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Project-Based Learning with Single-Board Computers 
 
Introduction 
 
Project-based learning (PBL) has been shown to be effective in the STEM fields1,2. In 
implementing PBL of Electrical Engineering and Computer Science (EECS) topics for 
middle and high school-level enrichment programs, significant thought needs to go into 
determining which sub-topics in the EECS field should be covered in a curriculum in 
order to enable students to undertake projects of sufficient and satisfying complexity. 
One solution is to focus exclusively on either the software (programming) or hardware 
(sensors, circuits, etc.) side of EECS, having what amounts to either a computer science 
curriculum or a circuit theory curriculum. In the last few years, however, we’ve been 
focusing on in integrating both hardware and software engineering into EECS PBL at the 
secondary level. We have been carrying out this work with classes of rising high school 
seniors in a number of summer enrichment programs run through the Office of 
Engineering Outreach Programs (OEOP) at the Massachusetts Institute of Technology. In 
the last two years we have particularly been exploring ways of deploying single-board 
computer platforms including the BeagleBone Black and Raspberry Pi as means of 
providing a flexible, enriching, and open-ended project-based learning experiences that 
provides significant exposure to both hardware and software development. In this paper 
we will discuss the coursework infrastructure we developed along these lines for three 
separate summer STEM enrichment programs: a six week program, a one week program, 
and a three hour workshop. We follow this with some preliminary student feedback, 
plans for expansion, and plans for quantitatively assessing the efficacy of the curriculum 
in the long term. 
 
The OEOP at MIT has run its Minority Introduction to Technology, Engineering, and 
Science (MITES) program for the past forty years, serving rising seniors from across the 
country coming from traditionally underserved and underrepresented backgrounds. 
MITES is a six-week residential program where students take a number of courses 
including calculus, physics, life sciences, humanities, and a project course. In the last five 
years, the OEOP has expanded its outreach efforts through the creation of several 
additional programs, including the Engineering Experience at MIT (E2@MIT), a one-
week residential program heavily focused on only a project course, as well as the MIT 
Online Science, Technology, and Engineering Community (MOSTEC), a six-month 
online curriculum with a one-week residential portion that includes STEM courses, 
seminars, and other activities. Within each of these programs, we were tasked with 
creating EECS-themed PBL curricula (a project course for MITES, the primary course 
for E2@MIT, and a series of workshop activities for the residential portion of MOSTEC). 
In addition we have created an online EECS MOSTEC curriculum with separate themes 
that we detail elsewhere3.  
 
Curriculum Design and Considerations 
 
Starting with only the MITES project course in 2008, the EECS curriculum was initially 
solely hardware-focused, with students learning basic circuit theory and creating projects 
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composed of discrete components (resistors, capacitors, basic integrated circuits, etc.) 
implemented on breadboards. Based on student feedback from these first few years, and 
with the advent of two additional programs (the E2@MIT program and the MOSTEC 
workshops), we began to integrate software elements, first utilizing the popular Arduino 
platform in 2010 and then merging with single-board computers in 20134–6. As we’ve 
added in this software engineering component, we’ve placed a priority in maintaining a 
significant hardware aspect to all student work. This has necessitated streamlining of the 
platforms and environments worked in by students to ensure a sufficient levels of 
engagement. We’ve used several self-imposed guidelines as we developed the 
curriculum: 
 

• We’ve found an increasing number of our students come into our programs with 
some prior exposure to robotics via either FIRST Robotics or other they have 
been involved in7–12. We have therefore avoided using robotics as a vehicle of 
STEM exploration and teaching. This ensures course material is new to all 
students and it levels the playing field for the class so students without robotics 
exposure aren’t at a disadvantage.  By keeping the vehicle of EECS exploration 
more generalized, it also allows students to pursue topics of interest to them, and 
hopefully in the process ensure greater motivation for a broader range of students.  
Music-based labs and final projects, for example, have been a popular class of 
projects that students have pursued in the past. 

• When working with single-board computers and Arduino (in the past), we 
avoided the use of add-on pre-made boards (shields and capes) in order to 
maximize the chance for component-level circuit analysis and design, 
implementation, and experimentation. Breadboarding is a key component in the 
curricula we develop, and final projects must involve some form of discrete 
circuit component.   

