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Putting Bells & Whistles on DSP Toolkit of LabVIEW 
 
 

Abstract 
 
Most Digital Signal Processing (DSP) courses rely heavily on MATLAB and/or C, representing 
the state of the art in textual programming, for their standard computer tools.  We have argued, in 
previous papers, that whereas this environment may be efficient in manipulating equations, 
textual implementation of processes best described by block diagrams loses its intuitive 
substance and have provided examples of LabVIEW implementations that are better left 
graphical.  The standard DSP toolkit of LabVIEW is aimed at the practicing engineer/scientist 
who needs to process acquired data to reach other ends in contrast to a student whose aim is to 
learn about signal processing.  LabVIEW’s DSP toolkit is rich with high level algorithms but 
needs to be enhanced in order to serve the pedagogical needs of students of DSP.  While teaching 
this course at a previous institution, we developed many routines to complement the standard 
DSP toolkit as we tried to demonstrate basic concepts.  Returning to teaching DSP at a different 
institution after a break of 6 years, some of those old tools needed to be revised and new 
possibilities that LabVIEW has to offer in this field were discovered.  This paper will review our 
past experience and will focus on this additional toolkit that was developed to make LabVIEW a 
better teaching tool in a DSP class.  In particular, detailed descriptions of classroom activity that 
takes advantage of LabVIEW’s sound capture and playback routines will be provided.  The 
paper will conclude with the results of a focus group discussion with the students of the DSP 
class. 
 
I.  Introduction 
 
As computer applications have proliferated the electrical engineering curriculum, we observe 
that a number of applications have become widespread computer tools in electrical engineering 
textbooks.  Spice and its derivatives, such as National Instrument’s Multisim pervade courses 
that cover circuit analysis and electronics 1-7; MATLAB and its derivative SIMULINK have 
become the standard computer tool for control systems8-11, communication systems12-14 and 
digital signal processing (DSP)15-16.  The C programming language17 has replaced FORTRAN in 
the electrical engineering curriculum, as our generation has observed this transition from our 
undergraduate studies in the late seventies to graduate studies in the eighties.  With the exception 
of SIMULINK and the graphical interface of Multisim, these different computer tools of the 
trade are text-based environments, as opposed to a newer breed of programming environments 
that take advantage of the more recent development of the graphical interface.  The most ardent 
employer of this graphical programming environment has been National Instruments with their 
LabVIEW package that runs on a number of platforms, namely, MacOS, Windows, UNIX and 
Linux.  A contender is Agilent VEE Pro, available on Windows and Vista.  Another serious 
contender is SIMULINK with its textual roots on MATLAB.   
 
In our previous publications, we have contended that processes depicted by block diagrams in 
control systems, communication systems and DSP, are better candidates for simulation and/or 
realization in a graphical programming environment than in a textual environment18-20.  This 
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paper describes the recent experience we have had in using LabVIEW in DSP at a different 
institution after a long gap.  This paper will first give a brief course description with the 
particular textbook used.  It will then provide an overview of DSP utilities of LabVIEW, 
proceeding with examples which utilized the sound routines provided by LabVIEW.  It will then 
convey the consensus of our small class on the effectiveness of LabVIEW in demonstrating DSP 
concepts, finishing with our concluding remarks. 
 
II.  The Overall Environment:  The Course, the Facilities and the Tools 
 
The engineering department at Geneva College offers an ABET-accredited engineering major 
with civil, mechanical, electrical and computer engineering concentrations as well as serving a 
non-accredited chemical engineering major offered by the Department of Chemistry.  Digital 
Signal Processing is a senior level elective for electrical and computer engineering students.  The 
textbook that chosen for this offering was Orfanidis' Introduction to Signal Processing16.  This 
textbook was chosen because of the instructor's familiarity with it and its good balance between 
theory and practical applications as well as its many examples in C and/or MATLAB with the 
provision of code.  The topics covered in this offering were:  sampling and reconstruction, 
quantization, properties of discrete-time systems, FIR filtering and convolution, z-transforms, 
transfer functions, digital filter realizations (such as direct form, canonical form and cascade 
form, hardware realizations and circular buffers and quantization effects in digital filters), signal 
processing applications (digital waveform generators, digital audio effects), DFT/FFT 
algorithms, FIR digital filter design and IIR digital filter design. 
 
