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Problem-based-learning module for teaching
thermodynamic cycle analysis using PYroMat

Abstract

This paper details a problem-based-learning module for addressing student difficulties in
thermodynamics. Using the PYroMat open source software platform to automate more ba-
sic skills (like table look-ups and interpolation), learners are called on to design a cycle to
meet certain criteria. In the module we detail here, students are provided costs and operational
data for sets of candidate components from which to construct a Rankine cycle. Students are
provided with fuel cost and the market value for electricity, and asked to make recommenda-
tions for the system’s return on investment. To perform their analysis, students are provided a
Python code implementing the PYroMat package, which they modify and run to determine the
performance of their design. We provide advice on implementation and resources to support
the module in a sophmore-level class.

1 Introduction

In this paper, we propose a Problem-Based-Learning (PBL) module for introducing students to
the Rankine cycle in a typical undergraduate thermodynamics course. While PBL has demon-
strated substantial merit for motivating students to explore difficult topics, its implementation in
thermodynamics is rarely practical due to the time and complexity of realistic calculations. In the
proposed module, we employ the Python-based PYroMat [1] thermodynamic property package to
allow students to accelerate these more basic tasks.

We select Rankine cycle analysis as a topic since it could be said to represent a worst case; requiring
the evaluation (and inversion) of the thermodynamic properties of equilibrium non-ideal gas-liquid
mixtures. For a novice, the use of traditional property tables is often sufficiently cumbersome to
overwhelm any attempt to apply broader thinking; what makes this system useful, what limits its
performance, how would new high temperature materials impact our cycle? By using PYroMat
to accelerate the more foundational elements of the analysis, students are free to grapple with
problems more closely related to the design of these systems.

It is important to emphasize that it is not our position that students be excused from learning basic
skills (like the proper use of tables). To the contrary, we advocate that assignments be crafted
to focus students’ attention on developing a manageable subset of those skills at a time. This
module is intended as a means to focus on the practical design of a thermodynamic cycle with the
assumption that the fluid properties are already familiar.

1.1 Background

Research on the potential benefits of software in education has often focused on proprietary com-
piled codes distributed with text books [2, 3]. Some recent efforts towards specialized free educa-



tional software [4, 5] do exist. Karimi, in particular, warns against treating these systems as “black
boxes,” lest students learn dependence on the computer for verbatim answers without seeking any
deeper insights. Instead, he advocates (as do we) for the integration of software in education in
such a way as to empower students to discover the “fundamental physical laws” too often inacces-
sible to students while they grapple with tables and interpolation.

To Karimi’s point, it has been proven again and again that technology alone does not improve
educational outcomes, it is only when instructional practices change that we see improvement [6].
When implementing a new technology into the classroom then the focus should be on instructional
strategies rather than the technology itself. The technology itself is only an instructional tool that
can be used effectively or ineffectively within the full instructional context. For this reason, it is
always important to situate the use of a technology within a larger pedagogical strategy.

One pedagogical strategy that has shown promise is Problem Based Learning [7, 8]. In Problem
Based Learning, students work in teams to address a central problem or question. The students
themselves take charge of the learning process, and engage in self-directed learning as the need
arises. Instructors in this system serve as facilitators, both asking questions to get students to
think about critical factors and answering student questions when they arise. This strategy situates
learning within a context that will mirror what engineers face in practice, and encourages a pattern
of lifelong learning. In engineering education in particular, researchers have found that Problem
Based Learning approaches had an advantage over more traditional strategies in terms of the devel-
opment of soft skills (problem solving, teamwork, self-directed learning) without sacrificing gains
in factual knowledge [9].

Though problem based learning has its advantages, it also has limitations. In thermodynamics, an
obvious choice for the central problem in a PBL unit would be the design of a thermodynamic
cycle. Hypothesis formation and testing is a central aspect of Problem Based Learning [7], and
would involve trying out different components or conditions to examine their effect on things
like power output and efficiency. The problem however is that modeling thermodynamic cycles
using property tables or even databases is a very time consuming process, limiting the amount of
experimentation the students can reasonably do. A tool such as PyroMat lifts some of the repetitive
computational burden from the students, vastly reducing the amount of time needed to implement
a change to the model and then view the results. PyroMat unlocks Problem Based Learning as a
viable strategy for teaching students about cycle design in a way that was not possible before.