• We have emphasized the concepts of sensors, signals, and signal processing when 
teaching programming and electronics. Many labs, homework exercises, and 
activities involve interpreting signals generated by using sensors and circuits of 
the student’s creation, interpreting those signals using programming, and making 
design decisions based off of those interpretations. 

• All laboratory exercises in the first half of the courses are designed to be carried 
out in groups of two or three, and be significantly open-ended (see Tables 1, 2, 
and 3). This prepares students for the open-ended final design project in the 
second half of the course. In the MITES Electronics curriculum (long residential 
program), student final projects take place over about two-and-a-half weeks and 
are extremely open-ended, with students building projects of their own design 
with few end-goals specified (other than it be “something they’ve always wanted 
to build” and of sufficient complexity). In the shorter one-week E2@MIT 
curriculum, loose project assignments are provided for them, however students 
invariably customize and bend specifications throughout the design and 
implementation process. In the three-hour MOSTEC workshops, projects are 
similar to a one-day laboratory that would be found in the longer MITES and E2 
programs, but are still left open-ended.  
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Motivation for Single-Board Computers 
 
We used the Arduino environment for several years in MITES and E2@MIT as well as to 
a lesser degree in our first iterations of MOSTEC workshops5. Excellent overviews of 
Arduinos exist in the literature13,14. In using Arduinos, we encountered several limitations 
in the context of the courses we ran: 
 

• Arduino programming relied upon external or student-provided computers for 
programming. The courses we ran had to take place either in rooms with available 
computers or require students to bring their own laptops. In either case time had 
to be spent to prep the computers for running the Arduino Integrated 
Development Environment (IDE), which in the case of student-owned laptops 
would invariably come out of class time. 

• Arduino programming had to be carried out in the Wiring programming 
language/environment. In other courses both at and affiliated with MIT, we have 
been teaching the Python programming language15,16, and we desired to 
transfer/borrow this infrastructure and coursework into the STEM curricula 
developed for these EECS courses.  

 

Figure 1. Single-Board Computer Prototyping Platform. 
 
We investigated using single-board computers new to the market in early 2013 including 
the Raspberry Pi6, and the BeagleBone Black single-board computers as a solution to the 
problems above with Arduinos. Samples of both computers were purchased, and we 
developed experimental platforms similar to that shown in Figure 1 with a monitor, 
keyboard, and mouse being directly hooked up to the computer. The single-board 
computers could run their own operating system, with the intention that students would 
interface with the computers input/output connections via hookup wires that would go to 
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their hardware components implemented on a breadboard. The result was a completely 
stand-alone development platform to be used by students that was uniform for the entire 
class. This also allowed the courses to be taught more easily in multiple classroom 
settings since the entire development environment was self-contained, requiring only 
power outlets and Internet access. 
 
In 2013, there were two major choices for single-board computers at very similar price 
points: the Raspberry Pi and the BeagleBone Black17. From initial testing, the 
BeagleBone Black appeared the better choice, due to the larger number of input and 
output pins, and on-board integrated compatibility with analog and digital signals. In-
house benchmark tests run by us also showed the BeagleBone Black to run more quickly 
than the Raspberry Pi when used in the self-contained prototyping platform in Figure 1. 
Additionally at the time, Raspberry Pis were in short supply. We therefore settled on the 
BeagleBone Black as the single-board computer of choice.  
 
Curriculum Design (MITES and E2@MIT) 
 
While the MITES and E2@MIT electronics programs differed significantly in overall 
duration, with the former being five weeks and the latter being one week, they both 
followed a similar curriculum path shown in Table 1 below. Because students in the 
E2@MIT program focus almost exclusively on their project course and MITES students 
spend roughly one-fifth of their time on the project course, the total amount of hours 
devoted to the EECS course is very similar between the two programs. In 2014, total 
student course time was tallied at approximately 40 hours for the E2@MIT program, 
while for MITES the total time throughout the course was closer to 55 hours. Because of 
these similarities, both courses cover similar amounts of material, however the number of 
guided laboratory exercises was fewer in E2@MIT than in either iteration of MITES 
(Table 3 vs. Table 4). In both courses, we chose to teach elements of software 
engineering simultaneously with hardware engineering to immediately enable lab 
exercises involving both types of activities.  
 
