
AC 2011-1464: PUTTING BELLS & WHISTLES ON DSP TOOLKIT OF
LABVIEW

Murat Tanyel, Geneva College

Murat Tanyel is a professor of engineering at Geneva College. He teaches upper level electrical engineer-
ing courses. Prior to teaching at Geneva College, Dr. Tanyel taught at Dordt College in Sioux Center,
IA. He started his career at Drexel University where he worked for the Enhanced Educational Experience
for Engineering Students (E4) project, setting up and teaching laboratory and hands-on computer exper-
iments for engineering freshmen and sophomores. For one semester, he was also a visiting professor at
the United Arab Emirates University in Al-Ain, UAE where he helped set up an innovative introductory
engineering curriculum. Dr. Tanyel received his B. S. degree in electrical engineering from Boazii Uni-
versity, Istanbul, Turkey, his M. S. degree in electrical engineering from Bucknell University, Lewisburg,
PA and his Ph. D. in biomedical engineering from Drexel University, Philadelphia, PA.

c©American Society for Engineering Education, 2011

P
age 22.1204.1

Putting Bells & Whistles on DSP Toolkit of LabVIEW

Abstract

Most Digital Signal Processing (DSP) courses rely heavily on MATLAB and/or C, representing
the state of the art in textual programming, for their standard computer tools. We have argued, in
previous papers, that whereas this environment may be efficient in manipulating equations,
textual implementation of processes best described by block diagrams loses its intuitive
substance and have provided examples of LabVIEW implementations that are better left
graphical. The standard DSP toolkit of LabVIEW is aimed at the practicing engineer/scientist
who needs to process acquired data to reach other ends in contrast to a student whose aim is to
learn about signal processing. LabVIEW’s DSP toolkit is rich with high level algorithms but
needs to be enhanced in order to serve the pedagogical needs of students of DSP. While teaching
this course at a previous institution, we developed many routines to complement the standard
DSP toolkit as we tried to demonstrate basic concepts. Returning to teaching DSP at a different
institution after a break of 6 years, some of those old tools needed to be revised and new
possibilities that LabVIEW has to offer in this field were discovered. This paper will review our
past experience and will focus on this additional toolkit that was developed to make LabVIEW a
better teaching tool in a DSP class. In particular, detailed descriptions of classroom activity that
takes advantage of LabVIEW’s sound capture and playback routines will be provided. The
paper will conclude with the results of a focus group discussion with the students of the DSP
class.

I. Introduction

As computer applications have proliferated the electrical engineering curriculum, we observe
that a number of applications have become widespread computer tools in electrical engineering
textbooks. Spice and its derivatives, such as National Instrument’s Multisim pervade courses
that cover circuit analysis and electronics 1-7; MATLAB and its derivative SIMULINK have
become the standard computer tool for control systems8-11, communication systems12-14 and
digital signal processing (DSP)15-16. The C programming language17 has replaced FORTRAN in
the electrical engineering curriculum, as our generation has observed this transition from our
undergraduate studies in the late seventies to graduate studies in the eighties. With the exception
of SIMULINK and the graphical interface of Multisim, these different computer tools of the
trade are text-based environments, as opposed to a newer breed of programming environments
that take advantage of the more recent development of the graphical interface. The most ardent
employer of this graphical programming environment has been National Instruments with their
LabVIEW package that runs on a number of platforms, namely, MacOS, Windows, UNIX and
Linux. A contender is Agilent VEE Pro, available on Windows and Vista. Another serious
contender is SIMULINK with its textual roots on MATLAB.

In our previous publications, we have contended that processes depicted by block diagrams in
control systems, communication systems and DSP, are better candidates for simulation and/or
realization in a graphical programming environment than in a textual environment18-20. This

P
age 22.1204.2

paper describes the recent experience we have had in using LabVIEW in DSP at a different
institution after a long gap. This paper will first give a brief course description with the
particular textbook used. It will then provide an overview of DSP utilities of LabVIEW,
proceeding with examples which utilized the sound routines provided by LabVIEW. It will then
convey the consensus of our small class on the effectiveness of LabVIEW in demonstrating DSP
concepts, finishing with our concluding remarks.

