
Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

PolyFS: An Extensible, Underspecified, Pedagogical File System
and Disk Emulator

Foaad Khosmood and Phillip Nico
California Polytechnic State University
foaad@calpoly.edu / pnico@calpoly.edu

Abstract

In recent years, teaching file systems at the undergraduate level has become increasingly
challenging. File systems, while essential to most computer systems, are almost never offered as
an exclusive required course for a computer science curriculum. The topic is usually taught as
part of a course on operating systems (OS), along with other introductory topics such as process
management, scheduling, concurrency, deadlocks, distributed processing and multiprocessing.
Introductory OS courses are typically required in computer science programs but the subject
matter has grown tremendously in depth and case studies, making it difficult to spend any
significant time on any individual topic. In this environment, professors can barely afford to
cover the basics, let alone in-depth implementation of OS issues.

PolyFS is proposed as a solution to provide class assignments meant to exercise many of the
established OS principles, while offering some level of design and implementation experience to
students. Specifically, we stress three advantages for using PolyFS in an instructional setting:
Variety, scalability and modularity.

We are developing PolyFS, a polymorphic file system assignment and corresponding storage
device emulator compatible with a variety of operating systems. PolyFS specification includes a
very basic block-device emulator making it easy to use regular Unix files, or even web-based
services, as emulated disks. The file system itself is intentionally under-specified to allow
instructors to focus on particular aspect of file systems in their assignments and students to
actually design and implement important sub-systems using algorithms covered during lecture.

Introduction and motivation

Introductory OS courses are challenging to teach partially due to the proliferation of operating
system products, interfaces, and standards. To gain a good mastery of the concepts, most
laboratory-based courses must involve significant low-level programming. Although there are
exceptions such as DLXOS1 where students implement an entire operating system, most
concentrate on a few important subsystems out of necessity. There may be enough time in one
term to cover all theory and concepts, but not enough to have programming assignments for each
of them. Instructors could therefore be more efficient if they can find assignments that exercise a
wide variety of OS concepts.

251

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

We believe file system implementation offers a good balance between a project that can
realistically be done in a fraction of a college term, but also involve a wide variety of OS
concepts and algorithms. Common file system principles overlap with those of OS and even
broader computing systems3. Of the five major topics in OS courses (Processes, Scheduling,
Memory management, Synchronization and I/O systems) all are present to some degree in file
system implementation. Two popular undergraduate textbooks, Tanenbaum & Woodhull4 and
Silberschatz, et al.5, each dedicate several chapters to file systems. Recent OS courses at Stanford
University6 and University of California Berkeley7, dedicate, two weeks and one week to file
systems respectively.

Perhaps the most influential teaching-oriented file system is the MINIX file system4, developed
by Andrew Tanenbaum for educational purposes. It was adopted for early versions of Linux
before the Extended file system became the Linux standard.

Exercising the students' skills is not the only thing a good assignment can do, however. A good
assignment provides opportunities to assess achievement of student learning outcomes, and
repeat offerings of the same assignment can form a basis for comparing the accomplishments of
different cohorts of students. Genci2 reports on experiences using a FAT file system assignment
to assess student achievement.

In addition to the benefits of repeated use above, there is another, often unstated, benefit to
assignment re-use: developing a good assignment is a lot of work. On the other hand, we have
observed the phenomenon that over time assignments go stale and lose their assessment
value; as more of the student population has done a particular assignment, that assignment
becomes more a measure of population achievement than individual accomplishmenta.

We are developing PolyFS as a meta-specification for implementing many similar file systems
that exercise the students' skills with respect to major OS topics.

Specifically as an assignment generation system, PolyFS offers variety, scalability, and
modularity.

We define variety as the degree of change the assignment can undergo from term to term. We
believe, much like midterms and finals, the same exact projects shouldn’t be offered every term
where they will be inevitably well known in the student community and may become somewhat
routine for the instructors. At the same time developing new course material every term is not
realistic. But if we can produce a set of reasonably divergent variations of the same assignment,
perhaps we can mitigate some of the undesirable affects of repetition in assignments.

