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Abstract
This project applied two Artificial Neural Network models (Backpropagation and the

General Regression Neural Network (GRNN)) to predict primary water levels at a single port on
the Texas coast.  The data for this project was provided by the Division of  Nearshore Research
and is collected hourly from several ports along the Texas coast. Important variables needed for
making tide prediction were determined. The networks were then built, trained, and tested.  The
results obtained from each neural network are presented.

1.0 - Introduction

Tide prediction requires knowledge of a number of subjects.  Oceanography, Meteorology,
Mathematics, and Physics are a few of the major disciplines that are involved.  Fortunately,
applying Artificial Neural Networks (ANN) to the problem of tide prediction (or more
specifically, primary water level prediction) reduces most of the work down to simple pattern
recognition.

2.0 - Tidal Analysis

A study of tidal patterns and what affects them was needed to determine the ANN inputs 6.
The primary tide generating forces are the gravitational pulls of celestial objects, namely the Sun
and the Moon.  Their movements cause large bodies of water to swell and recede according to
their relative position to the earth and to each other. Though Newton’s Law of Gravitation does
not directly describe this phenomenon, it can help explain it.  Basically, the law states that the
attraction between objects has a force proportional to their masses and inversely proportional to
the square of the distances between the objects. Simply put, the closer the Sun or the Moon is to
the earth, the greater the force of attraction.  Now recall that one of the primary properties of any
liquid is its viscosity.  Ocean water has a very low resistance to flow.  Tides are the direct
response of the Sun and Moon's exertion of a force against the Earth's large bodies of water.

The Moon’s effects on the oceans are strongest at an interval of nearly two weeks. So,
approximately twice a month, the Moon exerts the strongest gravitational pull on the Earth.  Just
after the full and new moon occur, tides generally have their greatest ranges from low to high
water 1.  The heights of those ranges are called spring tides while the lowest of the ranges are
called neap tides.  The figures 1 and 2 are helpful in visualizing the effects of the moon on the
earth’s waters.
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The Sun also plays a part in the generation of tides.  Its gravitational strength is somewhat
less than the Moon's pull.  This is due to the fact that it is more distant than the Moon.  Although
its effect on the water is not as great as the Moon's, when acting in conjunction with the Earth
and the Moon, it can clearly be seen to make a difference in tidal patterns.  Attraction is strongest
at times when the Sun, Moon, and Earth are lined up as seen on figure 3.

Figure 1. Gravitational pull of the Moon.

Figure 2. Effects of the Moon’s gravitational pull on the earth’s waters.

An important side note: it is the Sun's and the Moon's attractions that considerably reduce the
amount of data that can be used by a neural network for prediction in this project.  The data
being used does not include their effects, though they must be taken into account.  A month's
worth of data becomes too much. Variables, such as wind speed and direction could remain
constant at a port for weeks (unlikely, but still possible), but the primary water levels would still
shift.  This is because of the gravitational pull.  To reduce the range of this effect as much as
possible, it is necessary to take smaller data samples for training and test sets.  It turns out, for
the most accurate predictions, about 24 - 36 hours for a training set is ideal.  Beyond that, the
error in prediction increases and accuracy suffers immensely.

On the other hand, should this project have been implemented on the effects of gravitational
pull alone, the same sort of problems with errors would occur.  The Earth will, approximately,
reach the same position in its orbit every year, just as the Moon repeats its orbit around the Earth
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every day.  Were the primary water levels solely dependent on celestial pulls and movements,
then it would be easy to make predictions for years and years to come.  However, other
conditions, as described below, are not as constant as the suns and moons movements.

Figure 3. Gravitational pull is strongest when the Earth, Moon, and Sun are aligned.

Besides the obvious effect of gravity on the waves there are other tide affecting variables to
consider.  The wind plays a large role in tide generation, especially along the Texas coast.  Just
as gravity pulls large bodies of water, the wind can push water enough to affect tidal patterns.
The more violent the weather, the stronger the winds, the greater the dramatic effect on the
water.  The wind's speed and direction are, in particular, important variables in determining
water levels.  Air and water temperatures also must be considered as they often provide some
indication of weather.

Barometric pressure is also thought to have some noticeable sway over the tides.  A high
barometric pressure can be an indication of depressed sea levels.  An inch change on a mercury
barometer can correspond to sea level variation of around a foot 2.  There is clearly a relationship
present between water levels and barometric pressure.

A tidal cycle for one day may appear to be identical to that of one a year before, but variable
combinations, such as barometric pressure and air temperature, may be very different.  This
looks like a potential problem for a neural network that has already learned that certain
combinations of values produce certain results; however the network learns combinations that
consist of both inputs and outputs during its training.  This means that the network can learn to
recognize that there is more than one way to solve a problem.

