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Providing High-Quality Formative Feedback for Database
Assignments

Abstract

Automated systems such as Marmoset, WebCAT, OK, MarkUs, and many others are widely used
in assessing programming assignments. Although they enable instructors to assess students’ solu-
tions at scale, the core infrastructure of these systems is not much different from a standard build
and test environment, which focuses on ensuring correct solutions. However, when it comes to
learning, it would be more important to assist students in correcting their misconceptions when
their solutions are incorrect, i.e., provide a feedback message accurately showing them what is
wrong and what they can do. The latter, which requires high-quality assessment and considerable
effort in composing feedback, however, is rarely discussed, not to mention that no tools or sup-
port have been developed in these systems to assist in writing them. In this paper, we aim to fill
the gap by providing guidance for assessment writers to write effective assessments and feedback
for students’ solutions. We present an approach to properly organizing the test cases so that au-
tomated assessments can identify students’ misconceptions accurately, enabling them to provide
high-quality formative feedback to rectify students’ misconceptions. Following the guidance out-
lined, we developed assessments for a database course. By comparing student performance with
and without the high-quality formative feedback, we observed an overall improvement in RA of
21%, with a 73% improvement in query creation and an 11% improvement in ER, with a 32%
improvement in composing new relationship sets and/or specializations.

1 Introduction

Test-based assessment is often incorporated into automated systems to provide formative feedback
on students’ work [1, 2, 3, 4]. The standard procedure of such assessments follows the build-and-
test philosophy. When the system receives a new student submission, it runs all pre-coded tests on
the submission, then it delivers the test outcomes to students, where each outcome is usually in the
form of either pass or fail. Instructors expect students to understand what is correct and what is not
based on these test outcomes.

Although test-based automated assessments enable instructors to deliver timely feedback at scale,
they come with several limitations. Most notably, while they are designed at identifying correct
solutions, they provide limited hints for students who produce incorrect solutions. Furthermore,
they can lead to confusion when test failures stem from issues in the assessment code rather than
the students’ work.



While educators have tried to convert such test outcomes into more effective feedback, such as
in the form of an actionable sentence, such systems rarely offer guidance on how to compose
such feedback. They largely rely on instructors’ expertise to provide meaningful feedback [5].
Acknowledging the importance of formative feedback [6, 7], researchers have expended effort to
develop automated feedback tools that support instructors in generating effective feedback [8, 4, 9].
However, since many of these tools are tailored for courses tied to particular platforms or systems,
their applicability in different contexts becomes challenging [10].

Moreover, most systems tend to de-emphasize the necessity of human intervention in automated
assessments—a design decision we believe to be unwise. This implies that assessment writers
often fail to distinguish between test failures due to bugs in the assessment code and those due to
errors in students’ work. If such test failures are revealed, they can mislead students into believing
the fault lies within their work, leading them to spend time addressing non-existent issues. Thus,
it is crucial to design automated systems in such a way that they prompt for human intervention
upon encountering test failures due to unforeseen problems.

Therefore, in this paper, we propose guidance for writing assessments that greatly diverges from
the existing build-and-test philosophy. We have also developed a tool designed to assist assessment
writers in computing and engineering education in adopting our innovative approach. This tool will
be made publicly accessible.

To test the effectiveness of this guidance, we developed assessments for database assignments
based on it. The ultimate research question we aim to answer is:

• Do students learn better with our formative feedback?

We examined students’ performance between two terms, with and without formative feedback, and
found promising results.

2 Related Work

The automated grading and feedback system has a long history [11, 12]. These systems were
developed to reduce the human effort required in assessing students’ solutions to programming
questions [11, 13]. Upon receiving a new submission, the system triggers one or more workers to
run assessment tests, either sequentially or concurrently, against the student’s work. After com-
pletion, the system gather the results and processes these outcomes by, for example, aggregating
passes and failures, visualizing code coverage statistics, and then offering feedback to the students.
This approach is rooted in standard build and test practices [14] and is embraced by numerous au-
tomated systems [15, 16, 17, 4, 18].