By “scalability”, we refer to the scope of the deliverables. It’s possible to have almost an entire
file system already created with only a few minor features left to be implemented by students.
This may be suitable for a lab or a small assignment. If the instructor chooses to, however, he or
she can offer a much bigger project involving design of major components such as the

1 a Indeed, in Genci's report2, it was found that 90% of the submitted programs had been plagiarized to some

degree.

252

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

superblock or the entire file system API. This was the approach taken with TinyFS (Appendix
A).

Lastly, modularity is an important feature that offers variation targeted by functionality. For
example, an instructor may wish to concentrate on directory support, disk access modeling or
caching subsystems. Offering a modular approach means specific features can be exercised and
tested for without having to build the support architecture for them.

Modularity also addresses the tension between the assessment value of repeated assignments and
the reality of assignments shelf-lives. It is is possible for an instructor to maintain certain
modules from term to term while changing others. By doing this, he or she can create a different
assignment---a new variant of the file system---each time the course is offered, changing enough
components to keep it fresh while maintaining enough components to allow for comparison from
term to term.

History

PolyFS is to a large extent a more generalized form of an existing assignment called TinyFS (see
Appendix A). TinyFS was created to meet some of the same goals as PolyFS and has been
offered for 3 terms already with small improvements made after each term. In general students
appreciate being given an opportunity to design aspects of the file system themselves. Creating
one’s own free block allocation system, or superblock format requires significant understanding
of file system principles. Many students have anecdotally cited this assignment as something
they discussed during interviews.

While TinyFS offers some design opportunities, its overall structure is fairly static with only
specified “gaps” to be filled by students. TinyFS is therefore limited in offering variety and
scalability. A comparison of TinyFS and PolyFS is presented below.

PolyFS and disk emulator overview

At the architecture level, shown in Figure 1, PolyFS is a system that can describe a specific file
system variant (PolyFS-n) which in turn uses an emulator or is installed on the host file system.

253

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Figure 1. PolyFS high level architecture

One or more client programs link to the PolyFS library and interact with the file system using its
published API. A header file specifying the PolyFS-n details such as the block formatting and
API allows both clients and test programs to read and write to the disk. This means that almost
all the functionality of PolyFS-n can be tested by writing different client processes. A “black
box” testing approach uses the API to interact with the system and assess its features and
performance.

Separate tests can also be generated based on current state of the emulated disk. Figure 2 shows a
typical block file system storage space allocation. While the status of blocks remains hidden
from the client programs by design, testing can be done directly on the emulated disk device to
check for consistency and efficiency of use.

Figure 2. Example block allocation

254

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

PolyFS specification and API

PolyFS was conceived with the goals of making it easier to teach OS concepts. It is purposefully
underspecified to allow for filling in of gaps by the instructor or students in a design exercise.
The final outcome of the exercise, however, depends on a full specification (we call PolyFS-n)
and implementation.

In general two categories of specification details can be varied: emulator and PolyFS. Emulator
is used to interact with a target device. Thus only block level operations should be specified. The
basic API is given in four functions –openDisk(), readBlock(), writeBlock(), and closeDisk()–
which will be used by students as a foundation on which to implement the PolyFS interface.

Table 1 is a list of basic PolyFS features, the bare minimum that we consider necessary for an
assignment. Using these features a very basic single-directory block file system can be created
with both read and write operations and tested. We recommend instructors begin with this and
then move into advanced features or alternatively pick and choose which of the advanced
features each team should implement.

Advanced features

Building on the basic features, the instructors now have the opportunity to expand the
assignment in one or more directions as desired. Several of the advanced features are shown in
Table 2, but more are possible. We elaborate on selected advanced features.

Byte-level updates: To make the problem somewhat more tractable, we specify pfs_writeFile() to
accept the entire file to be written, in form of a terminated character buffer. A student can design
this function by first calculating the number of blocks necessary to store the buffer, then to create
the inode block and file extents. No file pointer implementation is necessary. An advanced
feature, pfs_writeByte() is capable of writing just one byte to the location indicated by the file
pointer.

