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Preference for debugging strategies and debugging tools and their 

relationship with course achievement - preliminary results of a study 

involving novice programmers. 

Abstract 

It is estimated that 35-50% of the time spent building solutions is spent debugging software. 

Despite the importance of debugging in software development, how students debug, and the 

strategies and reasoning students use for debugging software are still unclear. This work in 

progress will present preliminary results on students’ preferred debugging strategies and 

compare them with their learning gains during a programming course. We focus on answering 

the following questions: a) “Is there a difference between students’ preference for debugging 

strategies and their course achievements?”; b) “Is there a relationship between software 

debugging tools and the conceptual understanding of debugging strategies?” 

This study was conducted during Fall of 2022 in a 16-week programming fundamentals II course 

at a large public southwestern university. This semester, 328 students enrolled from various 

engineering and computer science majors. The data was gathered from a debugging assignment, 

which is an open-ended questionnaire. The open-ended questionnaire aims to uncover students’ 

thought processes when helping others to debug their code and students’ debugging strategies. In 

addition, a coding book was developed to capture students' utterances and classify them into 

Metzger’s debugging strategies: a) incremental development, b) program slicing, c) sanity 

checks, d) error variables for controlling behavior, e) cause elimination methods, f) turning 

debugging code on and off and g) traceback. Preliminary results include the finalized codebook 

established by four coding sessions and two researchers who are also experienced programmers 

and the descriptive statistics from ten students coded with the final version of the codebook.  

Through the analysis of the open-ended responses of ten students, our study sought to identify 

the debugging strategies that students use concerning their learning gains. From the information 

gathered, most students were able to verbalize two strategies. Sanity Checks Low Level (SCL), 

and Sanity Checks High Level (SCH). In addition, it was possible to observe that students whose 

approach included SCH had higher academic achievement in the course. In contrast, students 

reflecting a preference for SCL had lower performance in the course. In addition, it was found 

that students using debugging tools expressed a wider range of debugging strategies, and all of 

them were able to express their use of debugging strategies that are further facilitated by 

debugging tools.  

Introduction 

In recent years, focusing on preparing students for big data and artificial intelligence has led to a 

progressive interest in developing students’ programming skills. A big part of artificial 

intelligence and big data is concerned with software development, which often relies on effective 

debugging strategies. Debugging is a process in which a failure is observed, identified, and 

removed [1], and it is estimated that 35-50% of the time spent building solutions is debugging 

[2].  

 



Different tools and strategies are believed to help programmers debug programs. Nowadays, 

debugging tools exist within Integrated Developing Environments (IDEs) in addition to other 

specific scenarios (e.g., [3]–[6]). However, identifying and resolving failures in software is still 

challenging [7]. One reason for being a challenging process is that debugging is a form of 

troubleshooting that is inherently difficult for human beings [8]. This challenge adds to the 

debugging process complexity when accounting for the nature of bugs. Furthermore, bugs are 

created by programmers and implicitly in-built into the code itself [7]; in other words, bugs are 

technically created by programmers. Therefore, the debugging process requires identifying when 

bugs occur, subsequent dependencies that can propagate the error, and finding the best path to 

solve it [9], [10].  

 

Debugging skills have been explored in higher education. For example, some researchers have 

created forms of instructional scaffolding that help novice students to develop debugging skills 

[11], [12]. In addition, several studies have focused on comparing expert and novice 

programmers debugging skills to understand “What do experts know that we can transfer to 

novice programmers?” focusing on developing tools and strategies to help students. However, 

little attention has been paid to what novice students know. On that account, arguably while 

developing strategies to help students is relevant and comparing novices 

with experts helps us understand differences between these two groups, novices’ debugging 

skills and strategies used are often not fully explored.  

 

The lack of exploration of novice programmers' debugging skills has led to learning and teaching 

strategies that do not consider or understand how students deal with debugging processes in 

software development. For instance, it is assumed that students learn debugging by having 

experience with debugging [13]. However, a study by Whalley and colleagues revealed that 

students’ reflections on their experiences with debugging tend to be negative [14]. In this study, 

students expressed that exploring strategies such as print statements frequently will make them 

miss the program’s general idea, forcing them not to follow a methodological approach [14]. 