2.1- Data Collection
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Collection of data was the next step in predicting primary water levels.  The Division of
Nearshore Research (DNR) is part of the Conrad Blutcher Institute for Surveying and Science at
Texas A&M – Corpus Christi.  One of their activities is the collection of real-time data from
several ports along the Texas coastline.  Some of the data series descriptions include primary
water levels, air temperature, wind speed, wind direction, and many others.  The data has been
collected for a number of years and can be accessed from an online database 8.

 As this project emphasizes the prediction ability for a single port, it was necessary to look
through the data to determine which ports had the most consistent entries.  Some ports were
found to have entries missing for a number of data series.  Morgan’s Point was found to be one
of the more reliable sources of data collection and is the port that is used in all further process
and data descriptions in this paper.

Unfiltered, a resulting query from the online database would have some basic port
information and variable descriptions at its head.  Figure 4 shows what the data looks like after
removing some of the unnecessary information.

#  Time                503-pwl   503-atp   503-wtp  503-wsd  503-wdr 503-bpr
2000264+0000      1.804       28.1       35.3      4.600        145        758
2000264+0100      1.821       27.9       35.4      3.400        158        758
2000264+0200      1.841       27.8       35.5      2.100        151        758

Figure 4. Raw data from online database 8.

2.2 - Data Analysis

After obtaining the data from the online database, it had to be examined for quality.  While
Morgan's Point is one of the better data collection stations, there were still sporadic areas of
inadequacy.  There are, in some sections of the data, areas that are incomplete.  Supplying an
Artificial Neural Network (ANN) with insufficient data when training can lead to erroneous
prediction during testing, so it was necessary to find reasonable methods that could be used to
reduce such potential problems.

If gaps in data were large, for example a few days worth of missing wind speed data, those
days were discarded.  Use of these data as training or test sets in an artificial neural network
would corrupt the learning process since over a long period of time a variable can display a large
range of values.  In the space of a day alone, water levels can go from one meter to two meters
and back again.

If the gaps were less substantial, a few hours, maybe even up to a day, then an average
between the last recorded instance and the next recorded instance would be taken for that
attribute.  For example, figure 5 shows that the air temperature, wind temperature, and
barometric pressure are missing between 1:00 PM and 4:00 PM.
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#  Time                503-pwl   503-atp 503-wtp 503-wsd 503-wdr 503-bpr
2000029+1200      1.250        2.3       10.9      6.100        327        770
2000029+1300      1.202        NA        NA     6.900        330        NA
2000029+1400      1.167        NA        NA     7.500        335        NA
2000029+1500      1.103        NA        NA     7.700        341        NA
2000029+1600      1.117        2.1       10.8      7.900        346        772

Figure 5. Data set with missing elements.

Filling in the data with the averages between the two times would produce the following results
(see figure 6):

#  Time              503-pwl   503-atp 503-wtp 503-wsd 503-wdr 503-bpr
2000029+1200      1.250        2.3       11.0      6.100        327        770
2000029+1300      1.202        2.1       10.9      6.900        330        771
2000029+1400      1.167        2.1       10.9      7.500        335        771
2000029+1500      1.103        2.1       10.9      7.700        341        771
2000029+1600      1.117        2.1       10.8      7.900        346        772

Figure 6. Corrected data set.

This method operates under the assumption that, from one hour to the next, values of certain
variables (like wind speed) will not change drastically.  Instead they will follow a smooth rate of
increase or decrease. This will, generally, hold true for any of the variables over a small period of
time.

The folly in this method is the lack of ability to comprehend natural phenomenon such as
wind gusts or other unpredictable, yet natural occurrences.  For the most part, however, it can
produce believable data where there was previously none.  Attempting to apply the same
methods to larger sections of missing data could result in larger error.  As the length of time
stretches between data collection, accounting for wider ranges of missing values need to be
made. It has been established that values do not, generally, change drastically over a period of
twenty-four hours; however, it can be seen that in that time period, values for the variables in
question can rise and fall several times. Neural Networks need accurate data in order to make
accurate predictions.  Large amounts of sequentially missing data will produce erroneous results.

3.0 - Building the Backpropagation Neural Network

The first networks built contained a single layer with only 3 input nodes and a single output
node.  These were designed to be a prototype to determine the optimal size of the training sets.
The initial input variables were wind speed, wind direction, and air temperature.  The output
value was primary water levels.  Once the validity of the network was confirmed, two more input
variables were added (water temperature and barometric pressure) and predictions were
recorded.
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Actual predictions were made with several Backpropagation networks that had 5 input nodes
and one or two hidden layers.  The basic approach was to attempt the network with one hidden
layer and compare its performance with a network with two hidden layers.  Had there been a
significant increase in performance of the one with the hidden layer, more processing elements
would have been added to the layers.  This would have been re-tested and compared for
performance.  As it was, the only significance in the resulting predictions was the time it took to
train the networks.

