
INTRODUCTION
Typical uses of the Kalman filter include smoothing noisy data and providing steady
state estimates of parameters of interest [1‐3]. During the fault in power grids a short
window optimal least square error solution can reduce the nonsinusoidal effect of the
waveform and identify the sudden change in voltages and currents [4]. In this work,
during the fault in power grid, we use the phasor measurement unit (PMU) data to
compare the outputs of a Kalman filter and a short window noise reduction filter [3],
both developed for sinusoidal process. By setting a threshold adaptive to the noise
variance, proposed method can detect a fault in noisy environment by comparison of
the two outputs [4].
In this work we present the time delay detection trade‐off findings for the algorithm
robustness for varied noise variance and filter window lengths.
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Kalman filter [2] estimator block diagram is shown in Fig.1.
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Figure 1: Kalman filter approximation algorithm

Kalman filters efficiently suppress the white noise in a known steady state process, but
the sudden change detection is not quick, as shown in Figure2.
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Figure 2: Kalman filter cleaned the sinusoid noise until 65 ms when a fault in a 60Hz power system 
occurred. Kalman filter takes time for the adjustment (red line), while the real time measurement of a 

noisy signal is suddenly changed (green line).

Short window filter for the sinusoid measurement optimization takes the multiple
consecutive measurements of a noise spoiled sinusoid and outputs an optimized
approximation as shown in equations 1‐3.

ሺ1ሻ
ଵିݕ
ݕ
ଵݕ

ൌ
ߠݏܿ െߠ݊݅ݏ
1 0

ߠݏܿ ߠ݊݅ݏ
ܻ
௦ܻ
	 ሺ2ሻ ܻ ൌ ሾ௬భ௦ఏା௬బା௬షభ௦ఏሿ

ଵାଶ௦మఏ
ሺ3ሻ ௦ܻ ൌ ௬భି௬షభ

ଶ௦

Figure 3: A 3‐sample window filter output (red line), while green line is the 
noisy measurement

Figure 4: A 9‐sample window filter output (red line), while green line is the 
noisy measurement

METHOD & SIMULATIONS
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By setting a threshold
adaptive to the noise
variance, proposed method
can detect a fault in noisy
environment by comparison
of the two outputs, as shown
in Fig. 5. Figure 5: Proposed algorithm block diagram

Simulation results: In the following simulations the fault happened in 4th cycle,
i.e. at 65 ms in a 60 Hz noisy signal. For the demonstration purposes the
exaggerated noise has varied from 0.7 pu to 1.2 pu. A 3‐sample window filter
and a 9‐sample window filter results are compared. The results of the noisy
voltage signal sudden change detection are tabulated in Table 1.

Noise 
content

0.7 pu 1.0 pu 1.2 pu

Threshold Delay time 
(ms)

Threshold Delay time 
(ms)

Threshold Delay time 
(ms)

3‐sample 
window

1.4 pu 3.90 2.18 pu 5.46 2.30pu 23.56

9‐sample 
window

1.0 pu 3.65 1.0pu 4.30 1.30pu 5.34

The noise suppression rate increase with the length of the window. The
optimal filter window length depends on the application requirements. In
presented simulations, the 9‐sample filter length has achieved faster fault
detection with lower adaptive threshold. The examples of a difference of the
two filter outputs are shown in Figs. 5 and 6.

0 0.02 0.04 0.06 0.08 0.1

-3

-2

-1

0

1

2

3

4

Time [s]

V
ol

ta
ge

 [p
.u

.]

estimate difference between Kalman filter and 3SDWA

 

 
error

Figure.5: Difference output of
a Kalman filter and 3‐sample
window filter, with an
appropriate threshold
detected to be about 2.18 pu.
The input sinusoidal signal
was spoiled by 1.0 pu noise
content. The minimum
detection delay was 5.46ms.
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Figure.6: Difference output of
a Kalman filter and 9‐sample
window filter, with an
appropriate threshold
detected to be about 1.0 pu.
The input sinusoidal signal
was spoiled by 1.0 pu noise
content. The minimum
detection delay was 4.30ms.

In this work a grid fault to ground is analyzed. In the simulations it is assumed
that the fault and measurement happen at the same location. The noise
suppression is effective and allows accurate and quick fault to ground
detection. In future work, line‐to‐line fault detection in noisy environment
should be analyzed. Further research should cover the line parameters under
changing the phase angle when a fault occurs.
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The examples of sinusoid approximation based on a 3‐sample window filter
output is shown in Fig. 3 and 9‐sample window output in Fig. 4.