II. The Overall Environment: The Course, the Facilities and the Tools

The engineering department at Geneva College offers an ABET-accredited engineering major
with civil, mechanical, electrical and computer engineering concentrations as well as serving a
non-accredited chemical engineering major offered by the Department of Chemistry. Digital
Signal Processing is a senior level elective for electrical and computer engineering students. The
textbook that chosen for this offering was Orfanidis' Introduction to Signal Processing16. This
textbook was chosen because of the instructor's familiarity with it and its good balance between
theory and practical applications as well as its many examples in C and/or MATLAB with the
provision of code. The topics covered in this offering were: sampling and reconstruction,
quantization, properties of discrete-time systems, FIR filtering and convolution, z-transforms,
transfer functions, digital filter realizations (such as direct form, canonical form and cascade
form, hardware realizations and circular buffers and quantization effects in digital filters), signal
processing applications (digital waveform generators, digital audio effects), DFT/FFT
algorithms, FIR digital filter design and IIR digital filter design.

ELE 440, Digital Signal Processing, is a three credit class which met for three 55-minute periods
a week. The mode of instruction employed active learning in which students were required to
read the topic of the day prior to coming to class and the class period was utilized to clear
concepts, emphasize important points and to study practical applications.

Geneva College Engineering Department runs a number of its courses in tablet-enhanced mode,
in which students are loaned tablet PCs. These computers are loaded with all the standard
software for which the College in general and the Engineering Department in particular have
licenses. ELE 440 is one of the tablet-enhanced courses. Therefore, National Instruments’
LabVIEW is accessible to students in and outside of class. LabVIEW was chosen to supplement
the DSP course for two main reasons: i) the instructor’s prior experience with it21-25 and ii) the
recognition that it is a worthwhile programming environment that will complement the other
packages, namely C++ and MATLAB, already introduced in other courses.

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a graphical
programming environment, based on the concept of data flow programming, particularly suited
to test and measurement applications26. The three important components of such applications are
data acquisition, data analysis and data visualization. LabVIEW offers an environment which
covers these vital components. It is the combination of these specialized components and the
data-flow programming paradigm that makes it attractive to scientists and engineers interested in
quick test and measurement applications.

P
age 22.1204.3

LabVIEW programs are called virtual instruments (VIs). The Signal Processing Library of the
LabVIEW Full Development System (v. 8.5) contains VIs that are arranged in groups. The
groups pertinent to the DSP course are listed below:

• Waveform Generation, containing VIs for generating different signals such as sine wave,

square wave, various types of noises utilizing LabVIEW’s waveform data structure.

• Waveform Conditioning, containing VIs for filtering, convolving and windowing

waveforms.

• Waveform Measurements, containing VIs ranging from Basic RMS Value to Harmonic

Distortion Analyzer, various types of Spectrum Analyzers on waveforms.

• Signal Generation, containing VIs for generating different signals such as a sine wave, a

square wave, a chirp signal and white noise in simple, numerical arrays.

• Signal Operation, containing VIs for computing convolution, deconvolution, auto-

correlation, cross-correlation, decimation and similar routines with numerical arrays.

• Windows, containing VIs for applying different kinds of windows such as Hanning,

Hamming, Triangle, Blackman, Kaiser, on numerical arrays.

• Filters containing such procedures as Butterworth, Chebychev, Inverse Chebychev, Elliptic,

Bessel high/low/bandpass/bandstop filters, advanced IIR filtering, advanced FIR filtering
(windowed coefficients, Parks-McClellan algorithm, etc.) on numerical arrays.

• Spectral Analysis, containing VIs for computing the power spectrum, auto & cross power

spectrum on numerical arrays.

• Transforms, containing VIs for computing the power spectrum, complex FFT, complex

inverse FFT, fast Hilbert transform, inverse fast Hilbert transform and similar routines on
numerical arrays.

• Point by Point many of the above routines performed on a single data point.