However, it is often the case that simple pass and fail test outcomes are not effective as feedback.
Therefore, educators have sought to augment them by integrating additional information to make
the feedback more effective. A prevalent modification involves categorizing tests. Based on these
categories, the system can decide whether to display specific outcomes. This method helps shield
students from an overload of test results [19, 17, 20]. For instance, Marmoset [17] prompts instruc-
tors to classify tests as build, public, release, or secret tests. Though all tests are run if the build
test is successful, only the results of the public tests and few selected release tests are displayed.
Lee [19] grouped tests into sample tests, unlockable tests, and hidden tests. When students’ code



surpasses a threshold of sample tests, their grading system discloses one of the failed unlockable
tests.

To curate feedback tailored to students’ misconceptions, tools enabling flexible feedback have
been crafted. For example, Gusukuma et al. [8] introduced a feedback model wherein an interface
facilitates the interaction of condition-response pairs with an underlying structure. An exemplary
tool for this model is Pedal [8]. On the other hand, hint generation tools offer suggestions to assist
students to transform their current program towards a solution state [21, 22].

While being less discussed, however, enhancing feedback quality is an iterative process. Rarely
does feedback set up initially function optimally. Some tools permit human intervention to refine
the feedback [23, 24, 25, 3]. For example, Head et al. [24] showcased a mixed-initiative method
that combine instructors’ profound domain knowledge with solution structures derived through
program synthesis techniques. However, these tools typically cater to specific programming lan-
guages, such as Python, since they need to analyze the abstract syntax tree (AST). We aim to
demonstrate that refining feedback from a more holistic perspective for other languages is feasible.
For example, even if the assessment code is written in Python, it can be used to assess students’
work done in other programming languages, such as the structured query language (SQL).

3 Problems

Different automated systems offer various features to support educators’ needs. However, the
essential component, automated assessments, is composed by assessment writers. The role of
automated systems is no more than that of a standard build and testing environment. In this paper,
we focus on problems in writing assessments, hoping to provide guidance to assessment writers to
compose better automated assessments.

From our experience, there are primarily two categories that cause assessments to give incorrect
feedback: 1) false positives, where incorrect components are marked as correct; 2) false negatives,
where correct components are marked as incorrect. We will discuss why it is difficult to detect
the former, and we will focus on dealing with the latter (false negatives) category in this paper.
Although we will primarily focus on database courses, the proposals in this paper can be applied
to other courses as well.

3.1 False positives: incorrect components marked as correct

When an automated assessment is deployed, the assessment writer expects it to function correctly.
Therefore, if a solution is marked as correct, the assessment writer would consider that solution
correct. There would not be motivation for the assessment writer to retrospectively examine the
assessment code.

On the other hand, assessment writers become aware of defective code that causes false negatives,
as students are usually motivated to complain when they have correct solutions marked as incorrect.
However, students are less motivated to report false positives. It is akin to students requesting point
deductions upon realizing they received a higher grade than deserved.

Therefore, detecting this category is very challenging. One potential solution could be to periodi-



cally sample student solutions for human inspection.

3.2 False negatives: correct components get marked as incorrect

In test-based assessments, a test can fail for many reasons, far beyond what the assessment writer
might expect. For example, to verify the accuracy of a SQL query, a test might execute both the
standard SQL query and the student’s SQL query against the same database, then check if the
results match. If the results do not align, the test fails. However, is a mismatch in results the
sole cause of test failure? It is not. The test can also fail due to a connection failure, where the
assessment code fails to connect to the database; or it might fail due to insufficient memory to store
the returned result, among other potential causes. The key point is that it is often more challenging
than anticipated to create assessment code that only fails for predefined reasons. Students are likely
to be confused if the test indicates failure when they believe their work is error-free.

This is is referred to as the Unexpected Failure problem in the paper.