For both MITES and E2@MIT, the first half of the course was built around lab exercises 
devoted to developing and exploring hardware and software concepts techniques. During 
this half of the course, students participated in an instructor-led discussion to introduce 
concepts that were going to be encountered in lab that day. This portion of the class was 
about twenty minutes for MITES and thirty minutes for E2@MIT. Following this, 
students spent the remainder of the class (ninety minutes in MITES and three hours in 
E2@MIT) carrying out hardware and software laboratory exercises with the single-board 
computer platforms covering topics shown in Tables 2 and 3. Each lab was designed to 
be about two-thirds guided with an open-ended final portion where students could pursue 
a number of suggested projects expanding on the themes for the day or come up with 
their own additional projects and modifications. An extract from one lab handout is 
shown in Figures 2 and 3. Students were provided nightly homework sets that were 
carried out in an online tutor environment (see discussion on Python below). Homework 
questions focused more on filling in gaps of knowledge in programming, circuits, and 
signals in preparation for lab work the following day.  

P
age 26.1272.5



 
MITES E2@MIT Topics 
Week 1 Day 1 Programming, Inputs, Outputs, Control 
Week 2 Day 2 Programming Signals, Amplification 
Week 3 Day 3 Feedback Control/Final Project 
Week 4 Day 4 Final Project 
Week 5 Day 5 Final Project 

Final Day Final Day Final Presentations 
Table 1.  Overview of similarity between MITES and abbreviated E2@MIT programs 

 
Lab Number MITES 2013 MITES 2014 

1 Linux, Python I, Digital Outputs Linux, Python, Digital Outputs 
2 Python II, Digital I/O Python II, Digital Inputs, Outputs 
3 Python III, Signals Audio Amplification with Pygame 
4 Motor Control, Amplification Audio Signal Analysis and Control 
5 Motor Control, Feedback Motor Control, Amplification 
6 Audio Amplification Light-Tracking Servo Control 
7 Soldering and Circuit Assembly Light-Tracking Servo 

Table 2. Comparison of Lab Topics in 2013 and 2014 MITES curricula 
 
 Lab E2@MIT  
 1 Linux Python I, II, Digital Inputs/Outputs  
 2 Analog Inputs/Outputs, Amplification  
 3 Audio Amplification, signal analysis, and Feedback Control  

Table 3. E2@MIT Lab Topics 
 
Final Projects (MITES and E2@MIT) 
 
The second half of the MITES and E2@MIT courses were focused on designing, 
building, and debugging a final project that incorporated concepts learned in the course. 
A final presentation and demonstration of the projects in front of the entire MITES and 
E2@MIT communities was carried out on the final day. Final projects varied slightly 
between the MITES and E2@MIT EECS courses. In MITES, students are instructed to 
create a final project of their choosing, which can take the form of any device that 
interests them (determined in discussions with instructor to ensure feasibility). In 
E2@MIT, groups collectively self-assign themselves to one of a number of bio-medically 
themed projects, which they are then free to expand and customize. This is done because 
of time constraints; in MITES students spend approximately a week out of class 
brainstorming and researching ideas they would like to pursue, while in E2@MIT this 
isn’t possible. Additionally, open-ended projects usually require the instructional staff to 
acquire outside materials after a decision on a project has been reached. This isn’t 
possible in the one-week timespan of the E2@MIT curriculum. In both cases, however 
students are given significant freedom in what they actually deliver even if the project 
goal has been assigned. A selection of projects created from the past two years is shown 
in Figure 4 below with a brief overview of these are provided below. The type of single 
board computer used (BeagleBone Black or Raspberry Pi is specified and discussed in 
detail below) along with the year and specific program are listed.  
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Figure 2. Extracted pages from

 Lab 2 in the Sum
m

er 2014 M
ITES EEC

S C
ourse (continued in Figure 3). 
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Figure 3. Extracted pages from Lab 2 in the Summer 2014 MITES EECS Course 

(continued from Figure 2). 
 