The authors previously implemented PYro (the predecessor of PYroMat) in a classroom [10] with
positive preliminary results. One of the underlying questions was whether students and an instruc-
tor with no prior training in Python or PYroMat could implement such an educational module
productively. While the original implementation was well received, it was very narrowly applied.
The present work is a natural extension of those early efforts.



1.2 Approach

The rationale for selecting PYroMat as a platform for instruction is found in the intersection of a
number of constraints. We argue an educational platform should be

• free or inexpensive to students,

• portable into their lives outside the university,

• maintainable with only minimal computer familiarity,

• compatible with other widely used analysis tools,

• reliable and accurate enough for professional work,

• sufficiently documented for self-training,

• sufficiently powerful for professional use,

• simple enough for novice use.

There are a number of other excellent resources that fail one or more of these constraints. Propri-
etary codes are likely to offer sleek and powerful interfaces, but they are expensive and will only
port into students’ careers if their companies happen to invest in the same software (i.e. [11]).
Many open educational platforms are written with a narrow audience in mind [5, 4] and may not
port well to a broader audience. Codes packaged with texts may fail most if not all of these tests.
Others are extremely powerful, but highly specialized [12]. Web-based interfaces are easy to use
and free, but do not interface easily with other analytics, and their usefulness can even be deliber-
ately restricted as a means to promote a proprietary code [13].

We use the Python language as a platform to align with the mounting trend for its use in computing
education [14, 15, 16], for its tremendous power in data processing and modeling, for substantial
distribution and support network [17, 18], and because its interpreter is free and open. PYroMat is
distributed through the Python package index, so it can be installed and maintained automatically
and without knowledge of the Python system.

1.3 About PYroMat

PYroMat is a package written in the Python language and distributed through the Python Package
Index [18]. It is a command-line utility for retrieving the thermodynamic properties of a wide
range of substances. Version 1.4.1 includes 79 substances; including gaseous mixtures (like air)
and multi-phase substances (like steam). Here, we will give an overview of PyroMat’s steam
properties.

To gain access to a substance’s properties, users request an object representing that substance. At
the Python command line, this may look like the following:



>>> import pyromat as pyro

>>> steam = pyro.get(’steam’)

The object now stored in the variable named ‘steam’ knows everything it needs to retrieve the
properties of steam. Properties are calculated as a function of temperature and pressure. The
interface allows users to call out temperature (T ) and pressure (p) explicitly by name or simply
pass them in order like in a traditional function call. Here, we calculate the enthalpy (h) and
specific heat (cp) of air at 450K and 1.47bar.

>>> steam.h(T=450., p=1.47)

2827.075794818073

>>> steam.cp(450., 1.47)

2.000229350330389

>>> steam.cp()

4.181097326774104

In the last example, no arguments are given, so PYroMat defaults to standard values for tem-
perature and pressure (300K, 1.013bar). The interested user can reconfigure those numbers. All
of the properties are standardized to a kJ, kg, s, K, bar system. These units were chosen to be
mathematically intuitive, while producing conveniently sized numbers for most applications.

In addition to the typical thermodynamic properties like cp, h, and s, the steam object can report
its saturation properties, and it accepts quality as an argument to its properties.

>>> steam = pyro.get(’steam’)

>>> steam.hs(T=450.)

(749.29333968000344, 2774.4101890593283)

>>> steam.ss(T=450.)

(2.1089462033994271, 6.6092224288876018)

>>> steam.h(T=450., x=0.5)

1761.851764369666

Here, we see the the saturation enthalpies and entropies (liquid and vapor) of steam at 450K, and
enthalpy of 50% quality steam at 450K. Constants describing the limits of liquid-gas phase change
line are accessible with the triple and critical functions.

>>> steam.triple()

(273.16, 0.00611657)

>>> steam.critical()

(647.096, 220.64)

These return the temperature, pressure pair indicating the triple and critical points of steam.