The situation worsens with multiple tests. Although many assessment writers adopt the Test-
Driven Development (TDD) philosophy, where each test is considered isolated from others, it is
common to find dependencies among tests. For example, assessments cannot proceed without a
submitted file or if the file is incorrectly named. Additionally, the runtime results of C/C++ and/or
Java programs can only be evaluated if the code is compilable.

Table 1 illustrates the outcomes a student would encounter if dependencies among test proper-
ties are not considered. In this scenario, suppose each property partially relies on the preceding
property to pass (i.e., property B depends on property A, property C depends on property B, and
property D depends on property C). In essence, if the student’s solution fails to meet property
B, subsequent properties are bound to fail as well. However, without visibility into the under-
lying assessment code (which is common), students are unaware of these implicit dependencies.
Consequently, they might mistakenly believe there are issues with properties other than property
B, even though resolving the issue with property B would lead to all tests passing. This lack of
transparency can mislead students into thinking there are multiple errors in their solution, diverting
their focus from the actual root cause.

name outcome
check property A passed
check property B failed
check property C failed
check property D failed

Table 1: Test outcomes

This is referred to as the Missing Dependency problem in the paper.

3.3 Improving existing assessments

Assuming that an assessment writer identifies a bug in a test or a dependency between tests, amend-
ing the existing assessment code to address these issues is not straightforward. Any fix carries the



risk of introducing additional bugs, potentially complicating matters further. It is often suggested
that any new code should undergo comprehensive testing before deployment. Yet, the concept of
“testing thoroughly” lacks a clear definition in automated assessments. This ambiguity presents
a challenge in ensuring that the new code does not adversely affect the assessment’s integrity or
introduce unforeseen complications. The need for a well-defined testing strategy is critical to mit-
igate such risks and ensure that modifications to the assessment code enhance its reliability and
effectiveness.

This is referred to as the Assessment Iteration problem in the paper.

4 Methods

Before we introduce our methodologies for solving the aforementioned problems, we want to
clearly define the terminologies for two categories of assessments and three categories of tests.

Assessment Code This refers to the type of automated assessment conducted by current auto-
mated systems or tools. It consists of tests designed to assess the quality of a student’s work. The
outcomes of these tests inform students about their performance on the assignment.

Assessment on Assessment Code This type of assessment ensures that the introduction of new
code does not bring bugs or inconsistencies. It addresses the “assessment iteration” problem. This
is similar to software quality assurance in software development.

Probing Tests These tests assess the quality of a student’s work. They are a part of the assess-
ment code.

Diagnosing Tests This newly introduced category includes tests designed to diagnose the causes
of probing test failures, in order to provide precise guidance for students to improve their work.
These tests are also a part of the assessment code. Together, probing and diagnosing tests make up
the assessment code.

Regression Tests These tests belong to the assessment on assessment code category and are its
only test category. They can be considered standard tests, such as unit tests or integration tests, if
developing assessment code is deemed the same as developing normal software.

Figure 1: Relationships between test and assessment categories

Figure 1 shows the relationships among them. In summary, the assessment code contains probing
and diagnosing tests, while assessment on assessment code contains regression tests. We will use
these terminologies throughout the remainder of the paper.



4.1 Eliminating false negatives

To address false negatives, we must tackle the issues of “unexpected failure” and “missing depen-
dency.”

Consider a probing test that consists of only one line, which is an assertion. If this test fails, we
can attribute the failure directly to that specific assertion, thereby understanding the reason behind
the test’s failure.

However, complications arise when a probing test includes multiple lines and has the potential to
fail before reaching the assertion statement. One strategy could involve duplicating the probing test
and inverting the assertion in the duplicate. Consequently, if the original test fails, the duplicate
will pass, indicating that the failure in the original test occurred at the assertion statement.