• Response Time Game (BeagleBone Black, 2013 MITES, Fig. 4A): A game in 
which the objective is to “shoot” at a series of illuminated points using a laser 
pointer. LEDs serve as indicators and photoresistors serve as exposure detectors. 
The user has to shoot an indicated target within a certain period of time. Failure to 
do so results in loss of points.  Successive rounds increase in speed and response 
time. 

• Electrocardiogram (Raspberry Pi, 2014 E2@MIT, Fig. 4B): A functioning ECG 
built by the students and based off of an instructor-provided schematic. They then 
experimented and created a program that tracked, filtered, and analyzed the 
generated signal in order to estimate the patient’s heart rate. A programmed 
threshold detector also generated an audio indicator of heart rate. 

• Solar Charger (Raspberry Pi, 2014 E2@MIT, Fig. 4C):  A solar-celled driven 
capacitor charger as a proof-of-concept of a larger solar-powered battery charger 
that could power a remote clinic. Students used the Raspberry Pi to track and 
estimate power usage, charge time, and send messages via Twitter to report the 
status of system. 

• Robot with Object Avoidance (Raspberry Pi, 2014 MITES, Fig. 4D): A hybrid 
project featuring an Arduino controlling an ultrasonic range finder and a 
Raspberry Pi controlling a dual-motor robotic chassis. The robot was programmed 
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to go forward towards a light source until encountering an object in its path 
(determined through the ultrasonics) at which point it would execute an avoidance 
routine specified by the students. 

• Artificial Insect Eye (BeagleBone Black, 2013 MITES, Fig. 4E): As part of a 
research project, students created a 64-element photo-sensing region using visible 
light phototransistors. A program was written to control hardware to scan the 
signals from all phototransistors and subsequently reconstruct a monochromatic 
image in a text-based display. Frame rate was approximately 10 Hz. 

• Model Water Monitored Water Supply System (Raspberry Pi, 2014 E2@MIT, 
Fig. 4F): A functioning water supply system that would pump water up to an 
elevated holding tank from a simulated underground aquifer. Water level was 
monitored and tracked using sensors of the student design and water level and 
pressure were maintained via programming in the Raspberry Pi. 

• Dance Dance Revolution Clone (Raspberry Pi, 2014 MITES, Fig. 4G): A dance 
pad, consisting of four pressure-sensitive switches. Students used elements of the 
Pygame package as a starting point for developing a dance-move response game 
complete with scoring and varying levels of difficulty.   

 
 

Figure 4. Example Projects using BeagleBone Black and Raspberry Pi. 
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All student projects involved significant hardware and software engineering components. 
A brief overview of the program complexity developed by a number of groups is 
included below in Table 4.   
 
Group Num. of Lines of 

All Code* 
if/else 

control 
structure? 

for, while 
loops? 

Function 
abstraction? 

Class 
abstraction 

1 42 Yes Yes No No 
2 34 Yes Yes Yes No 
3 253 Yes Yes Yes Yes 
4 21 Yes Yes No No 
5 88 Yes Yes Yes No 
6 51 Yes Yes No No 
7 33 Yes Yes No No 
8 55 Yes No No No 
9 60 Yes Yes Yes No 

10 152 Yes Yes Yes Yes 
11 76 Yes Yes No No 
12 90 Yes Yes Yes No 
13 38 Yes Yes No No 

Table 4. A simple analysis of student programs written for their final projects. 
*Estimated by ignoring large gaps in code. 

 
Python Programming Language 
 
Part of the motivation to move to single-board computers was to allow the use of Python 
as the primary programming language15. We adapted an online teaching environment that 
had previously been developed by Adam Hartz at MIT for one of its large EECS 
introductory courses known as CAT-SOOP (CAT-SOOP is an Automated Tutor for Six-
Oh-One Problems)20. This learning environment provided a platform in which students 
explored hardware and software concepts, answered questions, and tested code out in 
preparation for labs on the following day (Figure 5A and 5B). While both the Raspberry 
Pi and the BeagleBone Black come with Python preinstalled, in order to access and 
interface with the two system’s hardware, we needed to create wrapper libraries simple 
enough for students to use.  
 