 

Although debugging is a challenging task, it is also an essential skill that students must master to 

acquire other computational thinking skills [15]. Consequently, exploration of students’ 

debugging skills is essential to develop teaching and learning strategies that fully explode their 

already-in-place preferences and knowledge. Understanding students' preferences and their 

natural approaches to the debugging process is critical to advancing computing education. 

Furthermore, achieving this goal will help the computing community understand intuitive 

approaches students use while dealing with the complex debugging process to adapt tools and 

learning experiences further. To this end, two research questions are explored in this work-in-

progress paper: RQ1: “Is there a difference between students’ preference for debugging 

strategies and their course achievements?” and RQ2: Is there a relationship between the use of 

software debugging tools and the preferences for debugging strategies? 

 

 

Conceptual framework:  

This study used the Debugging by thinking conceptual framework proposed by Metzger in 

2003[1]. Metzger uses a multidisciplinary approach to tackle the understanding of debugging. 

Metzger uses the term "Debugging by thinking " to refer to the expert programmers' approach to 



debugging. Metzger's proposal of debugging by thinking consists in approaching the debugging 

task with an explicit methodology, seeking problem-solving methods from multiple disciplines, 

and with awareness of the assumptions of the solution and probable mistakes involved in the 

development [1]. Metzger argues that although it is believed that debugging is learned by trial 

and error, oftentimes, this results in programmers learning “tricks” to resolve problems with their 

program without a clear understanding of the cause or a well-developed methodology to solve 

other debugging problems. Therefore, a constructive, well-rounded, and multidisciplinary 

approach is required to become an expert debugger. In the attempt to define debugging by 

thinking, Metzger proposes six debugging strategies or ways of thinking about a debugging 

problem: Incremental Program Development, Program Slicing, Sanity Checks, Catch and Save 

Error, Cause Elimination Method, and Test Cases. These strategies inform our study to capture a 

broad range of debugging preferences and expertise levels that we expect from our students. In 

Table 1, the definition of each strategy from Metzger’s framework is provided. 

Table 1 

Definition of the six debugging strategies proposed by Metzger[1]. 

Strategy Definition 

Incremental program 
development 

This strategy consists of the smallest portions of the 

code that are tested and debugged before incremental 

changes are made and added to the overall program. 

This approach helps reduce the debugging process's 

complexity and ensures that each portion of the code 

works as intended before moving on to the next. 

 

Program slicing This strategy consists of the programmer focusing on a 

specific portion of their code (by commenting out or 

isolating a section) to identify any errors or problematic 

behavior in that section. 

 

Sanity checks A type of error checking where the programmer inserts 

check throughout the code to validate low-level 

assumptions such as the type of variables, syntax, 

values of parameters, and object definitions. The goal 

of sanity checks is to identify problems at an early 

stage of development quickly. 

 

Catch and Save Error This technique refers to the practice of catching errors 

or exceptions that occur during the execution of a 

program and storing or printing the error message. This 

information can then be used to identify the source of 

the error and diagnose the issue. In addition, by 

capturing and preserving the error, developers can 

better understand the cause of the problem and take 

steps to correct it. 

 

Cause elimination method: A debugging technique where the programmer first 

identifies the source of an error then generates a list of 



possible causes of the error and eliminates each cause 

one by one until the root cause of the error is found. 

 

Test case A test case is a set of steps, inputs, and expected  

outcomes used to test a specific aspect of a program. 

Test cases are designed to verify that the program 

behaves correctly and performs its intended functions. 

 

Literature Review 

What has been done around debugging in higher education?  

In higher education, debugging literature has identified several key components necessary for 

students to learn how to debug effectively. Ko and Myers in 2005 state that these components 

include the ability to understand code, recognize common error messages and their causes, and 

plan a debugging strategy[16]. In addition, empirical studies in higher education have also 

compared the debugging strategies of diverse groups of programmers, such as novice and expert 

programmers. For instance, novice programmers tend to rely on a "trial and error" approach. In 

contrast, expert programmers use a more systematic approach that involves analyzing the 

problem, generating hypotheses, and testing the hypotheses [17]. Another study found that expert 

programmers were likelier to use debugging tools, such as debuggers and error tracebacks, than 

novice programmers [18]. While another study found that students taught debugging strategies 

through problem-based learning had significantly better debugging skills than those taught 

through traditional lectures [19]. 

In addition to the comparisons between expert and novice programmers, multiple teaching 

interventions have been aimed at improving students' debugging skills in higher education. One 

such intervention is debugging exercises, effectively improving students' debugging skills [[19]. 

