school-related duties. Fellows also help teachers keep their “sanity” under difficult conditions, hopefully increasing the likelihood that the good teachers will stay at these challenging schools.
- The Fellows, particularly the African American Fellows, serve as invaluable mentors for the predominantly minority high school students. They are role models, tutors and cheerleaders, and always fight against the tendency of schools to lower the bar for minority students.
- Teachers gain access to summer research experiences at Georgia Tech, through the *Georgia Industrial Fellowships for Teachers* (GIFT) program, and can build personal connections with faculty and lab personnel. After Year 1, one STEP teacher participated in GIFT. During the summer after Year 2, 13 teachers from STEP schools participated in research internships at Georgia Tech as part of the Georgia Tech (GIFT) program, supported primarily by Research Experiences for Teachers NSF grant supplements.

Though many of these benefits are difficult to quantify, they are very tangible to the individual teachers. For the four overwhelmingly African American schools in the program, STEP is the reform initiative within the science department. It provides the teachers with a sense of being special, and a hope that together the school and Georgia Tech can improve the situation they face and help them direct their students towards productive and gainful careers. In essence, the
partnership provides the teachers and schools with an invaluable door to Georgia Tech, through which pass lab and classroom resources, science and engineering faculty speakers, high school students on laboratory tours, admissions officers bearing crucial advice, and undergraduate student volunteers. These are all types of resources that are traditionally unknown and unavailable at the African American schools but are commonplace at majority-Caucasian affluent schools (that each send dozens of students per year to Georgia Tech, and where many of the parents are connected to the university, either as an alumnus, a faculty member, or a member of the corporate elite). These “ripples” of resources extending from the partnership core are vital to the growth and vitality of the partnership; Fulton County’s Tri-Cities High School STEP program, described below, gives a good example of this ripple effect in action. Tri-Cities and Georgia Tech had no existing relationship before STEP began in 2001.

Tri-Cities has now hosted seven graduate students and two undergraduates over a three-year period. The partnership ripples include: 1) High School students initiating a junior chapter of the National Society of Black Engineers (NSBE) (linked to the Georgia Tech NSBE chapter) which hosts academic activities and competitions, 2) Four science teachers participating in summer research internships in Georgia Tech Biology and Electrical Engineering laboratories, 3) Two teams of high school students conducting research projects at Georgia Tech, supported by the Siemens Foundation, 4) A College of Computing professor and Ph.D. graduate student piloting a new computer-based art program at the school, 5) A science teacher and faculty member from Aerospace Engineering collaborating on a grant to create a high school research-based Astronomy class, 6) Students from Tri-Cities American History classes exchanging visits with Georgia Tech students enrolled in a Social Policy course, 7) Tri-Cities students participating in internet conversations with students at Georgia Tech, and students in Russia and Sweden, 8) The minority recruitment team from Georgia visiting the school multiple times, 9) Teams of high school students participating in a Lego Mindstorm competition sponsored by Mechanical Engineering, 10) High school students visiting Georgia Tech to hear motivational speakers, 11) Students and teachers attending Biotechnology demonstrations, and 12) A relationship of trust and respect developing between people at Tri-Cities and Georgia Tech.

The Evolution of the STEP Partnerships

As we are in the third year of STEP in several of our partner schools, we are now in a position to evaluate the initial success of our partnership building, and to look towards sustainability. The following evolutionary model of the development of a university-high school partnership based on graduate Fellows is now becoming apparent. It is also apparent that these stages cannot be rushed since the trust necessary for building true partnerships takes time to develop, and is based on actions over time, not on abstract plans.

Year 1—Initial Steps

Goal—To develop an understanding by both university and school partners of the program’s potential at that school.

- Graduate Fellows are introduced, and form personal bonds with school staff.
- School personnel develop an understanding of program possibilities, trust about university motives, and confidence of sustained university interest.
- The university partners analyze school’s use of Fellows and the partnering capability of the school staff.
• The university partners assess whether the “need” is there—Does the partnership have the potential to have a major effect, or is it merely icing for a school which functions fairly well already?