BeagleBone Black vs. Raspberry Pi 
 
While we felt use of single-board computer-based platforms for lab exercises and PBL 
was a success in 2013, we ran into several serious issues with the BeagleBone Black. The 
BeagleBone Black was difficult for students to work with because it lacked clear labeling 
of its connections. We resorted to attaching colored tape and providing hookup diagrams 
customized for each lab exercise in order to streamline student experience as shown in 
Figure 6. Second, the lack of readily accessible audio output from the board prevented 
students from integrating audio or music into their projects (audio output only being 
accessible via HDMI, and we could not generate a functional breakout of this due to time 
constraints). Third, and by far the most frustrating, was the sensitivity of the BeagleBone  
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(A)                                                                               (B) 
Figure 5. An web-browser accessible Python and engineering automated tutor, CAT-
SOOP, was adapted to provide lessons for students in (A) hardware and (B) software-
focused problems. 
 
 

Figure 6. (A) BeagleBone Black Revision B, which were used for 2013 summer 
programs (B) Example Pin diagram provided to students to assist in interfacing with 
BeagleBone Black. 
 
Black to external voltages. Because many labs and final projects interfaced the computer 
directly to breadboarded circuits, ranging from simple devices such as LEDs, to complex 
ones including coin-operated switches, we inadvertently created a laboratory environment 
with board-incompatible voltages (greater than 3.3V). While not dangerous for the 
students, this did lead to undesirable behavior of the BeagleBone Black computers, 
ranging from sudden shutdown of the machine to permanent destruction of the entire 
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board. In the summer of 2013, throughout all courses, we lost five out of ten BeagleBone 
Black computers in such a way. While similar failure modes had been experienced 
previously when we working with the Arduino platform, it was relatively easy to fix 
since student programming work was saved on external computers, and the ATMega328 
DIPs (preloaded with an Arduino boot loader) could be readily replaced on the Arduino 
Duemilanove and Uno models that we used at a cost of approximately 5 USD.  In the 
case of the BeagleBone Black single-board computers, the surface mount nature of the 
chips prevented repairs. Furthermore, all work by the students was lost and no longer 
accessible due to the integrated onboard flash memory. This proved extremely frustrating 
for several groups, particularly in the MITES program, where student Python programs 
often were above 100 lines of code.   
 
Improvements for 2014 
 
For 2014, we adjusted pieces of the infrastructure to address issues from the prior year’s 
implementation.  Priority was centered on input/output protection of the computers. The 
only suitable such board we could find was the Gertboard, intended for use with the 
Raspberry Pi and designed by Gert Van Loo. The Gertboard is available at many hobby 
electronics retailers that supply Raspberry Pis and assorted peripherals and can be 
purchased for approximately 50 USD as of 201418,19. It can mount directly onto the 
Raspberry Pi, however we chose to connect them using a 26-pin ribbon cable as shown in 
Figure 7. This had the added benefit of providing some distance from the Raspberry Pi 
and student electronics. In addition to providing input and output protection for the GPIO 
pins, the Gertboard also came with an on-board digital-to-analog converter (DAC), a 
dual-channel analog (ADC), an onboard ATMega328 (Arduino-compatible 
microprocessor), and a single-channel motor driver. All of these devices could be utilized 
through the selection of a series of jumpers placed on the board as well as a software 
library provided by the developers. While adopting the Gertboard required switching 
from the BeagleBone Black to the Raspberry Pi, the benefit of input/output protection 
and additional features of the Gertboard were enough to justify rewriting our 2014 
curricula to utilize the Raspberry Pi and Gertboard in spite of the significant additional 
work it required.   
 
In redesigning our labs for use with the Raspberry Pi/Gertboard, an immediate challenge 
was how to deal with the complex jumper/hookup diagrams of the Gertboard necessary 
for different functionalities. For example, to use a specific Input/Output (I/O) pin as a 
digital output required several lines of setup code as well as the placement of a two wire 
jumpers. This effectively protected the Raspberry Pi I/O from shorts and overvoltage 
exposure, but proved far too difficult for students, especially at the beginning of a course 
or in a time-constrained workshop, to implement.  The solution to this problem was to 
pre-wire Gertboards for each lab’s exercises and provide a pre-made software library that 
would be imported in each day’s program skeleton provided to the students. For the 
software distribution, all machines were either manually synchronized or linked to a Git 
repository which allowed rapid distribution (either manually or by default at startup) of 
current code distributions for the day’s assignments. For hardware setup, organization of 
the jumper configuration was generally carried out by the course TA and instructor 
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immediately before class began, taking approximately one minute per board. In the case 
of MITES and E2@MIT, over the course of the labs, we spent small amounts of time 
describing actual details of the Gertboard, and only focused on their specific workings 
during the final project periods as required by particular student projects. 
 