Disk status and defragmentation: Fragmentation is a factor in many storage systems. To
familiarize the student with fragmentation issues, we extend PolyFS to include functions
pfs_fragStatus() and pfs_defrag().

Directory support: Small toy file systems can be implemented with no directory support. That’s
the case with the base PolyFS. However, directory support including two level or tree-based
directory structures can be supported through the advanced feature.

File locks: File-level synchronization support can be added in form of a pair of lock/unlock
functions. Implementation of synchronization algorithms is left up to the students as an exercise.

255

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Table 1. PolyFS basic features

category Feature / API specification status notes
emulator using emulator or direct

OS installation?
instructor decides this if emulator, specify Unix file(s)

to use as emulated disk
emulator using storage driver or

emulating disk
operations?

instructor decides this

storage
emulator

basic device interface Student design
exercise

additional ioctl() function call to
be called inside disk emulator
functions

emulator openDisk(),
readBlock(),
writeBlock(),
closeDisk()

specified by instructor
for target block device,
or use default for Unix
files

Instructor may choose to forego
using an emulator, and require
installation of PolyFS on the
target OS

emulator formatDisk(), sync() specified by instructor
or students

formatDisk() requires access to
PolyFS general block spec.

PolyFS general block size
(default: 256 bytes) and
format

specified by PolyFS /
modifiable by
instructor

magic number, in particular
could be set by the instructor
each term

PolyFS inode block spec. student design exercise
PolyFS file extent block spec. student design exercise
PolyFS file block allocation student design exercise algorithm to recover all blocks of

a file
PolyFS free block allocation student design exercise algorithm to manage free blocks
PolyFS superblock spec. student design exercise
PolyFS directory inodes student design exercise
PolyFS symbolic links student design exercise
PolyFS consistency checks and

defragmentation
student design exercise

PolyFS file naming convention specified by PolyFS,
modifiable by
instructor

could be altered with directory
support

PolyFS basic API specified by PolyFS extensible by instructor
PolyFS pfs_openFile(),

pfs_renameFile()
student design exercise returns a file descriptor

PolyFS pfs_writeFile() student design exercise writes an entire terminated buffer
as single PolyFS file to disk

PolyFS pfs_readByte() student design exercise reads one byte from a pfs file at
the file pointer location

PolyFS pfs_seek() student design exercise moves the file pointer
PolyFS pfs_closeFile() student design exercise closes file and de-allocates

memory resident resources
PolyFS pfs_deleteFile() student design exercise deletes file from disk

256

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Disk scheduling: Storage devices are covered in most OS courses. We have designed PolyFS
with a separate module dedicated to storage systems. Rotating media physical subsystems, for
example, can be modeled inside the module allowing students to implement disk scheduling
algorithm covered in lecture.

Assignment

A typical PolyFS assignment will consist of providing all the instructor-specified information, as
well as a number of features to be implemented. The basic deliverable source files are the
emulator library, PolyFS library and a demo program that shows the instructor the functionalities
implemented. The instructors will have multiple test client programs of their own that can be
linked to the relevant libraries and make use of the system. Figure 3 shows a sample Makefile for
a Unix based PolyFS assignment.

Assignment evaluation

We recognize that evaluation of assignments is a significant part of the teaching effort. Any
assignment that is unusually difficult to evaluate for classes ranging from 20 to 200 in size would
probably not be adopted by educators. We have had evaluation in mind when designing PolyFS.
Automated test case evaluation has two distinct benefits. First, it eases the burden on the
educator, allowing more focus on code reading, style and performance assessment. Second, it
can provide a level of self-assessment to the student. Making some of the elementary test cases
public, with a public and reliable evolution system will result in higher quality assignment
submissions.

In the case of PolyFS, the nature of the interface greatly helps in automated evaluation. Using a
test program accessing the disk through the established API in the assignment allows for the
instructor scripts to easily verify many of the basic functions: reading and writing to blocks,
superblock structure, file operations, time stamps and access rights can easily be tested within a
single instructor test program.