The first network, shown in figure 7, was tested several times using different learning rules
and squashing functions.  The learning rule is a guideline for performing the weight (connection
strength) updates, while the squashing function is a method for transforming the input
(Hyperbolic Tangent Transfer Function).  For the small samples that this network was limited to,
the difference was not highly noticeable between the different learning rule options.  The
difference was noticed when looking at the networks' learning capabilities with more layers and
the transfer functions.  The number of cycles given to the network between weight updates (the
epoch) was set to 16.  This means that the network evaluated 16 data entries before the network
was able to adjust its connection strength.  The test set consisted of 12 hours worth of data.

Figure 7. Screenshot of a Backpropagation network from NeuralWare’s NeuralWorks 3,4,5.

Feeding the network random data entries (24 hours worth of data) for a number of cycles
results in the error shown in figure 8.  The Root Mean Square (RMS) is an error measuring
technique that takes the sums of the squares of each processing element's (each node in the input,
output, and hidden layers) error.  It then takes the square root of that average 5.  An ideal RMS
error approaches zero.  Correlation is another tool that is used here.  The closer to one the
correlation value gets, the more similar the predicted and the actual water levels are to each
other.
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Figure 8. Error tools from NeuralWare’s NeuralWorks.

This graph shows a high correlation.  The actual results can be better seen in figure 9 where a
graph that represents predicted and actual values is presented. For the most part, the predicted
water levels follow, rather closely, the actual water levels.  The most noticeable error, between
the fourth and sixth hours can be explained by looking at the training and test sets that were used.
Figure 10 shows the results of the same network attempting to predict the next 24 hours after the
training set.

Figure 9. Prediction graph (for 12 hours) from a Backpropagation network.

Adding one more hidden layer to the network decreased the training time by half.  The
accuracy of such a network, while slightly less than that of the original network, is still very
good.  Increasing the training time would improve the accuracy of predictions and still manage to
make the training of the network considerably more efficient than the original.  Figure 11 shows
the results for a 24 hours prediction.

4.0 - Building the General Regression Neural Network (GRNN)

The General Regression Neural Network excels at prediction 9. Its background has deep roots
in statistics and uses a Gaussian-based technique in order to determine a conditional mean Y
given X, where Y is the output and X the input 3.  To briefly describe the inner process: the
GRNN uses a technique called Parzen estimation in order to approximate a joint probability
density function (pdf).  A probability density function is the probability distribution associated
with a continuous random variable.  The pdfs are used to determine which of the processing
elements "win" when an input vector is put through the network and matches that pdf.
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Processing elements are competitive and only the ones that win produce an output (Network
Selection).

One of the main advantages of using a GRNN is its speed during its training phase.  It trains
much faster than the Backpropagation network.  The initial test set produced good results after a
brief training period and shows the network to be about as accurate as the Backpropagation
network as well.

Convergence to an optimal regression surface with an increasingly large number of samples
is simply saying that the more training data the GRNN is given, the better it will perform in its
estimations.  However, another of the advantages mentioned above claims that the network will
also be effective with sparse data as well.  Regression, as a general statistical technique has the
ability to make decent estimations for relationships with non-dense or data that is few and far
apart.  The same principles apply to the GRNN model. Figure 12 shows the GRNN predictions
for 24 hours after the training set from 8/27/2000.

Figure 10. Prediction graph (for 24 hours) from a Backpropagation network

5.0 – Conclusions

Each of the networks used had definite and noticeable advantages in both speed and
accuracy. The Backpropagation network, even when built with a single layer produced
exceptional results that were close to the actual primary water levels.  Adding a layer to the same
network resulted in a network that learned approximately twice as fast, proving that efficiency is
increased with more complex networks of this type.

The General Regression Neural Network’s main advantage over the Backpropagation model is
the incredible speed at which it learns.  Its accuracy is only slightly less than the end result of the P
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Backpropagation’s predictions of the same data and this problem can be eliminated with
additional training.

For the amount of data being used for the training of these networks, either model would be
appropriate for practical use; however, as larger and larger data sets are employed (say,
eventually, years) the General Regression Neural Network may provide decent results in less
time.

Figure 11. Prediction graph (for 24  hours) from a multi-layer network

Figure 12. Prediction graph (for 24 hours) from a GRNN. P
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