ELE 440, Digital Signal Processing, is a three credit class which met for three 55-minute periods 
a week.  The mode of instruction employed active learning in which students were required to 
read the topic of the day prior to coming to class and the class period was utilized to clear 
concepts, emphasize important points and to study practical applications.   
 
Geneva College Engineering Department runs a number of its courses in tablet-enhanced mode, 
in which students are loaned tablet PCs.  These computers are loaded with all the standard 
software for which the College in general and the Engineering Department in particular have 
licenses.  ELE 440 is one of the tablet-enhanced courses.  Therefore, National Instruments’ 
LabVIEW is accessible to students in and outside of class.  LabVIEW was chosen to supplement 
the DSP course for two main reasons:  i) the instructor’s prior experience with it21-25 and ii) the 
recognition that it is a worthwhile programming environment that will complement the other 
packages, namely C++ and MATLAB, already introduced in other courses. 
 
LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a graphical 
programming environment, based on the concept of data flow programming, particularly suited 
to test and measurement applications26.  The three important components of such applications are 
data acquisition, data analysis and data visualization.  LabVIEW offers an environment which 
covers these vital components.  It is the combination of these specialized components and the 
data-flow programming paradigm that makes it attractive to scientists and engineers interested in 
quick test and measurement applications. 
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LabVIEW programs are called virtual instruments (VIs).  The Signal Processing Library of the 
LabVIEW Full Development System (v. 8.5) contains VIs that are arranged in groups.  The 
groups pertinent to the DSP course are listed below: 
 
• Waveform Generation, containing VIs for generating different signals such as sine wave, 

square wave, various types of noises utilizing LabVIEW’s waveform data structure. 
 
• Waveform Conditioning, containing VIs for filtering, convolving and windowing 

waveforms. 
 
• Waveform Measurements, containing VIs ranging from Basic RMS Value to Harmonic 

Distortion Analyzer, various types of Spectrum Analyzers on waveforms. 
 
• Signal Generation, containing VIs for generating different signals such as a sine wave, a 

square wave, a chirp signal and white noise in simple, numerical arrays. 
 
• Signal Operation, containing VIs for computing convolution, deconvolution, auto-

correlation, cross-correlation, decimation and similar routines with numerical arrays. 
 
• Windows, containing VIs for applying different kinds of windows such as Hanning, 

Hamming, Triangle, Blackman, Kaiser, on numerical arrays. 
 
• Filters containing such procedures as Butterworth, Chebychev, Inverse Chebychev, Elliptic, 

Bessel high/low/bandpass/bandstop filters, advanced IIR filtering, advanced FIR filtering 
(windowed coefficients, Parks-McClellan algorithm, etc.) on numerical arrays. 

 
• Spectral Analysis, containing VIs for computing the power spectrum, auto & cross power 

spectrum on numerical arrays. 
 
• Transforms, containing VIs for computing the power spectrum, complex FFT, complex 

inverse FFT, fast Hilbert transform, inverse fast Hilbert transform and similar routines on 
numerical arrays. 

 
• Point by Point many of the above routines performed on a single data point. 
 
Employment of these readily-available VIs made many class demonstrations quick and 
intuitively easy to understand.  The flexibility of the programming environment allowed us to 
write some more fundamental routines on our own, adding to LabVIEW’s 'DSP toolkit' some 
specialized VIs for this class. 
 