Employment of these readily-available VIs made many class demonstrations quick and
intuitively easy to understand. The flexibility of the programming environment allowed us to
write some more fundamental routines on our own, adding to LabVIEW’s 'DSP toolkit' some
specialized VIs for this class.

III. Examples Utilizing the Sound VIs

One of the strengths of the textbook is the provision of many examples from digital music
processing. LabVIEW’s sound VIs, found under the category Functions / Programming /
Graphics & Sound promised to be a good match to test the routines described in the textbook.
The VIs under this category include:

P
age 22.1204.4

• Play Waveform, which plays data in LabVIEW’s waveform data structure,
• Play Sound File, which opens and plays .wav files,
• Acquire Sound, which samples sound from the host computer’s standard microphone input,
• Sound File Read, Sound File Write, which reads from and writes onto .wav files.

All of these VIs utilize LabVIEW’s waveform data structure, which includes the quantized sound
data, sampling period and a time stamp bundled together. Following National Instruments’
example, we will refer to data in waveform data structure as Wavdata. LabVIEW’s Waveform
Conditioning and Waveform Measurement VIs manipulate Wavdata. However, utilizing these
canned VIs conceals the processing routines which we aim to teach students in a typical DSP
class. In order to apply our own algorithms we developed in class, the instructor developed VIs
to work with the standard sound VIs and made them available on the course’s Blackboard site.
The following is a list of these VIs with brief descriptions:

• GenerateSound.vi: converts an ordinary numeric data array into LabVIEW’s waveform data

structure and plays it at the specified sampling rate (default is 8,000 samples/s).
• WaveformToData.vi: obtains the quantized sound data from LabVIEW’s waveform data

structure and stores in a numeric array. We will refer to the output of this VI as raw sound
data.

• NrOfChannels.vi: determines the number of channels of sound in Wavdata, used as a subVI
in WaveformToData.vi.

• NrOfChannelsRaw.vi: determines the number of channels of raw sound data.
• StripChannel.vi: strips the channel # indicated from raw sound data.

Equipped with these extra tools, we were able to implement and hear some of the examples
provided in the textbook.

Sinusoidal Generators: A filter with the transfer function

 (1)
will generate an exponentially decaying sinusoid of frequency ω0 for 0 < R < 1. Similarly, a
filter with the transfer function

 (2)
will generate a cosine waveform. Figure (1) depicts the front panel and block diagram of the
subVI CosinusoidalCoeffGen.vi that we wrote as a class exercise. The inputs of this routine are
f0 (the frequency of the desired cosine), fs (sampling frequency) and the parameter R. This
subVI generates the numerator and denominator coefficients (forward and reverse coefficients)
of Eq. (2) in a format that LabVIEW’s IIR Filter routine utilizes.

P
age 22.1204.5

 (a) (b)
Figure 1: (a) The front panel and (b) the block diagram of a sinusoidal generator.

DTMF Keypad: The digital touch tone phone, also known as the dual-tone multi-frequency
(DTMF) transmitter/receiver is a typical application of sinusoidal generators. Each key on the
keypad, when pressed, produces the sum of two tones. The signal, y(n), generated by each key
press may be expressed as:

)cos()cos()(nnny HL ωω += (3).

Each key is assigned its unique combination of lower and higher frequencies, ωL and ωH
respectively. Table (1) summarizes the frequency assignments for a DTMF keypad.

 High Group
 1209 Hz 1336 Hz 1477 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C

Low
Group

941 Hz * 0 # D

Table 1: Frequency assignments for a DTMF keypad..

Figure (2) depicts the front panel of the KeypadSub.vi which simulates a DTMF keypad. This
VI employs two of the VIs implemented for this offering of the course, namely
GenerateSound.vi and CosinusoidalCoeffGen.vi.

TestKeypad.vi, depicted in Figure (2) calls KeypadSub.vi, which will in turn monitor the key
presses and display the key sequence until the Send button is pressed. When Send button is
pressed, the computer generates and plays the unique tone combination of each key in sequence.