# If one passed and the other failed
# we know they both reached the assertion line
def test_a():

x = common_code()
assert x == 0

def test_a_flipped():
x = common_code()
assert x != 0

Alternatively, if a probing test fails for reasons other than assertions—implying it encountered ex-
ceptions other than assertion errors—it should theoretically run to completion. To identify such
scenarios, we can encapsulate the entire probing test in a comprehensive try ... catch/except
block, ensuring it is marked as failed only if an assertion error is detected.

def test_a():
try:

x = cause_unexpected_failure()
assert x == 0

except AssertionError as e: # known failure
raise ExpectedError from e

except Exception as e: # capture general case
raise UnexpectedError from e

This method presumes that each test comprises a single assertion or a contiguous block of asser-
tions. However, dealing with tests that contain multiple, scattered assertions presents a challenge.
A possible solution is to divide such a test into multiple smaller tests, each focusing on a single
assertion, with dependencies among these segmented tests.

Then, how do we handle unexpected failures? The most appropriate approach is to inform a human
to inspect. Once the cause is identified, huamn feedback can be provided for the solution. Possibly,
new code may be introduced to detect the newly determined cause. The procedure for handling
unexpected failures is depicted in Figure 2.

At this point, the “unexpected failure” problem is handled properly.



Figure 2: Handling unexpected failures

Regarding the “missing dependency” issue, upon closer examination, it is not truly an implemen-
tation problem. Instead, it is a problem that assessment writers often fail to acknowledge. The
reason is that many assessment writers and developers of automated systems adhere to the TDD
philosophy, which advocates for isolated tests when designing probing tests. However, isolation
may not be appropriate in assessments within an educational context. This issue can be addressed
if assessment writers recognize it and consider it when composing probing tests.

4.2 Adding new code safely

Standard TDD requires developers to write test cases before the software is fully developed, allow-
ing new changes to be verified and validated. A test case specifies the inputs, execution conditions,
testing procedure, and expected results, defining an executable test to achieve a particular software
testing objective. In the context of assessment code, these are referred to as regression tests.

For example, if the solution is expected to satisfy property A but not B, C, and D, then both
before and after changes to the assessment code (such as fixing bugs or code refactoring), the test
outcomes (happen to be the same as in Table 1) for the solution should remain unchanged. In other
words, if the input is the solution, then the output should be the same test outcomes.

Regression tests might not be needed if the assessment code is relatively simple. However, cur-
rent automated assessments have been growing in complexity. Furthermore, the purpose of any
given assessment is rarely spelled out explicitly. The purpose of the assessment should always
be clearly defined; once it is, testing whether the assessment code fulfills that purpose becomes
relevant.



4.2.1 An applicable example

We assume the database used for the assignment is the world database1, and we have loaded it
using MySQL. The assessment aims to verify whether the student’s query returns correct results
for the question: What are the unique city names in the world database?

One possible assessment code consists of two steps:

1. Execute both the student’s query and the instructor’s query to retrieve the table rows.

2. Sort the rows and then compare them.

Below is the function used in the probing test:

def check_correctness(stu_sql):
inst_sql = "SELECT DISTINCT ‘name‘ FROM ‘city‘;"
inst_rows = get_rows(inst_sql)
inst_rows_sorted = sorted(inst_rows)
# Similarly, for the student’s query
stu_rows = get_rows(stu_sql)
stu_rows_sorted = sorted(stu_rows)
# Perform the comparison
return student_rows_sorted == inst_rows_sorted

In order to ensure we remember to include DISTINCT in the instructor query when we change the
check correctness function, we created the following regression test.

def test_ensure_distinct():
sql_no_distinct = "SELECT ‘name‘ FROM ‘city‘;"
sql_has_distinct = "SELECT DISTINCT ‘name‘ FROM ‘city‘;"
assert check_correctness(sql_no_distinct) == False \

and check_correctness(sql_has_distinct) == True

However, later we find it might be clearer to use ORDER BY within inst sql. Therefore, we
updated the check correctness code as follows:

def check_correctness(stu_sql):
# Use ORDER BY for instructor’s query
inst_sql = "SELECT DISTINCT ‘name‘ FROM ‘city‘ ORDER BY ‘name‘;"
inst_rows_sorted = get_rows(inst_sql)
# No change for student’s query
stu_rows = get_rows(stu_sql)
stu_rows_sorted = sorted(stu_rows)
# Perform the comparison
return student_rows_sorted == inst_rows_sorted

This change would cause test ensure distinct to fail because sorted() in Python sorts
rows differently from ORDER BY in SQL by default, as illustrated by Table 2. Despite not being its
original intention, the regression test detected a potential discrepancy in our assessment code.