For cycle design, it is essential to be able to evaluate the properties in reverse; e.g. calculate
temperature given pressure and enthalpy. This operation is exposed with specific inverse relations
like T_h(), T_s(), or p_s(). These calculate temperature or pressure given enthalpy or entropy.

>>> h = steam.h(T=450., p=10.)

>>> print(h)

749.328482186

>>> T = steam.T_h(h=h, p=10.)

>>> print(T)

450.02064419293373

The inverse methods can optionally be configured to return quality as well

>>> steam.T_h(h=1500., p=10., quality=True)

(453.0356323914666, 0.36601654353242896)

Here, we determine that a two-phase mixture of steam at 453K with quality .366 will have enthalpy
1500kJ/kg/K.

PYroMat is integrated with NumPy (Numerical Python) to seamlessly handle arrays. As a result,
it is easy to things like generating an isentropic line under the dome.

>>> import numpy as np

>>> p = np.linspace(1.,10.,50)

>>> T,x = steam.T_s(s=3., p=p, quality=True)

This generates 50-element arrays of pressure, temperature, and quality data.

All data come with detailed citations provided by the info() function. For example,

>>> pyro.info(’steam’)

returns a printout that identifies the data class used, the source file’s location on the hard drive, the
date it was last modified, and text citing its origins.

2 The PBL Module

We created a problem-based learning (PBL) module involving analysis of a simple Rankine cycle
for a sophomore-level engineering thermodynamics course. The module we created incorporates



PYroMat to automate property lookups in order to allow students to focus on how operating con-
dition variations affect the key cycle performance characteristics such as thermal efficiency and
power output.

The details of the assignment are provided in Appendix A. Educators may wish to adjust the
module we propose to meet their own purposes, but the spirit will be preserved so long as the key
elements of PBL [8] are preserved:

• Problems are open-ended and may lack a concrete answer

• Problems serve to organize and stimulate learning

• Students work in teams

• Learning is self-directed and student-centered

• Faculty serves as a mentor or guide

The module asks students to choose from a set of components (pump, turbine, boiler and con-
denser) for which example performance data are provided. The example data tables included in
Appendix A were created for the project using realistic numbers, but were not derived from actual
components. In fact, we permit a number of simplifying assumptions to facilitate the process (like
independence of efficiency on shaft speed, flow, etc. . . ). For instructors who are so inclined, this
can afford a good opportunity for a discussion about how the students might “go the next step” to
model real components.

At the end of their work, students are asked to report on system parts chosen, cycle efficiency,
power produced, mass flow rate, total system cost, total energy produced each year and five-year
payback. Students make selections, sum the pump, boiler, turbine, and condenser component costs
to calculate a system cost. The fuel cost and revenue from electricity (both specified in $ per kJ in
Appendix A), allows them to compute the return on investment. This structure requires exploration
for teams to be successful, but the numbers are chosen such that multiple designs can achieve the
goal. To create additional incentive for exploration, the assignment indicates that there will be
acknowledgment for the team with the lowest cost system able to produce a positive return on
investment, and for the highest profit total.

Because students are supposed to have had no prior training in Python or PYroMat, a sample
Rankine cycle code (Appendix B) is provided for the students to use as a baseline for modification.
Figure 1 shows a sample output of the code. Instructors monitoring the lab should be prepared to
offer a basic level of mentoring with the language. As PYroMat is used to automate the property
retrieval process, students are able to rapidly swap out components, adjusting the limits of their
simulated cycle. We recommend that students be given three weeks to investigate the assignment.
Faculty office hours in a computer lab should be scheduled to provide assistance with Python. We
allow student groups to self-select but recommend only 2-3 students per group to prevent crowding
at the computer.



Figure 1: Example output of the module code in Appendix B.