P
age 22.1204.6

Figure 2: The front panel of the KeypadSub.vi.

Figure 3: The front panel of Echo.vi processing a Windows system sound file.

Digital Echo Processor: The echo of a signal can be implemented by the filter whose transfer
function is

DazzH −+=1)((4).

where the parameter a represents the reflection and propagation losses such that |a| ≤ 1 and the
parameter D represents round-trip travel time from the source to the reflecting medium. Figure

P
age 22.1204.7

(3) shows the front panel of Echo.vi, which implements a digital echo processor on one of the
Windows system sound files.

Plain Reverberator: Adding up an infinite number of successive echoes achieves the
reverberating effect giving rise to an IIR comb filter whose transfer function is

Daz
zH −−
=

1
1)((5)

where the parameters a and D are now attenuation and delay for each reverberation. Figure (4)
shows the reverberation pattern for the same sound file of Figure (3).

Figure 4: The front panel of Reverb.vi, reverberating a Windows system sound file.

Flanging: In the days of reel tape players, flanging effect was created by playing the music
simultaneously through two tape players and alternately pressing the flange of each tape reel to
slow it down. In the digital world, the flanging effect can be achieved by adding a delayed
version of the signal to itself and allowing the delay, D, to vary in time:

))(()()(ndnaxnxny −+= (6)

where y(n) is the flanged signal, x(n) is the original signal and d(n) is the time varying delay.
One candidate for the delay is a sinusoidal variation within the limits 0 ≤ d(n) ≤ D of a low
frequency Fd:

P
age 22.1204.8

())2cos(1
2

)(nFDnd dπ−= (7).

Figure (5) depicts the flanging effect on a pure sinusoidal signal.

Figure 5: Sinusoidal flanging on a pure tone.

IV. Conclusions

This paper has described a renewed interest in using LabVIEW as a teaching tool in a DSP
course, with examples of the in-class activities bringing out the utilization of the sound functions
of LabVIEW 8.5. These are just a few of the many routines we implemented in class. However,
when we started playing sound files, a reignited interest in the students’ participation was
apparent. We had covered many algorithms and graphed countless waveforms leading up to
these examples with sound, but mere graphs were not able to capture students’ attention as much
as the audio effects. The evidence was clear in the focus group we had at the end of the
semester: When asked what they had learned in this class, the students’ recollections from
earlier chapters had several gaps, but they all recounted the subjects we covered in the digital
audio effects chapter with consistent accuracy. The focus group also revealed a shortcoming of
the course, namely, trying to do too much in three lectures a week. The identifiable criticism
was: “LabVIEW ate a lot of lecture time and turned lectures into a LabVIEW class rather than
DSP.” A suggested remedy was to have the examples ready-made. However, in the discussion
that ensued, the following points emerged: (1) that ready-made examples would not reveal the

P
age 22.1204.9

details of the algorithms under study, (2) that they would conceal the math involved and (3) that
they would not contribute to students’ proficiency in LabVIEW, an important “modern
engineering tool”. When these points were considered, some further suggestions were provided:
a) introduce a conventional lab, increasing the number of credits for the course, b) hold one or
two of the classes on Tuesdays or Thursdays, which, at our institution, would mean longer class
periods, c) if DSP is kept at three lecture hours a week, offer a LabVIEW programming course
prior to DSP and assign projects in DSP and only use completed VIs in the lectures. The
discussion indicated that the students appreciated having LabVIEW projects. Some comments
were: “The projects made you feel grown-up.” “They helped integrate content not only from
this course but from other courses, as well.”

Based on the comments from the focus group, we will continue the project-oriented approach in
DSP. To address the issue of over-ambitious lectures, a variation of option (b) will be
implemented next fall. The course will be offered in a 2 lectures plus 1 three-hour lab format.
This will keep the number of credits below the magic number of 18 at our institution while
giving students ample time for project-focused work.