Two test programs can be used within a script to evaluate file locks and concurrency features.

257

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Table 2. Advanced Features

feature additional API notes
storage crypto emulator store_encrtypt(),

store_decrypt()
encryption algorithm needed

storage compression
emulator

store_compress(),
store_decompress()

compression algorithm needed

byte-level update pfs_writeByte() writes one
byte to the current offset of
an open file

basic API only supports
pfs_writeFile() where the entire
file content must be passed in
buffer

support file creation time
and modification time

pfs_readFileInfo() returns an
array of two time stamps

involves modifying open() and
writeFile() API calls

disk status check and
defragmentation

pfs_fragStatus()
pfs_defrag() moves blocks to
place all free blocks together
at the last portion of the disk

returns a char vector for block
fragmentation status, plus an
additional char with an overall
status

directory support pfs_makeDir()
pfs_deleteDir()
pfs_copy() works on both
directories and files
pfs_listDir() returns
information for all files in the
directory

create and delete directories.
Open() API all will have to change
to accommodate a longer string
being passed in, rename() can be
modified to achieve a “move” from
one directory to another

file locks pfs_lock(), pfs_unlock() allows synchronization at file
level, testable with multiple client
programs

access rights, and mode pfs_chmod(), pfs_chown() support read-only, write-only, and
basic user-level ownership, access-
rights scheme to be specified in
header files

block rotation pfs_engageBlockRotation() supports rotation of blocks to
simulate all parts of the device
being equally affected by
degradation, used in sold-state disk
technology

disk scheduling pfs_applyDiskScheduling() simulates rotating media
buffer/cache systems and sector-
level updating

visualization Write a separate process to
periodically read the PolyFS disk
and provide a graphical live
representation of each block which
can be shown to an observer as an
application or web page while
testing is in progress.

258

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

CC = gcc
FLAGS = -Wall -g
PROG = PolyFsDemo
OBJS = PolyFsDemo.o libPolyFS.o libDisk.o

$(PROG): $(OBJS)
$(CC) $(CFLAGS) -o $(PROG) $(OBJS)

PolyFsDemo.o: PolyFsDemo.c libPolyFS.h
$(CC) $(CFLAGS) -c -o $@ $<

libPolyFS.o: libPolyFS.c libPolyFS.h libDisk.h libDisk.o
$(CC) $(CFLAGS) -c -o $@ $<

libDisk.o: libDisk.c libDisk.h
$(CC) $(CFLAGS) -c -o $@ $<

Figure 3. Sample Makefile for a PolyFS assignment

Table 3 gives a brief explanation of all the source files involved.

Table 3. Example assignment deliverable source files

source file supplied by notes
libDisk.h instructor provides emulator API, and disk information
libDisk.c student implementation of the block device emulator
libPolyFS.h instructor /

student
PolyFS API functions, PolyFS block format
specifications

libPolyFS.c student implementation of PolyFS API
PolyFSDemo.c student a client program interacting with a PolyFS disk

Pedagogical experience

A precursor to PolyFS called TinyFS has been already implemented and used for three terms as
the final assignment in OS courses of the California Polytechnic State University. TinyFS
features 256 byte blocks only. Student feedback indicates that the design opportunity is much
appreciated. Students report that they find themselves reviewing textbook chapters on block
allocation and superblock functionality in order to design an efficient file system.

Work in progress

We are currently working to support an automated PolyFS spec generator based on instructor
input. Such a generator could produce a PolyFS-n where n is a unique identifier reflecting
assignment choices made by the instructor. Producing these unique specs would allow for
automated testing tools to be developed as well. The theory is that unit-level testing routines for
particular features could be automatically combined based on the particular specification.

259

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Figure 4. PolyFS assignment generator

Student feedback

Our development of PolyFS takes into account our experience from TinyFS, including student
feedback. For Winter term 2013, we surveyed one class that was given TinyFS as its final
assignment, representing one out of 4 large programming assignments, and 10% of total grade in
the operating systems class. We asked mostly for comparisons of the TinyFS assignment against
the other three assignments in that same course.