Another teaching tool that has been used previously corresponds to debugging games. 

Debugging games have taught debugging skills effectively [20]. Another innovative approach is 

using virtual debugging tutors, which are computer-based systems that provide personalized 

feedback and guidance to students as they work through debugging problems [[18]. These virtual 

tutors improve students' debugging skills and performance in computer science courses [21]. 

Finally, exposure to systematic debugging has also been tested, finding relationships between 

systematic debugging exposure and students' self-efficacy and effective debugging ([22], [23]).  

Debugging and students’ performance 

Previous research has established the complexity and multiple factors that influence students 

debugging performance. To date, several studies have focused on how the program error 

message influences students’ skills and strategies to debug [24], the time novice students take to 

debug a problem by using counting error compilers [13], identifying how visual attention could 

also impact students debugging performances [25] and the type of high or lower achievers 

influence students’ strategies and performance on debugging [13], [26].   



Studies have shown that students spend less time and effort while debugging tools that provide 

more detailed feedback on errors [24] or mirror tools that help students to become aware of the 

errors [25]. Research literature has also revealed that while high-performance students focus 

more on the program's logic flow while debugging, low-performance students focus more on 

accessing previous information entered into the program to compute a value [27]. These findings 

complement prior research that indicates how novice students rely on trial and error rather than 

understanding a program’s logic while debugging a program [28], [29]. 

Methods:  

Setting and participants: 

This study was conducted in a large public southeastern institution programming fundamentals 

course. During Fall 2022, there were 328 students enrolled in the course. The course is a second 

part of programming fundamentals courses and focuses on using C++. This 16-week course is 

divided into roughly ten weekly assignments, two major exams, two intermediate projects, and 

one final project. Both assignments and lectures revolve around the following goals (1) Build 

and execute C++ programs from the command-line and an IDE (2) Demonstrate an ability to 

solve large programming problems (3) Examine the uses of dynamic memory allocation, pointer, 

and template to create the creation of memory-efficient data structures such as linked lists, 

stacks, and queues. In order to answer our research questions, the proxy of students’ performance 

was the midterm examination. The midterm exam contained a total of 17 conceptual questions 

and 18 programming questions. Conceptual questions were multiple choice, and programming 

questions offered students code snippets that could contain errors or code snippets in which they 

would need to provide the program's output.  

Data collection 

The instrument for gathering our data was a survey with a total of 15 questions. Five of the 

questions focused on eliciting students’ programming experiences, three questions focused on 

students' demographics, and seven questions targeted to exploring students’ debugging 

strategies. This survey was distributed during week 12 as an assignment. Three hundred twenty-

three students submitted the assignment; however, after cleaning duplicate students and empty 

responses, there was a total of 302 completed assignments. 

This working-in-progress study uses the student’s responses to question 13. Question 13 is as 

follows:  

“To complete this part of the assignment, you must write 300 words or more. Suppose 

you would have to help a person to debug their code. What would be the process that you 

would use to help this person? Describe the process with specific steps and the questions 

that you would ask." (Q13) 

The data from each student's response was organized into discourse segments. Each discourse 

segment was divided based on students completing an idea. Researchers agreed on each 

discourse segment to be further coded. An example of our data before and after the segments is 

presented in Table 2.  



Table 2  

Example of the discourse segments for one student 

Student’s answer excerpt without discourse 

segment 

Discourse segments 

“The first thing I would check would be 

[platform name]. As most of our submissions 
are through this website it can be useful to 

weed out obvious mistakes. Secondly, I would 

ask them "What step do you believe there 

could be a potential problem in?". If their 
answer is "IDK" then I would explain to them 

an overhaul of the project. If they understood 

all aspects and didn't have a conflict with 
understanding my next step would be to look 

over their code.” (Student 1) 

Discourse segment 1: “The first thing I would check 

would be [platform name]. As most of our 
submissions are through this website it can be useful 

to weed out obvious mistakes.” 

Discourse segment 2: “Secondly, I would ask them 

"What step do you believe there could be a potential 
problem in?". If their answer is "IDK" then I would 

explain to them an overhaul of the project. If they 

understood all aspects and didn't have a conflict with 
understanding my next step would be to look over 

their code.” 