A simple example can illustrate the analysis approach that students might consider. If students
simply generate a cycle using the limitations set by the lowest cost items, the efficiency is low
enough that the value of energy produced does not exceed the cost of fuel. This results in both
an operating loss, as well as a failure to make up the cost of the system. Students would need
to look for ways to improve the system efficiency to generate a greater value of energy produced
than cost of fuel, producing an operating profit. Even for a system generating an operating profit,
situations may be encountered in which the operating profit is sufficiently small that over the five
year analysis period, the total profit does not cover the initial cost of the system. Students are now
faced with a situation in which they could look for options to generate a larger differential between
energy cost and value (improve efficiency), or increase the flow rate such that more energy is
produced at the given profit per unit fuel.

Throughout the analysis, students will encounter some variables have a small effect on the cycle
efficiency and power produced (e.g. pump isentropic efficiency), while other variables (e.g. pump
pressure differential) can be observed to have a much greater impact on the power production. Ad-
ditionally, several variables in this scheme will produce conflicting effects. For example, reducing
the pump inlet pressure increases the cycle efficiency, but will also reduce the turbine outlet quality,
meaning that these limitations must be considered in conjunction. On the other hand, mass flow
rate acts independently of the other variables, and serves primarily to scale the operating profit
produced. To reiterate the motivation for this paper, these analyses would be extremely difficult to
achieve without a computerized tool to automate the property lookups.



3 Conclusions and Future Work

With this educational module, we have leveraged the PYroMat package to create opportunities for
self-directed exploration that are typically not encountered in a thermodynamics course. PBL ac-
tivities rely on the ability of students to apply the engineering design process: considering multiple
options, investigation of relationships between variables and iteration to achieve a viable solution.
The nature of typical undergraduate thermodynamics analysis, relying heavily on property lookups
to perform calculations, makes iteration particularly difficult and creates obstacles to this process.
By automating the property lookup part of the calculation, we enabled PBL to be employed in this
thermodynamics example, and the benefits of this pedagogical approach to be brought to this topic.

Early efforts to implement PYroMat to this effect were quite narrow, and this module is the next
step in broadening its implementation. There are important questions for which the authors are
still collecting data; (1) can instructors and students with minimal prior training in Python and
PYroMat productively use the module; and (2) is the module successful in its attempt to motivate
and empower exploration? The authors intend to approach these questions by collecting instructor
and student feedback surveys from instructors with both high and low levels of Python proficiency.



A Example Embodiment of the Module

Task: Design a simple Rankine cycle using only a single pump, Boiler, turbine and condenser,
subject to the limitations given in the datasheets below.

Objective: Create a system that will pay off its initial investment over a 5 year period. Special
acknowledgment will be given to the lowest cost system that has a positive return within 5 years,
and the system with the greatest 5 year profit.

Parameters: Fuel for the boiler costs $0.01/MJ. The energy produced is worth $0.08/kWh.

Data Required: System parts chosen, operating pressures, max cycle temperature, mass flow rate,
cycle efficiency, net power produced, total system cost, total energy produced each year, payback.

Table 1: Available pumps
Isentropic Minimum Maximum Maximum

Name Cost ($) Efficiency Inlet (kPa) Outlet (kPa) Flow (kg/s)
A 250,000 0.85 100 9,000 5.5
B 500,000 0.88 50 10,000 5.5

Table 2: Available turbines
Isentropic Maximum Minimum Maximum

Name Cost ($) Efficiency Inlet (◦C) Quality Out Flow (kg/s)
A 250,000 0.85 600 0.8 5.0
B 500,000 0.98 650 0.8 5.5

Table 3: Available boilers
Heat Xfer Maximum Maximum Maximum

Name Cost ($) Efficiency Out (◦C) Press. (kPa) Flow (kg/s)
A 250,000 0.85 625 8,000 5.5
B 500,000 0.90 700 12,000 7

Table 4: Available condensers
Maximum

Name Cost ($) Flow (kg/s)
A 250,000 5.5
B 500,000 10



B Sample Code

import pyromat as pyro

import matplotlib.pyplot as plt

import numpy as np

steam = pyro.get(’steam’)