29 students responded (out of 33). The majority of the students are seniors in their last four
quarters of the B.S. program in Computer Science, Computer Engineering or Software
Engineering at California Polytechnic State University.

We find that in general, students support and are open to design based assignments and prefer
more of them. They feel that this particular assignment taught them much about file systems.
They feel that, for the TinyFS assignments, concepts are relatively easy, but testing is the most
difficult aspect. They also value group work highly for this assignment.

The students were also asked to respond in paragraph form to the question “What was the most
difficult aspect of this assignment for you?” 29 students participated.

260

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Figure 5. Student self-reported assignment difficulty (1-5 where 5 is "very difficult").

Although a few miscellaneous responses pointing to difficulty of working with partners and not
being familiar enough with the C programming language were mentioned, the majority of the
respondents cited the spec as having been vague forcing the students to have to come up with
their own design and further failure scenarios. Some of the more interesting responses in this
category are:

• Visualizing the system as a whole.
• The spec is very open ended so it is very difficult to figure out the best way to implement

something.
• Testing has definitely been the most difficult aspect of this project, as there are many

edge cases to account for. I also feel unsure of what will be tested, which makes the
process more frustrating. Maybe a test driver would make the process less stressful.

• The most difficult aspect of the assignment for me was keeping track of all of the bits in
the bit vector. I was not the most familiar with bit operations and so I learned a lot along
the way.

• I think the hardest part of the assignment is figuring out how to implement things since it
is a design assignment. There is a lot of freedom to implement ideas in different ways, so
careful thought and planning must be used to avoid problems arising. A big point in this
is planning ahead for the extra features, which can alter the layout of an inode block and
add in more complication to the functionality.

• The most difficult aspect of the assignment was wrapping my head around what I was
supposed to do. It took a long time to create the correct picture of how everything fit
together. I also had a hard time distinguishing a file descriptor for a regular file and a file
descriptor for the disk.

Responses to other quantitative questions on the survey are illustrated in Figure 6.

Lastly, two “Yes/No” questions were included: “Would you prefer more design?” and “Was
group work important in this assignment?” The responses to both, shown in Figure 7, were
overwhelmingly “Yes”.

3	

3.1	

3.2	

3.3	

3.4	

3.5	

3.6	

3.7	

3.8	

3.9	

4	

Conceptual	
 Coding	
 Testing	
 Overall	
 	

261

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Figure 6. Quantitative student feedback (1-5 scale).

Figure 7. Yes/No questions on student survey.

Conclusion

PolyFS is a file system standard capable of generating individual course assignments to test
particular areas of focus for file system education. PolyFS is a work in progress, drawing from
the lessons and feedback of TinyFS. We are encouraged that design and group work are valued
by students, and that the general approach leads to substantial retention of information in
comparison to straight implementation assignment or lecture material on file systems. In the
coming terms, we will implement more and more of the overall system and use the results in real
OS classes as we have been doing with the precursor, TinyFS.

Evaluation work-load can be reduced by using the same API to test PolyFS functionality. Work
continues toward a suite of tools integrating specification generation with test-case generation for
a particular PolyFS-n variant.

3.3	

3.4	

3.5	

3.6	

3.7	

3.8	

3.9	

4	

4.1	

4.2	

4.3	

Are	
 design	
 assignments	

important?	

How	
 much	
 did	
 you	
 learn	
 about	

File	
 systems?	

How	
 interesting	
 was	
 this	

assignment	
 compared	
 to	

others?	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Would	
 you	
 prefer	
 more	

design?	

Was	
 group	
 work	
 important	
 in	

this	
 assignment?	

No	

Yes	

262

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Appendix A. TinyFS Assignment

This is the existing TinyFS assigbnment from CPE 453 Operating Systems course, California
Polytechnic State University, Winter 2013.