1https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html,
accessed: 2024-03-29

https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html


SQL Python
’[San Cristóbal de] la Laguna’ ’A Coruña (La Coruña)’

’´s-Hertogenbosch’ ’Aachen’
’A Coruña (La Coruña)’ ’Aalborg’

’Aachen’ ’Aba’
’Aalborg’ ’Abadan’

... ...

Table 2: Differences in sorting results between SQL’s ORDER BY and Python’s sorted()

4.3 Providing high-quality feedback

Understanding why a probing test fails is important. However, even more crucial is informing
students how they can improve. For example, if a student’s SQL query does not yield the expected
results, could it be due to the absence of DISTINCT? Or is it because they used the wrong JOIN
(i.e., a LEFT JOIN was expected but the student used an INNER JOIN)? Or is it simply because
the student returned incorrect attributes? Anecdotally, we have observed many students making
countless submissions to pass a single probing test, mainly because they have no clue about their
mistakes or how to fix them.

Diagnosing tests are employed for this purpose. These tests will not run if probing tests are passed;
however, if a probing test fails, diagnosing tests that depend on its failure will be executed. For
example, considering the previous example of mismatched returned results, one could code three
diagnosing tests such as “missing distinct”, “check join type”, and “check attributes”. The out-
comes of these tests can guide the student on what steps to take next.

probing tests outcome
check property A passed
check property B failed
check property C skipped
check property D skipped

diagnosing tests outcome
incorrect component X passed
incorrect component Y failed

Table 3: Test outcomes of probing tests and diagnosing tests considering dependencies

Table 3 presents the enhanced test outcomes of the assessment code, clearly indicating that a so-
lution fails to meet property B, with component X being at least partially responsible. However,
in the absence of passing diagnostic tests, students may need to identify the underlying cause by
themselves.

The transition from Table 1 to Table 3 marks a notably improvement in the precision of automated
feedback. Nonetheless, we argue it is necessary to transform raw test outcomes into actionable
feedback. For example, the feedback derived from Table 3 could be framed as, “Your program
fails to meet property B. Perhaps double check component X”.



There are at least two advantages for doing that:

• It reduces the cognitive burden on students in interpreting the feedback; and

• It introduces an additional layer of abstraction, enabling assessment authors to conceal the
specifics of the assessment code, thus preventing students from knowing the exact tests and
what they are assessing.

This transformation can be achieved by establishing a mapping between the set of test outcomes
and the corresponding actionable feedback.

5 Actual Assessments

The actual assessments were implemented using the popular unit test framework pytest [26]. Al-
though it does not natively support test dependencies, this functionality can be achieved with the
pytest-dependency plugin2. Despite the assessment code being written in Python, there is no
inherent connection or limitation to what it can assess.

For SQL questions, the assessment code essentially verifies whether students’ queries yield the
same results as the canonical solutions.

For relational algebra (RA) questions, students were required to use a novel QWERTY-Compatible
Syntax (QCS) for coding their queries. For example, to identify the names of employees who earn
the highest salary, the RA query can be

p[name]s[salary in (G[max(salary)]Employee)] Employee;

where p is for projection, s is for selection, and G is for aggregation. Additionally, the join
operation (JOIN) is supported; for example, A natural join B is represented as A |><| B. The
assessment code focuses on syntax errors, using a novel RA parser to detect such errors. It then
uses regular expressions to identify the specific part causing the error, transforming the parser’s
message into actionable feedback.