# Set the limit conditions based on the components

#Case A (losing)

p1Pa = 0.1e6

p2Pa = 8e6

T3 = 600

mdot = 5.0

syscost = 1000000

FuelEff = 0.85

eta_pump = 0.85

eta_turb = 0.85

#Case B (winning)

p1Pa = 0.05e6

p2Pa = 10e6

T3 = 650

mdot = 5.5

syscost = 2000000

FuelEff = 0.9

eta_pump = 0.88

eta_turb = 0.9

#Convert p to bar

p1 = p1Pa*1e-5

p2 = p2Pa*1e-5

#State 1 is a saturated liquid @ p1

T1 = steam.Ts(p=p1) #Temperature

h1,null = steam.hs(p=p1) #Enthalpy

s1,null = steam.ss(p=p1) #Entropy

#State 2s is isentropic from p1-p2

s2s = s1 #isentropic

#isentropic Temperature

T2s = steam.T_s(p=p2,s=s2s)

#isentropic Enthalpy

h2s = steam.h(p=p2,T=T2s)

#State 2 is found by applying the isentropic efficiency

Wps = h2s-h1 #Isentropic work

Wp = Wps/eta_pump #Actual work

h2 = Wp+h1 #Actual enthalpy at 2

T2 = steam.T_h(p=p2,h=h2) #Actual Temperature

s2 = steam.s(T=T2,p=p2) #Actual entropy

#State 3 is based on known p3 & T3

p3 = p2 #same pressure

h3 = steam.h(p=p3,T=T3) #Enthalpy

s3 = steam.s(p=p3,T=T3) #Entropy

#State 4s is isentropic from p3-p4

p4 = p1 #same as initial pressure

s4s = s3 #isentropic

#isentropic Temperature (including quality)

T4s,x4s = steam.T_s(p=p4,s=s4s,quality=True)

if x4s<0: #superheated vapor quality will be -1

h4s = steam.h(T=T4s,p=p4) #Superheated vapor

else:

h4s = steam.h(x=x4s,p=p4) #Liq/Vap mixture

#State 4 is found by applying the isentropic efficiency

Wts = h3-h4s #Isentropic work

Wt = Wts*eta_turb #Actual work

h4 = h3-Wt #Actual enthalpy at 4

#Actual Temperature (including quality)

T4,x4 = steam.T_h(p=p4,h=h4,quality=True)

if x4<0: #superheated vapor quality will be -1

s4 = steam.s(T=T4,p=p4) #Superheated vapor

else:

s4 = steam.s(x=x4,p=p4) #Liq/Vap mixture

#Find the work and heat transfer terms

Qhi = (h3-h2)

Qlo = (h4-h1)

Wnet = (Wt-Wp)

eff = Wnet/Qhi

#Print some cycle properties

if(x4>0):

print("Turbine Outlet Quality: {:0.2f}".format(x4))

else:

print("Turbine Outlet Quality: Superheated")

print("Efficiency: {:0.2%}".format(eff))

print("Net Power: {:0.2f} kJ/kg".format(Wnet))

# Generate some diagrams

color = ’r’

marker = ’.’

smarker = ’x’

# Let figure 1 be a T-s diagram

f1 = plt.figure(1)

ax1 = f1.add_subplot(111)

ax1.set_xlabel(’Entropy, s (kJ/kg/K)’)

ax1.set_ylabel(’Temperature, T (K)’)

ax1.set_title(’Rankine Cycle T-s Diagram’)

# Generate the dome on both plots

Tt,pt = steam.triple()

Tc,pc = steam.critical()

T = np.linspace(Tt,Tc,50)

p = steam.ps(T)

sL,sV = steam.ss(T=T,p=p)

ax1.plot(sL,T,’k’)

ax1.plot(sV,T,’k’)

# Process 1-2s (isentropic compression of a liquid)

s = np.linspace(s1,s2s,20)

p = np.linspace(p1,p2,20)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color+’:’,linewidth=1)

ax1.plot(s1,T1,color+marker)

ax1.plot(s2s,T2s,color+smarker)

# Process 1-2 (actual compression of a liquid)

s = np.linspace(s1,s2,20)

p = np.linspace(p1,p2,20)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color,linewidth=1.5)

ax1.plot(s2,T2,color+marker)

#process 2-3 (heat add)

s = np.linspace(s2,s3,200)

p = p2*np.ones(s.shape)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color,linewidth=1.5)

ax1.plot(s3,T3,color+marker)