 

Coding book: 

A content analysis was used to classify each student discourse into a category [30]. Next, we 

developed a coding book protocol using the conceptual framework. The initial coding book 

contained seven categories corresponding to debugging by thinking strategies [31]. These 

categories included: linear incremental debugging, program slicing, sanity checks, catch and save errors, 

cause elimination method, test cases, and no code. 

Two researchers performed a content analysis of the students' discourses. A total of four rounds 

of coding were performed using the most updated coding book each time. The first coding round 

corresponded to coding one student with the codebook’s initial version. Each researcher verified 

their code for this student, and we finished this round after achieving consensus on the strategy 

for all the discourses of this student. In order to achieve consensus, some of the codebook 

definitions for each category were changed to align with data and researchers’ observations. For 

example, two changes made to the coding book during our coding rounds were eliminating 

traceback techniques and the change of the linear incremental development strategy. First, the 

traceback technique was eliminated because this strategy involved the interaction between 

multiple strategies, such as the cause elimination method and program slicing, causing 

disagreement among the researchers. Second, incremental program development changed to 

become linear incremental debugging. In this case, students were asked to help others debug; 

therefore, incremental development would not be present in the context of the question. Linear 

Incremental Debugging (LID) encompassed the incremental debugging portion of students' 

strategies.  

For the second coding round, the two researchers were tasked with coding three new students 

and with a second version of the codebook. After coding individually, we met to discuss the 

codes for each student. We redefined our coding book until an agreement was reached for each 

student. From this round, some other changes were produced. For example, sanity checks were 

divided into two categories to reflect the higher-level approach that some students reflected in 



their answers and still needed to be captured by the codebook. Because of a high percentage of 

disagreements with the first students, it was decided to return to the two coded students and 

revise the code with the new codebook. The third round then consisted of a meeting to check the 

two remaining discourses; after agreeing with the code for these students and having a smaller 

percentage of disagreement, each researcher coded ten students individually.  

The fourth and final coding round consisted of checking our codes' reliability on the ten students. 

The intraclass correlation coefficients (ICCs) proposed by Cohen and Doveh were calculated 

using the coded discourses corresponding to the new ten students[32]. For this final coding 

round, the ICC index among the two coders reached 0.81. All codes were verified, and all 

students coding reached 100% agreement among researchers. No further changes to the 

codebook were made, which was considered the final version (see Table 3).  

Table 3. 

Final version of the codebook 

Code name  Definition  Student quotes examples  

Linear  

Incremental Debugging  

(LID) 

The student indicates that the smallest portions 

of code will be tested linearly until something 

is erroneous. For example, it could move 

sequentially forward or backward. 

  

“Then, I would ask them to run 

these chunks, one at a time, from 

top to bottom, and see if any of 

the chunks produce an error.” 

   
Program Slicing (PS) The student indicates that they will focus on a 

portion of their code (e.g., comment out certain 

functions) to identify erroneous behavior.   

“The next thing that I would do 

to help is asked, "can you 

separate the blocks of code based 

upon functionality?" This would 

allow them to chunk their code 

and allow them to much more 

easily test it.”  

  
Sanity checks Low-level.  

(SCL) 

The student indicates that they use checks 

throughout their code (in the form of 

conditionals and print statements) on low-level 

assumptions, such as type of variables, 

syntaxis, values of parameters, and definitions 

for the objects that exist. In addition, they may 

also indicate the use of the IDE console 

errors/warning to find a starting point in 

debugging without catching the errors. 

“The error should give a 

line/function it happens in, which 

can narrow down the search.” 

Sanity checks high-level.  

(SCH) 

The student indicates that they check the 

design, logic, objective, purpose, or other high-

level assumptions of the program. 

“The very first thing that I would 

ask this person to do is to create a 

diagram of the functionality of 

their program, so that they can 

see for themselves how it is 

supposed to run.”  



Catch and Save Error  

(CSE) 

The student indicates that they store/print 

(throughout the program) error generated by the 

program.  

  

  

“… you could use error handling 

tools like try and catch 

statements. You could use these 

by surrounding the error with 

these statements and then seeing 

if it’s printing out the error.” 

   
Cause  

Elimination Method 

(CEM)  

  

The student indicates that they know where the 

error is coming from. Then, they analyse the 

possible contributors to such errors. After 

analysing, they develop a list (or they mention 

a sequential or rationale-based way) of possible 

causes of the error [at the symptom level (part 

of the software that is not working)] and then 

conduct tests to eliminate each of the possible 

causes.    