For example, if one forgets the Employee in G[max(salary)Employee], the syntax error,
“syntax error at line 1 column 35,” would be translated into feedback like, “At line 1, you forgot
to name the table on which you intended to apply the aggregation.” Incorporating semantic error
checking is planned for future work.

For entity relationship (ER) questions, we provide a special database schema involving tables such
as “Entities”, “RelationshipSets”, “Attributes”, “IsA” (i.e., specialization), etc., enabling students
to construct their ER designs by writing insertion statements in SQL. Figure 3 shows an exam-
ple.

The steps for assessing ER designs can be summarized as follows: 1) Executing the student’s SQL
file; 2) Checking whether all essential entity sets, as presented in all valid designs in the canonical
solution set, were present in the resulting relational tables; 3) Searching for elements that must
not exist, such as extra specializations; 4) Matching the student’s design to an exemplary design
using a set of rules, such as checking the involved entity sets in each relationship set between

2https://pypi.org/project/pytest-dependency/

https://pypi.org/project/pytest-dependency/


Figure 3: Sample ER design and its encoding

the student’s design and every design in the canonical solution set; 5) Evaluating the remaining
components, such as attributes and constraints. Note that students were encouraged to reach out to
instructors if their design did not match any of the pre-coded designs.

For all assessments, dependencies were carefully configured, such that the first probing test is
to check if the submitted file is named correctly. Emails were used to inform instructors and
assessment writers when human inspection was needed.

6 Evaluation

This is the first time we introduced automated assessment. Therefore, we chose to examine the
final exam performance in SQL, RA, and ER design questions across two terms—with and with-
out formative feedback—to determine if students achieved better learning outcomes. The same
instructor taught the course in both terms, and there were no substantial changes in homework
assignments. Additionally, the questions on both final exams covered the same topics and were
very similar, with only small variations. The ER question was the same, with two sub-questions.
The first sub-question asked students to identify primary keys or discriminators, weak-entity sets,
or participation constraints that were intentionally removed from the ER model. The second sub-
question asked students to compose new relationship sets and/or specializations to enhance the
existing ER design. Both final exams were in-person and closed book, and were marked using the
same rubric by the same person.

We applied the two-sided Welch’s t-test to compare students’ grade percentages between the two
terms for each type of question. The two-sided Welch’s t-test is a statistical method used to test the
hypothesis that two populations have equal means, where the populations do not necessarily have
the same variance (heteroscedasticity) and may have different sample sizes.

Table 4 presents the results of the statistical tests. It reveals that there was no significant difference
in students’ performance on SQL comprehension and creation questions, nor was there a significant
difference in performance on RA comprehension questions. However, there was a significant
difference in performance on RA creation questions. The aggregate performance on RA question
was also significant. The aggregate performance on ER question was close to significant and the
performance on ER Q2 was significant.



SQL Comp SQL Cr RA Comp RA Cr RA Total ER Total ER Q1 ER Q2
mean (without) 81.76 62.35 72.35 38.24 60.98 51.27 63.14 39.41
mean (with) 77.38 59.45 78.09 66.35 73.77 57.73 60.20 51.98
p-value 0.128 0.469 0.181 1.2E-5 6.17E-4 0.058 0.428 0.006

Table 4: Grade percentage statistics with and without feedback (“Comp” stands for “comprehen-
sion” and “Cr” stands for “creation”)

This indicates an overall improvement in RA of 21%, with a 73% improvement in query creation
and an 11% improvement in ER, with a 32% improvement on ER Q2. These results are promis-
ing.

7 Discussion and Future Work

We would like to discuss our further considerations in providing high-quality feedback in this
section.

7.1 Probing test vs. Diagnosing test

It may not be necessary to distinctly separate probing tests from diagnostic tests. For example,
diagnostic tests can exist for other diagnostic tests. The latter can, to some extent, be considered
probing tests. This can be considered to creating a chain of tests, similar to how humans investigate
problems through a series of checks.