Program 4 | CPE 453 | Professor Foaad Khosmood
This assignment can be done in groups of up to 3.

TinyFS file system and disk emulator
For this assignment, you’ll be implementing the TinyFS file system and emulating it on a single Unix file.

Objective
The goal for this assignment is to gain experience with the fundamental operations of a file system. File systems are
not only themselves an integral part of every operating system, but they incorporate aspects of fault tolerance,
scheduling, resource management and concurrency.

Phase I: disk emulator
The first part of the assignment is to build a disk emulator. At the lowest level of operation, an input/output control
(ioctl) system call interacts directly with the device to accomplish an operation requested by the user. For disk drives
(called block devices) this is usually just reading or writing a block. We will implement an emulator that will
accomplish basic block operations on a regular Unix file.

The emulator is just a library of functions that interacts with a file. Three functions are necessary: openDisk(),
readBlock() and writeBlock(). There are a couple of pieces of static data that are required. These can be #defined in
header files. Two important ones are: block size (blockSize) in bytes, and default name of the disk file (diskName),
which should be set to “TinyFSDisk”.

/* this functions opens a regular Unix file and designates the first nBytes of it as
space for the TinyFS Disk. If nBytes > 0 and there is already a file by that name,
that file’s content will be overwritten. There is no requirement to maintain integrity
of any file content beyond nBytes. That means, you can always open a new file and
write nBytes to it. To open an existing disk (assuming the filename is valid), call
openDisk() with nBytes = 0. The return value is -1 on failure or a disk# on success.
*/
int openDisk(char *filename, int nBytes);

/* readBlock() reads an entire block of blockSize size from the open disk (identified
by the disk#) and copies the result into a local buffer (must be at least of
blockSize). The bNum is a block number, which must be translated into a byte offset to
be seek()ed in the Unix file. That translation is simple: bNum=0 is the very first
byte of the file. bNum=1 is blockSize offset from the beginning of the file. bNum=X is
X*blockSize bytes into the file. On success, it returns 0. -1 or smaller is returned
if Disk is not available (hasn’t been opened) or any other failures. You may define
your own error code system. */
int readBlock(int disk, int bNum, void *block);

263

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

/* writeBlock() takes a disk# and a block number and writes the content of the
argument block to that location. Just as readBlock(), it must seek() to the correct
position in the file and then write to it. On success, it returns 0. -1 or smaller is
returned if Disk is not available (hasn’t been opened) or any other failures. You may
define your own error code system. */
int writeBlock(int disk, int bNum, void *block);

Phase II: TinyFS file system implementation

TinyFS is a very simple file system. In fact it is under-specified to give you the freedom to implement it using many
algorithms that you learned about. There are no directories or mount points, which means all the files are under a
single directory. The disk blocks of TinyFS can be any of these types:

Block name Block

code
Description number

possible
size (bytes)

Superblock 1 contains the magic number, free-list implementation and
other info

1 256

inode 2 contains name of the file, file block list implementation many 256
file extents 3 contains block# of the inode block many 256
free 4 is ready for future writes many 256

Block format
These bytes are defined. The rest are up to you to implement however you see fit. For example to keep track of the
free blocks, you may want to use a bit vector or a forwarding link on the superblock. Same with file name information
for an inode.

Byte first byte offset second byte offset
0 [block type = 1,2,3,4] 0x45
2 [address of another block] [empty]
4 [data] ...
6

Block Types

Super Block
The Super Block stores meta-information about the file system and is always block 0. The block contains three
different pieces of information. First, it provides a mechanism to detect when the disk is not of the correct format.
Second, it contains the block number of the root inode (for directory-based file systems). Third, it handles the list of
free blocks. This can be done by having a link to the first free block in a chain of free blocks, or implementing a bit
vector and storing the vector right there in the super block.

The mechanism the Super Block uses to detect a disk that isn't formatted properly is the magic number mechanism.
That means a number not likely to be found in a block by accident. For us that number will be 0x45 and it is to be
found exactly on the second byte of every block.

inode
The inode block keeps tracks of meta-data for the file object. Typically ownership (user, group), file type, creation
time, access time, etc. are included. For TinyFS only the name is required. The name can be just 8 alphanumeric
characters an no more. Examples: “file1234”, “khosmood” or “my2ndLog”.