“The third method would be 

commenting things out because if 

there’s an error in a function you 

can comment out the whole 

function and then comment line 

by line back in the function and 

seeing where the error comes 

into play.” 

Test cases  

(TC)  

The student indicates that they will build test 

cases to test specific functionality of the 

program.  

“If the answer is yes, then I 

would ask them to create test 

cases for those methods or 

classes, separate from any other 

part of their code. If these test 

cases result in incorrect 

functionality, I would ask them 

to focus on the code inside of 

those methods or classes and use 

the newly created test cases to 

debug them.”  

  
 No coded  

(NC) 

The researcher indicates that the discourse did 

not contain any debugging strategy 

 “To help a person out with 

debugging their code, first i 

would look at the errors given on 

their compile line and ask them if 

they know why such errors are 

showing.” 

 

Results: 

The results presented in this work-in-progress paper correspond to ten students randomly 

selected from the pool of 302 students whose answers to Q13 were coded with the final version 

of the codebook presented in Table 3. The students indicated debugging strategy per coded 

discourses, their indication of use of a debugging tool, and their midterm grades were analyzed 

to answer the two research questions. 

RQ1: Is there a difference between students’ preference for debugging strategies and 

their course achievements? 

RQ2: Is there a relationship between the use of software debugging tools and the 

preferences for debugging strategies? 



The descriptive statistics are presented for the analyzed data, in addition to preliminary results 

for RQ1 and RQ2. 

 

Descriptive statistics 

The average number of discourse segments found in each student’s answers to Q13 was seven, 

with a total of 70 discourse segments coded across all ten students. In addition, 19 discourses 

were coded as Sanity Checks High Level (SCH). SCH was the most frequent strategy identified 

in students’ answers, with six students using this strategy, followed closely by Sanity Checks 

Low Level (SCL) with eight students. Table 4 presents the number of coded debugging strategies 

in each student’s answers. Interestingly, Cause Elimination Method (CEM) and Test Cases (TC) 

were rarely found in the coded questions, with only one and two students using them, 

respectively. Catch and Save Error (CSE) was not found in the sample, while No coded (NC) 

discourse segments were frequent. NC data indicated no evidence of any use of any debugging 

approach. 

Table 4 
Number of students and discourses segments coded in each strategy. 

Strategy # Students # Discourses 

LID 6 9 

PS 6 8 

SCL 8 15 

SCH 9 19 

CSE 0 0 

CEM 1 1 

TC  2 2 

NC 8 16 

Note: CEM = Cause Elimination Method; CSE = Catch and Save Error; LID = Linear 

Incremental Debugging; NC = No Code; PS = Program Slicing; SCL = Sanity Check 

Low Level; SCH = Sanity Check High Level; TC = Test Cases 

In addition, in Table 5 presents the exact sequence observed for each student including repeated 

strategies and discourses classified as not including any debugging strategy (NC). 

 

 

 

 

 

 



Table 5 

Sequences of students’ coded discourses 

Student ID Coded strategy from the discourse segment sequence 

1 NC SCH LID NC PS NC NC   

2 SCL SCH PS LID PS SCL NC NC  

3 SCH SCL SCL PS PS SCH TC   

4 NC LID SCH NC LID SCH    

5 SCH SCL LID SCH LID LID NC   

6 SCH SCL SCL LID NC PS SCL NC TC 

7 SCH SCH CEM SCH SCH NC NC SCL  

8 NC LID SCL SCH NC TC PS   

9 SCL PS SCL SCL SCL     

10 SCH SCH PS SCL SCH     

Note: CEM = Cause Elimination Method; CSE = Catch and Save Error; LID = Linear Incremental Debugging; NC 

= No Code; PS = Program Slicing; SCL = Sanity Check Low Level; SCH = Sanity Check High Level; TC = Test 

Cases 

 

RQ1: “Is there a difference between students’ preference for debugging strategies and their 

course achievements?” 

Table 6 results from the sequence of coded discourse (Table 5) when discarding NC and repeated 

strategies instances. From Table 6 it is possible to observe that most students were identified to 

prefer SCH as a first step for debugging a code. Students indicated using the SCH strategy when 

given their debugging task to understand the program's problem, logic, and objective. The 

second most common first-step strategy was SCL, mainly used by students who were trying to 

first clear compiler errors or syntax errors at the beginning of the process. Finally, two students 

indicated using LID to start the debugging process, mainly indicating their approach as starting 

in their first line of code and moving sequentially. In addition, at most, a student could verbally 

express five different strategies and a minimum of two strategies. In addition, there is a 

maximum grade in the exam of 92.25 points and a minimum of 56.17 points over 100 points. 