Without using unit testing frameworks, one can implement these tests from scratch. However, this
means there might be several features overlapping with unit testing frameworks, such as ensuring a
fresh start for every test and generating a report to collect test outcomes. Therefore, in our current
implementation, we have tried to leverage unit testing frameworks—with one limitation addressed,
where unit testing frameworks do not support conditional test branching, as shown in the pseudo
code below.

if test_a() passed:
test_b()

else:
test_c()

In the case of conditional branching, we duplicated the test to be conditionally checked. Then, we
made subsequent tests depend on each of these duplicates. For example, in the following code,
test b will execute if test a passes; otherwise, test c will execute.

def test_a():
assert x == 0

def test_a_flipped():
assert x != 0

@pytest.mark.dependency(depends=["test_a"])
def test_b():



assert y == 0

@pytest.mark.dependency(depends=["test_a_flipped"])
def test_c():

assert z == 0

7.2 Efficiency of Assessments

Introducing dependencies may reduce the efficiency of assessments, but it is meaningless if cor-
rectness cannot be guaranteed. Nonetheless, parallelism can still be applied if some tests have no
dependencies.

For example, if we have two sets of tests, where test_a → test_b means test_b gets exe-
cuted only if test_a passes.

1. test_a→ test_b→ test_c

2. test_e→ test_f

Apparently, the first chain (test_a/b/c) can be executed in parallel with the second chain
(test_e/f).

7.3 Policy Decisions

Assessment writers or educators using automated systems must make policy decisions for certain
issues. One issue arises when the assessment code is found to be defective and requires a fix. The
question then becomes when to apply this fix.

A straightforward decision is to implement the fix immediately. However, this becomes compli-
cated if some students have already submitted their solutions. If they resubmit the same solution
and observe a change in the assessment outcome, they might be confused by the inconsistency. The
decision may also depend on what is being assessed. If the component being assessed is minor,
ignoring the issue might be considered acceptable when the assessment is being in use.

Another scenario requiring policy decisions involves deciding whether to seek human feedback
after a probing test fails for expected reasons. This is crucial when the probing test evaluates
solutions that are not uniquely correct. For example, probing tests might compare students’ ER
designs against standard examples. A failed probing test does not necessarily indicate that the
student’s design is incorrect; it might be a valid design that was not anticipated during the test’s
development. In such cases, human evaluation is advisable.

In practice, our implementation involves informing a human of any test failure (i.e., through email)
during the initial submissions, regardless of whether the failure was anticipated. This approach
allows us to quickly gain insights into students’ solutions. Subsequently, many diagnostic tests
were introduced after deployment. These tests were not pre-coded. They were coded after the
assignment has been released.

However, one of the associated issue was that the number of emails could be overwhelming. There
could be multiple solutions triggering multiple notifications although they all failed for the same



misconception. Ideally, the automated assessment should aggregate similar solutions within a
single request for human inspection.

7.4 The Tool

We extract common components that can possibly be reused from one assessment to another into
a tool. We hope this facilitates more people adopting our approach to develop their automated
assessments. It is publicly accessible3.

7.5 Artificial Intelligence (AI)

Future work could consider incorporating AI into the automated assessment. For example, if there
is a SQL syntax error, instead of displaying the message “ERROR 1064 (42000): You have an
error in your SQL syntax; check the manual that corresponds...” to students, a more user-friendly
response could be generated using GPT-4 [27]. We have observed that GPT-4 provides relatively
accurate responses to SQL syntax errors. However, proper validation is still necessary to ensure its
performance meets expectations, especially for complex queries such as RA or ER questions.

8 Summary

In this paper, we introduced guidance that diverges significantly from the build-and-test approach
currently adhered to by existing automated assessments. Following this guidance, we developed
our automated assessments for a database course. By comparing student performance before and
after the deployment of the automated assessments, we observed an overall improvement in RA
of 21%, with a 73% improvement in query creation and an 11% improvement in ER, with a 32%
improvement in composing new relationship sets and/or specializations.
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