264

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

For inode blocks, you have to design where and how to store the file meta-data like the file name and/or time stamps
and ownership. You also have to pick an offset (for example 32 bytes) at which the actual data part of the file starts.

file extent
A file extent block contains file content data. It may be just a part of the content in which case it should contain a link
to the next block of the same file content. It may contain the last of the file content (file ending) in which case, the rest
of the bytes should be zero’ed out and the link byte should also be set to 0.

free block
Free blocks are empty and available to be written to. But just as any other block, they have to have the required bytes
0,1 and 2. You may choose to use the link (byte #2) to form a chain of free blocks, otherwise you can set it to 0.

TinyFS interface functions:
Only 6 API functions are needed to implement the TinyFS interface.

/* Opens a file for reading or writing. Create a dynamic resource table entry for the
file, and returns a file descriptor (integer) that can be used to reference this file
from now on. */
fileDescriptor tfs_openFile(char *name);

/* Closes the file, de-allocates all system/disk resources, and removes table entry */
int tfs_closeFile(fileDescriptor FD);

/* writes an entire buffer, representing the entire file content, to a file. Sets the
file pointer to 0 (the very beginning) when done. Returns success/error codes.
(content terminated by null “\0”) */
int tfs_writeFile(fileDescriptor FD,char *buffer);

/* deletes a file and marks its blocks available on disk. */
int tfs_deleteFile(fileDescriptor FD);

/* reads one byte from the file and copies it to buffer, uses the current file pointer
location, and increments it by one after. If the file pointer is already at the end of
the file (where the terminating NULL character is) then tfs_readByte() should return
an error (- value) and not increment the file pointer. */
int tfs_readByte(fileDescriptor FD, char *buffer);

/* change the file pointer location to offset (absolute) */
int tfs_seek(fileDescriptor FD, int offset);

Assignment
● Implement the 6 interface functions above (80%)
● Add two additional areas of functionality from the list (a-d) below. You are free to implement them any way

you wish with any number of parameters / return type. (20%)
a Fragmentation info and defragmentation

■ implement tfs_displayFragments() /* this function allows the user to see a map of all
blocks with the non-free blocks clearly designated. You can return this as a linked list or a
bit map which you can use to display the map with */

265

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

■ implement tfs_defrag() /* moves blocks such that all free blocks are contiguous at the end
of the disk. This should be verifiable with the tfs_displayFraments() function */

b Directory and renaming
■ tfs_rename() /* renames a file. New name should be passed in. */
■ tfs_dir() /* lists all the files on the disk */

c Read-only and writeByte support
■ implement the ability to designate a file as “read only”. By default all files are “read write”

(RW).
■ tfs_makeRO(char *name) /* makes the file read only. If a file is RO, all tfs_write() and

tfs_deleteFile() functions that try to use it fail. */
■ tfs_makeRW(char *name) /* makes the file read-write */
■ tfs_writeByte(fileDescriptor FD, int offset, unsigned int data), a function that can write one

byte to an exact position inside the file.
● tfs_writeByte(fileDescriptor FD, unsigned int data) is also acceptable. (uses

current file pointer instead of offset).
d Time stamps

■ implement creation time stamps for each file to be stored in the inode block
■ tfs_readFileInfo(fileDescriptor FD) /* returns the file’s creation time */

● Write a demo program that includes your TinyFS interface to demonstrate the basic functionality of the 6
required functions and your chosen additional functionality. You can display informative messages to the
screen for the user to see how you demonstrate these.