Bibliography

1. Nilsson, J. W. and Riedel, S. A. Electric Circuits, Sixth Edition, Upper Saddle River, NJ: Prentice Hall (2000).

2. Rashid, M. H., Spice for Power Electronics and Electric Power, Engle_wood Cliffs, NJ: Prentice Hall (1993).

3. Sedra, A. S. and Smith, K. C., Microelectronic Circuits, Fourth Edition, New York, NY: Oxford University

Press (1998)

4. Roberts, G. W. and Sedra, A. S., Spice for Microelectronic Circuits Third Edition by Sedra/Smith, New York,

NY: Oxford University Press (1992).

5. Howe, R. T.and Sodini, C. G., Microelectronics – An Integrated Approach, Upper Saddle River, NJ: Prentice

Hall (1997).

6. Franco, S., Electric Circuit Fundamentals, Philadelphia, PA: Saunders College Publishing (1995).

7. Jaeger, R. C., Microelectronic Circuit Design, New York, NY: McGraw-Hill (1997).

8. Nise, N. S., Control Systems Engineering, New York, NY: John Wiley & Sons (2000).

9. Ogata, K, Modern Control Engineering, Upper Saddle River, NJ: Prentice Hall (1997).

10. Dorf, R. C. and Bishop, R.H., Modern Control Engineering, 8th Ed., Reading, MA: Addison Wesley (1998).

11. Palm III, W. J., Modeling, Analysis, and Control of Dynamic Systems, 2nd Edition, New York, NY: John Wiley
& Sons (2000).

P
age 22.1204.10

12. Couch II, L. W., Digital and Analog Communication Systems, Sixth Edition, Upper Saddle River, NJ: Prentice
Hall (2001).

13. Bateman, A., Digital Communications: Design for the Real World, 1/e, Upper Saddle River, NJ: Prentice Hall

(1999).

14. Anderson, J. B., Digital Transmission Engineering, 1/e, Upper Saddle River, NJ: Prentice Hall (1999).

15. Orfanidis, S. J., Introduction to Signal Processing, Upper Saddle River, NJ: Prentice Hall (1996).

16. Moon, T. K. and Stirling, W. C., Mathematical Methods and Algorithms for Signal Processing, Upper Saddle

River, NJ: Prentice Hall (2000).

17. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes in C : The Art of

Scientific Computing, Cambridge: Cambridge University Press (1993)

18. Viss, M. and Tanyel, M., “From Block Diagrams to Graphical Programs in DSP”, 2001 ASEE Annual

Conference and Exposition Proceedings, Albuquerque, N.M., June 24-27 2001.

19 Tanyel, M., “Explorations In Communication Systems Using a Virtual Toolkit”, 2003 ASEE Annual Conference

and Exposition Proceedings, Nashville, TN, June 22-25 2003.

20 Tanyel, M. and Linder, J., “Are Our Toolkits as Exciting as We Think They Are?”, 2004 ASEE Annual

Conference and Exposition Proceedings, Salt Lake City, UT, June 20-23 2004

21. Tanyel, M., Engineering Explorations with LabVIEW, Philadelphia, PA: Harcourt Brace Custom Publishers

(1994).

22. Tanyel, M., "Virtual Experimentation in Freshman and Sophomore Years," in Proceedings of 58th Annual ASEE

North Midwest Section Meeting, Oct. 1996.

23. Abu Zeid, O. A., Tanyel, M., "Innovation in Teaching Mechanical Engineering Applications", in Proceedings

of 1994 Frontiers in Education Conference, pp. 82-86, Nov. 1994.

24. Scoles, K., Tanyel, M., Onaral, B., "Computing in Electrical Engineering Education at Drexel University", in

IEEE Transactions on Education, vol. 36, no. 1, pp. 198-203, Feb. 1993.

25. Tanyel, M., Quinn, R., Barge, E., "An Engineering Laboratory for Freshmen - Computer Utilization", in 1990

ASEE Annual Conference Proceedings, Toronto, June 26-29 1990.

26. Chugani, M. L., Samant, A. R., Cerna, M., LabVIEW Signal Processing, Upper Saddle River, NJ: Prentice Hall

(1998).

P
age 22.1204.11