III.  Examples Utilizing the Sound VIs 
 
One of the strengths of the textbook is the provision of many examples from digital music 
processing.  LabVIEW’s sound VIs, found under the category Functions / Programming / 
Graphics & Sound promised to be a good match to test the routines described in the textbook.  
The VIs under this category include: 
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• Play Waveform, which plays data in LabVIEW’s waveform data structure, 
• Play Sound File, which opens and plays .wav files, 
• Acquire Sound, which samples sound from the host computer’s standard microphone input, 
• Sound File Read, Sound File Write, which reads from and writes onto .wav files. 
 
All of these VIs utilize LabVIEW’s waveform data structure, which includes the quantized sound 
data, sampling period and a time stamp bundled together.  Following National Instruments’ 
example, we will refer to data in waveform data structure as Wavdata.  LabVIEW’s Waveform 
Conditioning and Waveform Measurement VIs manipulate Wavdata.  However, utilizing these 
canned VIs conceals the processing routines which we aim to teach students in a typical DSP 
class.  In order to apply our own algorithms we developed in class, the instructor developed VIs 
to work with the standard sound VIs and made them available on the course’s Blackboard site.  
The following is a list of these VIs with brief descriptions: 
 
• GenerateSound.vi: converts an ordinary numeric data array into LabVIEW’s waveform data 

structure and plays it at the specified sampling rate (default is 8,000 samples/s). 
• WaveformToData.vi: obtains the quantized sound data from LabVIEW’s waveform data 

structure and stores in a numeric array.  We will refer to the output of this VI as raw sound 
data. 

• NrOfChannels.vi: determines the number of channels of sound in Wavdata, used as a subVI 
in WaveformToData.vi. 

• NrOfChannelsRaw.vi: determines the number of channels of raw sound data. 
• StripChannel.vi: strips the channel # indicated from raw sound data. 
 
Equipped with these extra tools, we were able to implement and hear some of the examples 
provided in the textbook. 
 
Sinusoidal Generators: A filter with the transfer function 

 (1) 
will generate an exponentially decaying sinusoid of frequency ω0 for 0 < R < 1.  Similarly, a 
filter with the transfer function 

 (2) 
will generate a cosine waveform.  Figure (1) depicts the front panel and block diagram of the 
subVI CosinusoidalCoeffGen.vi that we wrote as a class exercise.  The inputs of this routine are 
f0 (the frequency of the desired cosine), fs (sampling frequency) and the parameter R.  This 
subVI generates the numerator and denominator coefficients (forward and reverse coefficients) 
of Eq. (2) in a format that LabVIEW’s IIR Filter routine utilizes.  
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              (a)  (b) 
Figure 1:  (a) The front panel and (b) the block diagram of a sinusoidal generator. 
 
DTMF Keypad: The digital touch tone phone, also known as the dual-tone multi-frequency 
(DTMF) transmitter/receiver is a typical application of sinusoidal generators.  Each key on the 
keypad, when pressed, produces the sum of two tones.  The signal, y(n), generated by each key 
press may be expressed as: 
 

)cos()cos()( nnny HL ωω +=  (3). 
 
Each key is assigned its unique combination of lower and higher frequencies, ωL and ωH 
respectively.  Table (1) summarizes the frequency assignments for a DTMF keypad. 
 

 High Group 
 1209 Hz 1336 Hz 1477 Hz 1633 Hz 
697 Hz 1 2 3 A 
770 Hz 4 5 6 B 
852 Hz 7 8 9 C 

 
 
Low 
Group 

941 Hz * 0 # D 
 
Table 1:  Frequency assignments for a DTMF keypad.. 
 
Figure (2) depicts the front panel of the KeypadSub.vi which simulates a DTMF keypad.  This 
VI employs two of the VIs implemented for this offering of the course, namely 
GenerateSound.vi and CosinusoidalCoeffGen.vi. 
 
TestKeypad.vi, depicted in Figure (2) calls KeypadSub.vi, which will in turn monitor the key 
presses and display the key sequence until the Send button is pressed.  When Send button is 
pressed, the computer generates and plays the unique tone combination of each key in sequence. 
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Figure 2:  The front panel of the KeypadSub.vi. 
 

 
Figure 3:  The front panel of Echo.vi processing a Windows system sound file. 
 