 
 

Figure 7. Raspberry Pi Model B (right) connected to a Gertboard via ribbon cable (left).  
 
Deployment of the Raspberry Pi/Gertboard assemblies in 2014 was as successful than 
2013’s BeagleBone Blacks in terms of student progress and project complexity. In 
addition, the increased usability and protection afforded by the Gertboard completely 
removed the danger of partial/complete loss of student work, and greatly improved the 
speed and efficiency of student wiring when interfacing with the board due to the clear 
hookup pin numbering.   
 

 Approximate Cost (USD) 
Item BeagleBone Black Raspberry Pi 

Main Board 50 35 
External Shield N/A 50 

Keyboard/Mouse 15 15 
USB Extension 5 5 

SD card N/A 6 
Power supply 9 9 

Monitor connector/adaptor 12 12 
Monitor N/A* N/A* 
Total: 91 132 

Table 5.  Total cost of components for single-board setup of BeagleBone Black and 
Raspberry Pi.  *Monitors were borrowed or acquired for free for our course.  Sufficient 
models of monitor for both platforms can be purchased for approximately 100 USD. 
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Setup Costs 
 
In comparing the two systems, as implemented between the two years, the BeagleBone 
Black was the less expensive (91 USD vs. 132 USD) as shown in Table 5, however 
because we lost 50% of the BeagleBone Blacks due to in-lab accidents the cost benefit 
narrows significantly. Furthermore, a simplified output protection board will be used in 
2015, further decreasing the cost of a Raspberry Pi to at or below the cost of the 
BeagleBone Black setup.  The Raspberry Pi/Gertboard assembly was far more durable in-
lab, however this isn’t a completely fair comparison since the Raspberry Pi on its own is 
just as sensitive to overvoltage exposure and accidental shorts as the BeagleBone Black 
boards (assessed through in-lab stress tests by the author), and one could argue that with 
an equivalent, compatible Gertboard-equivalent for the BeagleBone Black, the shorting 
problems would have been avoided.  
      
In our experience, audio-based experiments and final projects have routinely been among 
the most popular final projects and activities carried out by students, and the much more 
accessible audio interface of the Raspberry Pi (3.5 mm TRS connector) proved to be a 
significant benefit than when working with the BeagleBone Black. Additionally, 
numerous Python packages have been developed and tested specifically for use on the 
Raspberry Pi, and this made assisting student work far easier in the time-restricted 
environment of these summer courses. The added complexity of the Gertboard hardware 
and software did prove to be a hurdle for many students during the course, however in 
our opinion its benefits outweigh these additional challenges. Taking everything into 
consideration, we intend to continue using the Raspberry Pi/Gertboard platform for future 
iterations of this course 
 
MOSTEC Workshops 
 
Our third and shortest single-board curriculum from recent years is an EECS-themed 
workshop run for the residential portion of the MOSTEC program using the hardware 
platforms derived for the other two courses. These workshops were three hours long and 
involved a brief discussion of the EECS field, a cleanroom tour at MIT (given by Jamie 
Teherani), and about two hours of in-lab explorations. Because of the tight time 
constraints labs are significantly more guided than in E2@MIT or MITES, however we 
did leave them open-ended by proposing a number of improvements at the end of each 
activity. The amount of guidance provided in the MOSTEC laboratory handouts was 
greater than in either the E2@MIT or MITES exercises. This allowed students with a 
range of different backgrounds the opportunity to achieve some subset of lab goals. 
Somewhat similar labs have been used in both years, with BeagleBone Blacks used for 
2013 and Raspberry Pi systems used in 2014. In both situations, eight stations were set up 
and students were free to work in groups of their choosing of two or three. The three 
primary projects we’ve had in the workshops have been:  
 

• Temperature Logger: Students must interface with an LM35 temperature sensor 
and then write code to sample interpret output of sensor and then email updates to 
a personal address. Students can expand and customize the project through use of 
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multiple temperature sensors, switches, etc. An example of the starter code 
skeleton and one student group’s solution in 2014 is shown in Figure 8A and 8B, 
respectively. 