# Process 3-4s (isentropic compression of a liquid)

s = np.linspace(s3,s4s,20)

p = np.linspace(p3,p4,20)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color+’:’,linewidth=1)

ax1.plot(s4s,T4s,color+smarker)

#process 3-4 (actual expansion)

s = np.linspace(s3,s4,20)

p = np.linspace(p3,p4,20)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color,linewidth=1.5)

ax1.plot(s4,T4,color+marker)

#process 4-1 (heat rej)

s = np.linspace(s4,s1,40)

p = p4*np.ones(s.shape)

T = steam.T_s(p=p,s=s)

ax1.plot(s,T,color,linewidth=1.5)

ax1.grid(’on’)

ax1.set_ylim([300,800])

f1.show()

#Pause

input("Press Enter to continue...")



References

[1] C. R. Martin. (2016) Pyromat: Thermodynamic computational tools for python. [Online].
Available: http://pythonhosted.org/PYroMat/

[2] A. Karimi, “Use of interactive computer software in teaching thermodynamics fundamental
concepts,” in International Mechanical Engineering Congress and Exposition. ASME, Nov
2005.

[3] N. Mulop, K. M. Yusof, and Z. Tasir, “A review on enhancing the teaching and learning of
thermodynamics,” Procedia Social and Behavioral Sciences, vol. 56, pp. 703–712, 2012.

[4] A. Martin, M. D. Bermejo, F. A. Mato, and M. J. Cocero, “Teaching advanced equations of
state in applied thermodynamics courses using open source programs,” Education for Chem-
ical Engineers, vol. 6, no. 4, pp. 114–121, Dec 2011.

[5] B. Golman, “Transient kinetic analysis of multipath reactions: An educational module using
the ipython software package,” Education for Chemical Engineers, vol. 15, no. 1, pp. 1–18,
Apr 2016.

[6] T. Russel, The no significant difference phenomenon. North Carolina State University, 1999.

[7] C. Hmelo-Silver, “Problem-based learning: what and how do students learn?” Educational
Psychology Review, vol. 16, no. 3, pp. 235–266, 2004.

[8] H. Barrows, “Problem-based learning in medicine and beyond: a brief overview,” New Di-
rections for Teaching and Learning, no. 68, pp. 3–12, 1996.

[9] A. Kolmos and E. de Graaff, Problem-based and project-based learning in engineering edu-
cation. Cambridge University Press, 2014, pp. 141–161.

[10] C. R. Martin, J. P. Moore, and J. A. Ranalli, “Teaching the foundations of thermodynamics
with pyro,” in 2016 IEEE Frontiers in Education Conference (FIE), Oct 2016, pp. 1–6.

[11] National Institute for Standards and Technology. (2015) Nist/asme steam properties
database: version 3.0. [Online]. Available: http://www.nist.gov/srd/nist10.cfm

[12] T. C. Project. (2017) Cantera; chemical kinetics, thermodynamics, transport processes.
[Online]. Available: http://www.cantera.org/docs/sphinx/html/index.html

[13] National Institute for Standards and Technology. (2013) Nist-janaf thermochemical tables.
[Online]. Available: http://kinetics.nist.gov/janaf/

[14] F. Georgatos, “How applicable is python as first computer language for teaching program-
ming in a pre-university educational environment, from a teachers point of view?” Master’s
thesis, Universiteit van Amsterdam, 2002.

[15] A. Radenski, “Python first: A lab-based digital introduction to computer science,” in Proceed-
ings of the Eleventh Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE 06, University of Bologna, Italy, June 2006, pp. 197–201.



[16] M. Goldwasser and D. Letscher, “A graphics package for the first day and beyond,” in Pro-
ceedings of the 40th Annual SIGCSE Technical Symposium on Computer Science Education
(SIGCSE), Chattanooga, Tennessee, March 2009, pp. 206–210.

[17] Python Software Foundation. (2016) The python tutorial. [Online]. Available:
https://docs.python.org/2/tutorial/

[18] The Python Package Index. (2017) Pypi. [Online]. Available: https://pypi.python.org/pypi