 

 

 

 

 

 

 



Table 6 

Sequences of students’ coded discourses without NC or repeated strategies 

Student 
Exam 

grade 

Use of a 

debugger 
Coded strategy from the discourse sequence 

1 84.33 no  SCH LID PS   

2 66.67 no  SCL SCH PS LID  

3 66.75 no  SCH SCL PS TC  

4 75.92 no  LID SCH    

5 56.17 yes SCH SCL LID   

6 75.42 yes SCH SCL LID PS TC 

7 87.83 no  SCH CEM SCL   

8 92.25 yes LID SCL SCH TC PS 

9 57.67 no  SCL PS    

10 68.83 yes SCH PS SCL   

Note: CEM = Cause Elimination Method; CSE = Catch and Save Error; LID = Linear Incremental 

Debugging; NC = No Code; PS = Program Slicing; SCL = Sanity Check Low Level; SCH = Sanity Check 

High Level; TC = Test Cases 

In order to answer the research first research question, a bar plot with standard error bars was 

created with the most frequently coded strategies, as shown in Figure 1. As it was identified in 

Table 4, SCH, SCL, LID, and PS were strategies that were coded in multiple students (More than 

two students). Therefore, these strategies were used to identify differences between the most 

preferred strategies by the students and their course achievements.  

 

 

Figure 1: Midterm exam scores by at least one appearance of each debugging strategy in the coded 

answer to Q13 for Linear Incremental Debugging (LID), Program Slicing (PS), Sanity Check High Level 

(SCH), and Sanity Check Low Level (SCL). 



From Figure 1, it is possible to observe that both SCH and SCL influence students' performance 

in the exam. However, students whose assignments reflected a preference for SCL have slightly 

lower grades than those whose answers did not reflect a preference for SCL. On the contrary, 

students that preferred SCH had higher grades on the exam. Nonetheless, it is important to note 

that for SCH, there was only one student whose answer needed to contain this strategy. Although 

error bars are not available in this case, this student has one of the lowest grades in the exam. It is 

also important to note that the preference for LID and PS does not influence students' 

performance in the exam. Nonetheless, while for PS, there is no visual change between students 

that reflected a preference for this strategy, for LID, there seems to be a slightly lower exam 

grade from students who did not. 

RQ2: “Is there a relationship between the use of software debugging tools and the preferences 

for debugging strategies?” 

After removing discourse segments coded as NC and repetitive strategies per student, it is 

possible to identify that two students’ answers use five debugging strategies from the eight 

strategies. This pattern is seen in Student 6 and Student 8, presented in Table 6. Although these 

students were coded with the same five strategies, the sequence in which they appear differs. 

This difference could indicate that even though they prefer the same strategies, it is given 

different priorities. On the opposite side of the spectrum, there are two students whose answers 

were only coded with two different strategies, Student 4 and Student 9. In this case, both 

strategies differ between these two students, and both students indicated that they do not use 

software debugging tools. 

Four of the ten students in the sample indicated a debugging tool (Table 6). To explore research 

RQ2, the two groups were explored separately. When evaluating the number of strategies 

reflected in the student’s answers, it was found that the average number of strategies coded per 

student was different among students who preferred a debugging tool versus those who did not 

indicate this preference. Students who indicated the use of a debugging tool reflected, on 

average, the preference for four debugging strategies, while students who did not indicate the use 

of a debugging tool reflected an average of three debugging strategies. This result could 

potentially indicate that students who use a debugging tool might be able to navigate more 

strategies than their counterparts. 

 

 

 

 

 

 

 



Table 7: 

Students’ discourse segments percentage in each strategy based on the use of debugging tool coded in 

each strategy. 