• Reaction Timer (2014 only): Students are tasked with creating a sound and light 
response-time circuit that measures how quickly a human can respond to a light or 
sound stimulus (flash of LED or beep from buzzer, respectively).  

• Audio Amplifier: Students are tasked with building an LM386 audio amplifier 
using discrete components on a breadboard, and then encouraged to interface it 
with Pygame-based audio playing code. 

 
 

 
 
 
 
 
from MOSTEC import * #import important MOSTEC 
files 
 
sendToAddress = ‘default@mit.edu’ #who you want to 
email 
 
while True: #run forever 
    value = readAnalogInput() #read in value at 
Analog Input 1 
    print ‘hello’ #print ‘hello’ 
    #your code here (consider getting rid of 
pointless “hello” eventually) 

from MOSTEC import * #import important MOSTEC 
files 
 
sendToAddress = ‘default@mit.edu’ #who you want to 
email 
 
while True: 
    value = readAnalogInput() 
    value = value*3300.0/1023 
    tem = value/10 
    print tem 
    delay(8000) 
    if temp>29: 
        writeDigitalOutput(1,1) 
        message = ‘Current Temp is‘+str(temp)+’ 
deg C.’ 
        Server=smtplib.SMTP(‘smtp.gmail.com:587’) 
        server.starttls() 
        server.login(username,password) 
        
server.sendmail(fromAddress,sendToAddress,message) 
        server.quit() 
    else: 
        writeDigitalOutput(1,0) 

(A) (B) 
Figure 8. (A) Example of temperature-logging skeleton code provided to students in 2014 
MOSTEC Electronics workshop, and (B) resulting final working code developed by a 
group of three students. 
 
Conclusions, Scalability, Applicability, and Future Work 
 
Overall we are pleased with the last two years of curriculum development. Aside from 
some minor changes, we believe the hardware implementation for the 2015 versions of 
the course will remain relatively stable compared to what is reported here. The 
complexity, and variety of projects that students have been capable of generating using 
single-board computers is much greater than when compared with prior years. This is 
readily apparent when comparing the complexity of projects in this paper with the 
versions of the E2@MIT course that used Arduinos shown elsewhere5. Student feedback 
from both the 2014 MITES class and the 2014 E2@MIT class was anonymously 
collected at the completion of both courses. The results were generally positive (Table 6, 
Table 7, and open-ended student feedback in Table 8).  We currently (as of the time of 
writing this draft) do not have access to student feedback from 2013 and from both years 
of the MOSTEC workshop. 
 
We have two major goals for the upcoming summer of 2015 that will expand upon the 
curriculum development discussed in this paper. The first is to collect large amounts of 
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quantitative student performance data from before, during, and after the courses in order 
to more effectively assess student progress during the course and to more effectively 
asses the efficacy of the curriculum as a whole. Previously, content-specific assessment 
of student activity was not possible in the scope of OEOP enrichment programs, but will 
be possible for this upcoming year. Additionally because students perform all work using 
the single-board computer-based development platforms (Figure 1) that we’ve developed, 
we can record student activity in real time in the laboratory setting. This development 
work is ongoing and will be accomplished by integrating the Raspberry Pi hardware with 
the previously developed tutor system (CAT-SOOP) referenced above in this paper. Such 
a setup will permit the collection of real-time data of student lab progress from both the 
software and hardware side of their activities. The ultimate plan is to provide both 
hardware and software “test-cases” that will help students get more feedback as progress 
through the guided portions of the labs, and provide the instructional staff with a means 
of monitoring additional work the students perform in class.  
 