Digital Echo Processor: The echo of a signal can be implemented by the filter whose transfer 
function is 
 

DazzH −+=1)(  (4). 
 
where the parameter a represents the reflection and propagation losses such that |a| ≤ 1 and the 
parameter D represents round-trip travel time from the source to the reflecting medium.  Figure 
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(3) shows the front panel of Echo.vi, which implements a digital echo processor on one of the 
Windows system sound files.  
 
Plain Reverberator: Adding up an infinite number of successive echoes achieves the 
reverberating effect giving rise to an IIR comb filter whose transfer function is 
 

Daz
zH −−
=

1
1)(  (5) 

 
where the parameters a and D are now attenuation and delay for each reverberation.  Figure (4) 
shows the reverberation pattern for the same sound file of Figure (3). 
 

 
Figure 4:   The front panel of Reverb.vi, reverberating a Windows system sound file. 
 
Flanging:  In the days of reel tape players, flanging effect was created by playing the music 
simultaneously through two tape players and alternately pressing the flange of each tape reel to 
slow it down.  In the digital world, the flanging effect can be achieved by adding a delayed 
version of the signal to itself and allowing the delay, D, to vary in time: 
 

))(()()( ndnaxnxny −+=  (6) 
 
where y(n) is the flanged signal, x(n) is the original signal and d(n) is the time varying delay.  
One candidate for the delay is a sinusoidal variation within the limits 0 ≤ d(n) ≤ D of a low 
frequency Fd: 
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( ))2cos(1
2

)( nFDnd dπ−=  (7). 

 
Figure (5) depicts the flanging effect on a pure sinusoidal signal. 
 

 
Figure 5:  Sinusoidal flanging on a pure tone. 
 
IV.  Conclusions 
 
This paper has described a renewed interest in using LabVIEW as a teaching tool in a DSP 
course, with examples of the in-class activities bringing out the utilization of the sound functions 
of LabVIEW 8.5.  These are just a few of the many routines we implemented in class.  However, 
when we started playing sound files, a reignited interest in the students’ participation was 
apparent.  We had covered many algorithms and graphed countless waveforms leading up to 
these examples with sound, but mere graphs were not able to capture students’ attention as much 
as the audio effects.  The evidence was clear in the focus group we had at the end of the 
semester:  When asked what they had learned in this class, the students’ recollections from 
earlier chapters had several gaps, but they all recounted the subjects we covered in the digital 
audio effects chapter with consistent accuracy.  The focus group also revealed a shortcoming of 
the course, namely, trying to do too much in three lectures a week.  The identifiable criticism 
was: “LabVIEW ate a lot of lecture time and turned lectures into a LabVIEW class rather than 
DSP.”  A suggested remedy was to have the examples ready-made.  However, in the discussion 
that ensued, the following points emerged: (1) that ready-made examples would not reveal the 
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details of the algorithms under study, (2) that they would conceal the math involved and (3) that 
they would not contribute to students’ proficiency in LabVIEW, an important “modern 
engineering tool”.  When these points were considered, some further suggestions were provided:  
a) introduce a conventional lab, increasing the number of credits for the course, b) hold one or 
two of the classes on Tuesdays or Thursdays, which, at our institution, would mean longer class 
periods, c) if DSP is kept at three lecture hours a week, offer a LabVIEW programming course 
prior to DSP and assign projects in DSP and only use completed VIs in the lectures.  The 
discussion indicated that the students appreciated having LabVIEW projects.  Some comments 
were:  “The projects made you feel grown-up.”  “They helped integrate content not only from 
this course but from other courses, as well.” 
 
Based on the comments from the focus group, we will continue the project-oriented approach in 
DSP.  To address the issue of over-ambitious lectures, a variation of option (b) will be 
implemented next fall.  The course will be offered in a 2 lectures plus 1 three-hour lab format.  
This will keep the number of credits below the magic number of 18 at our institution while 
giving students ample time for project-focused work. 
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