Deliverables
● as usual, submit a tar.gz archive via polylearn with the following:

○ all source files: .c, .cpp, .h
■ You must have at least three separate source files

1 emulator file (libDisk)
2 tinyFS interface file (libTinyFS). This file will access libDisk for disk emulator

functionality.
3 demoTfs driver file that contains a main(), and includes libTinyFS headers (but

not libDisk).
○ a makefile (called Makefile) that compiles all the libraries and makes the following executable:

■ demoTfs
○ a README with:

■ Names of all partners
■ An explanation of how well your TinyFS implementation works
■ An explanation of which additional functionality areas you have chosen and how you have

shown that it works.

266

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Appendix B. A TinyFS demo program

This is a TinyFS demo program listing and a subsequent look at the emulated disk.

foaad@unix3:~/453/workspace $./demoTfs
No TinyFSDisk found, formatting...
Checking input in file abcd1234:
The quick brown fox jumped over the lazy dog

Reading after seek exepct 5: t

Testing tfs_readFileInfo output:
File created on: Wed Jan 30 11:50:11 2013

Closed tfs_closeFile then called tfs_write, this should fail:
failed to write file

Closed tfs_closeFile then called tfs_readByte, this should fail:
failed to read

Reading input from abcd1234, file descriptor fd1, output:
some sentences some sentences some sentences some sentences

Reading after seek exepct 5: 5

Reading input from abcd1234, file descriptor fd, output:
6789

List all files in directory with tfs_dir:
new3
new2
newName

Reading input from abcd1234, file descriptor fd1:
success

Attempt to write to deleted file should fail:
it is a failure

foaad@unix3:~/453/workspace $ hexdump -C TinyFSDisk
00000000 01 45 09 00 00 00 00 00 00 00 00 00 00 00 00 00 |.E..............|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000100 02 45 00 00 66 64 33 00 6e 65 77 32 17 79 09 51 |.E..fd3.new2.y.Q|
00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000200 02 45 00 00 61 62 63 64 31 32 33 34 17 79 09 51 |.E..abcd1234.y.Q|
00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000300 04 45 07 00 00 00 00 00 00 00 00 00 00 00 00 00 |.E..............|
00000310 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000400 04 45 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 |.E..............|
00000410 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000500 02 45 00 00 6e 65 77 33 00 6e 65 77 0d 79 09 51 |.E..new3.new.y.Q|
00000510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000600 02 45 00 00 6e 65 77 32 00 6e 65 77 0d 79 09 51 |.E..new2.new.y.Q|
00000610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000700 04 45 04 00 00 00 00 00 00 00 00 00 00 00 00 00 |.E..............|
00000710 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000800 02 45 00 00 66 64 32 00 66 64 33 00 17 79 09 51 |.E..fd2.fd3..y.Q|
00000810 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000900 04 45 03 00 00 00 00 00 00 00 00 00 00 00 00 00 |.E..............|
00000910 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

267

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright © 2013, American Society for Engineering Education

Bibliography

[1] Miller, E. L., “The DLX Operating System (DLXOS)”
http://users.soe.ucsc.edu/~elm/Software/Dlxos/dlxos.shtml

[2] Genci, J. Knowledge assessment — practical example in testing. In Technological
Developments in Education and Automation, M. Iskander, V. Kapila, and M. A. Karim, Eds.
Springer Netherlands, 2010, pp. 409–412.

[3] Holliday, M.A. "Teaching Computer Systems through Common Principles", 41st
ASEE/IEEE Frontiers In Education Conference, October 2011, Rapid City, SD, pp. S2G-1 to
S2G-6.

[4] Tanenbaum, Andrew S; Albert S. Woodhull , Operating Systems: Design and
Implementation (3rd ed.). Prentice Hall, 2006.

[5] Silberschatz, Galvin, and Gagne, Operating System Concepts, 8th Edition. Wiley, 2009.

[6] Joseph, Anthony and Stoica, Ion. Course “CS 160: Operating Systems and Systems
Programming”, University of California Berkeley, Spring 2012.
http://inst.eecs.berkeley.edu/~cs162/sp12/

[7] Ousterhout, John. Course “CS 140: Operating Systems”, Stanford University, Winter 2013.
http://www.stanford.edu/~ouster/cgi-bin/cs140-winter13/

268