A second major goal for this upcoming summer is to implement a completely remote 
version of the single-board computer curriculum through an additional program at the 
OEOP. We began to develop something somewhat similar in the summer of 2014, 
creating an online EECS curriculum that focuses on both hardware and software using a 
previously developed remote hardware infrastructure (iLab)21,22, hardware simulations, 
and the CAT-SOOP remote automated tutor discussed above3,20. For the summer of 2015 
we intend to send all participating students a hardware development kit similar to that 
shown in Figure 1, which they will then set up and run locally at their homes. All of the 
distributed systems will be connected and synchronized with a central server on MIT’s 
campus. Rather than have students work with simulated circuits over their computer as 
was done in 2014, students will carry out hardware and software-based tasks locally on 
their own version of the development environment23. By merging this with the hardware 
and software monitoring we’re developing for the residential programs we will be able to 
provide students feedback on their progress of labs in an automated fashion remotely. 
This work is on-going and we intend to have more details to show at the ASEE 
Conference in June or 2015.  
 

Prompt Strongly 
Agree 

Agree Undecided Disagree Strongly 
Disagree 

“I learned a lot in this course” 100% 0% 0% 0% 0% 
“I was challenged in this 

course” 
 

91.7% 
 

0% 
 

8.3% 
 

0% 
 

0% 
“I would recommend this 

course to others” 
 

83.3% 
 

16.7% 
 

0% 
 

0% 
 

0% 
“The instructor of this course 
helped me learn in a different 

way” 

 
91.7% 

 
8.3% 

 
0% 

 
0% 

 
0% 

“The instructor spent most of 
class time lecturing” 

 
75.0% 

 
16.7% 

 
8.3% 

 
0% 

 
0% 

“The course was appropriate 
for my ability level” 

 
91.7% 

 
8.3% 

 
0% 

 
0% 

 
0% 

Table 6. Post-program responses of students to MITES EECS curriculum (2014) (n=12). 
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Prompt Strongly 

Agree 
Agree Undecided Disagree Strongly 

Disagree 
“I learned a lot in this course” 91.7% 8.3% 0% 0% 0% 

 
“I was challenged in this 

course” 

 
83.3% 

 
16.7% 

 
0% 

 
0% 

 
0% 

“I would recommend this 
course to others” 

 
91.7% 

 
8.3% 

 
0% 

 
0% 

 
0% 

“The instructor of this course 
helped me learn in a different 

way” 

 
91.7% 

 
8.3% 

 
0% 

 
0% 

 
0% 

“The instructor spent most of 
class time lecturing” 

 
25.0% 

 
75.0% 

 
0% 

 
0% 

 
0% 

“The course was appropriate 
for my ability level” 

 
66.7% 

 
25.0% 

 
8.3% 

 
0% 

 
0% 

Table 7. Post-program responses of students to E2@MIT EECS curriculum (2014) 
(n=14). 

 
“The most exciting and enjoyable course of my MITES experience. Put real-life application to previous 
knowledge in science and math.” 
“On top of that, the class mostly consisted of us experimenting with wires and circuits. We learned through 
hands-on experiences, which greatly helped us in completing the final project which was so fun to work on 
itself. We behaved like a family, and I was able to know everyone in the class on a deeper level...” 
“I still cannot believe that someone without any previous experience in Python and EE could actually help 
build a thermal cycler in a course of two days. I am amazed at how amazing the people were in the class, 
especially the TA and our instructor. I loved the experience and would recommend it to my friends…” 
“I really, really enjoyed the electronics course!...I learned a lot and had a lot of fun. Before this experience, 
I was set on going into medicine, but now I am considering electrical engineering, as well.” 
“I really enjoyed being in the Electronics course…It didn't feel like an ordinary course where the only 
objective is to learn. I was also able to receive as much help as I needed, so it did not matter that I started 
the course with little previous knowledge of the material.” 
“Electronics was not my first choice coming into E2. However, I now regret that is was not because if I had 
not been placed in electronics, I would have missed out on an amazing experience. With little prior 
knowledge of programming, the tasks were difficult at first. But by the end of the week, I managed to help 
build and ECG that functioned extremely well. Never, when I was told about the course, did I think we 
were going to be able to finish the projects in two days. The fact that we were was due to the staff and 
students in the class. No student was off task…” 

Table 8. Open-ended feedback from 2014 MITES and E2@MIT EECS participants. 
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