 

 

YES  

(n = 4) 

NO  

(n = 6) 

LID  75% 50% 

PS  75% 67% 

SCL  100% 67% 

SCH  100% 83% 

CSE  0% 0% 

CEM  0% 17% 

TC   50% 17% 

CEM = Cause Elimination Method; CSE = Catch and Save Error; 

LID = Linear Incremental Debugging; NC = No Code;  

PS = Program Slicing; SCL = Sanity Check Low Level;  

SCH = Sanity Check High Level; TC = Test Cases 

The proportion of students’ answers to Q13 that contained at least one discourse coded with the 

respective strategy is presented in Table 7. From Table 7, it is possible to observe that students 

using a debugging tool seem to consistently express the use of both SCL and SCH, with 100% of 

them reflecting the use of both strategies. In addition, there is a higher rate of students’ 

preference for LID and PS than their counterparts. Half of the students using a debugging tool 

indicated they used TC, and both CSE and CEM which were strategies scarcely found in both 

groups. 

Discussion: 

This study focused on understanding the relationship between students' debugging strategy 

preferences and their course achievements, particularly their midterm exam performance. 

Preliminary findings of this working-in-progress study indicate that students that indicated both 

Sanity Check High Level (SCH) and Sanity Check Low Level (SCL) as their debugging 

strategies showed a correlation with the midterm exam grade. In contrast, SCH seems to 

positively affect performance, while SCL may negatively affect students’ performance. The 

student preference for these strategies and their effects on performance supports Whalley and 

colleagues’ findings [14]. According to Whalley et al., students struggle with debugging tasks 

when they try to use low-level strategies (such as using print statements) and miss the program's 

objective. This finding also aligns with the understanding that novice programmers might rely on 

trial and error rather than the program's logic [28], [29]. Therefore, amidst further exploration of 

this correlation, it would be worthwhile to create course strategies that help students focus on 

debugging from a higher-level perspective. 

Other findings from this study suggest that students who indicated using a software debugging 

tool reflected in their answers a more diverse set of strategies than their counterparts. It was also 

noted that all students indicating the use of a debugging tool were able to express the use of 

Linear Incremental Debugging (LID), Sanity Checks Low Level (SCL), and Program Slicing 



(PS), which are strategies that debugger tools make easier to operationalize. This result was 

interesting, as one of our initial hypotheses was that students who use debugging tools might 

need help verbalizing the strategies as they might not be conscious about their use due to their 

reliance on the tool. Although one explanation for these results could be that debugging tools 

help students conceptualize and understand debugging strategies, another possibility exists. It has 

been found before that more experienced programmers are more prone to use debugging tools 

[18]. Therefore, these students have used these strategies before and, because of this manual use, 

can verbalize the use of the debugging strategies. 

It is worth noting that while most students in our sample verbalized SCH and SCL strategies, 

they were unable to go a step forward, such as generate a hypothesis or test a hypothesis, which 

characterizes debugging for expert programmers [17]. In addition, all students in this study were 

able to develop a plan involving more than one debugging strategy, which characterizes expert 

programmers [16].  

Finally, the importance of debugging for software development and the preparedness of our 

students for the workplace is of foremost importance [4]–[6], [33]. While we explore ways to 

help students acquire expert programming levels as early as possible, acknowledging the 

importance of debugging in teaching others, more complex programming skills are critical [15]. 

Individual practice may not be enough to acquire debugging skills and could potentially frustrate 

students [14]. Therefore, it is necessary to understand the strategies that students are using and 

leverage what they bring to create a scaffolding process in which we introduce strategies closely 

related to those they currently use [11], [12]. In addition, amidst further results, it would be 

relevant to find specific moments and ways in which tools (such as debugging tools) are 

introduced, keeping in mind that students understand various debugging strategies appropriate 

for their level of expertise.  

Strengths and limitations of this study 

Some of the limitations of this study are concerned with the sample size and the assignment time. 

For this study, only ten students were coded; therefore, although they shed light and prepared us 

to investigate the research questions further, the generalizability of the results is jeopardized. In 

addition, while the assignment is released in a week in which students are working in parallel on 

a programming assignment that requires them to debug, it is possible that during their debugging 

assignment, they have to recall information from previous experiences. 

Some of the strengths of this study relate to the question asked and the coding process. For 

instance, novice programmers might find it difficult to express the use of certain strategies when 

asked directly about their use; nonetheless, with the open question, students could express their 

use and understanding of the debugging process without using specific words to address the 

strategies. In addition, the coding process involved two researchers, who are experienced 

programmers and have worked closely with students in debugging assignments, and a total of the 

fourth rounds of coding, which makes the codebook one of the most important outcomes in this 

preliminary work. 
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