Year 2—Maturation and Expansion of the partnership.
Goal—To establish the university as a “real” partner—i.e. one that can be trusted to continue for the long haul.
• The school transitions to a second graduate Fellow team. Teachers and school personnel learn that the partnership is not dependent on specific graduate students.
• The team of teachers and graduate students develop a broader concept about what the school’s needs are, and how the university might interface with them.
• The network of teachers with “ownership” of the partnership expands.
• Multiple connections are developed between the high school and academic units and organizations at the university, including linking schools to particular research labs.
• Teachers are encouraged to come to the university as summer research interns.
• The team begins developing high school research teams to come to university labs.
• Undergraduate students or additional graduate students join the school teams where the partnership capacity allows it.

Year 3—Beginning Institutionalization.
Goal—To increase the number of “owners” of the partnership.
• Schools transition to a third graduate Fellow team and university-school connections expand.
• School system personnel become involved in the graduate Fellow summer training program.
• The partnership gains increased visibility and ownership among high-level administrators from both school system and university.
• Schools are encouraged to actively instigate additional school-university connections, thereby empowering teachers to ask for what they need.
• Staff seeks out and promotes partnerships and sponsors from the private sector.

All of the STEP partnerships are actively evolving and expanding. The goal of the next five years of STEP is to solidify the partnerships, creating enough linkages that the connections become sustainable without the infusion of NSF funds.

Conclusion
Though there is a current national emphasis on developing partnerships between universities and K-12 schools, there has been little discussion on exactly what is meant by a “university-school” partnership, and very few theoretical frameworks exist for describing the best way of achieving sustainable and effective partnerships in education. The Partnership Conceptual Model described in this paper and drawn from the partnership literature from the field of Public Policy emphasizes the importance of pre-existing conditions (in terms of embeddedness and strategic needs) and the structure of the partnership (in terms of formation and operations) when predicting the success of the project outcomes. STEP is a partnership that began with congruent strategic needs and a high degree of embeddedness with the school system administration, but a
low degree of embeddedness where it really counts, namely at the individual school level. Therefore high initial transaction costs, in the form of large amounts of time and effort, were required to develop the connections with the schools, and the necessary personal trust, that ultimately have led to a deeply embedded partnership and a higher chance for long-term successful outcomes.

With STEP the emphasis has been placed on the development of a healthy partnership and the final outcomes are allowed to evolve from the partnership. In our experience, this is not the most common orientation of educational partnerships; many are driven by particular prescribed activities, or based on curricular units developed by higher education. As illustration, one of the NSF reviewers for the STEP Up! GK-12 continuation grant stated:

“The process of creating the partnerships and working with the teachers is not new, original nor particularly creative. What is novel is the creating of the partnerships first and then letting what happens happen. This takes courage and faith in the participants. It also takes very secure college level faculty who are willing to treat their high school teachers as peers. This is obviously happening here with very imaginative results.”

Our experience suggests that the partnership itself is particularly important when trying to connect and effect change in entities with very different cultures, such as majority-white universities and majority-black schools. Only when the partnership is strong, and the different partners have trust in one another, can change take place. And only when there are clear mutual benefits and trust can a partnership outlast the external funding stream and sustain over time.

Bibliography

Biographic Information

MARION C. USSELMAN
Dr. Marion C. Usselman is a Research Scientist at the Center for Education Integrating Science, Mathematics and Computing (CEISMC) at Georgia Tech. Marion received her Ph.D. in biophysics from Johns Hopkins University and focuses on equity issues in education and K-12 educational reform. Marion is a co-PI of the STEP NSF grant, and a co-PI on the Alternative Approaches to Evaluating STEM Education Partnerships NSF grant.

DONNA C. LLEWELLYN
Dr. Donna C. Llewellyn is the Director of the Center for the Enhancement of Teaching and Learning (CETL) and an adjunct associate professor in Industrial and Systems Engineering at Georgia Institute of Technology. Her current areas of research are in equity of engineering education, and assessment of instruction. Donna is the PI of the STEP NSF grant.

DARA V. O’NEIL
Ms. Dara V. O’Neil is a Research Associate at the Georgia Tech Research Institute, and a doctoral candidate in Information and Telecommunications Policy in the Georgia Tech School of Public Policy. She is a co-PI on the Alternative Approaches to Evaluating STEM Education Partnerships NSF grant.

GORDON KINGSLEY
Dr. Gordon Kingsley is an Associate Professor in the School of Public Policy at Georgia Institute of Technology. Gordon is the project evaluator for the STEP NSF grant, and PI on the Alternative Approaches to Evaluating STEM Education Partnerships NSF grant. His area of research interests are the interactions of public-private partnerships to harness developments in science and technology, and the nature and assessment of educational partnerships.