Session 1658

Putting Information Retrieval Theory into Practice

— A Web Search Engine Project for an Undergraduate
Computer Science Elective Course

Xiannong Meng
Computer Science Department
Bucknell University
Lewisburg, PA 17837

Abstract

This paper describes a semester project for an undergraduate computer science
senior elective course, CSCI 379 Computer Science Topics — Information Retrieval
and Web Search, taught at Bucknell University in the fall semester of 2002. In this
course, students working in groups developed a Web search engine using information
retrieval theory. The project includes implementing a basic Web server which acts as
the dispatcher, an indexing component which builds the inverted indexing system for
search, a ranking component which ranks the documents based on term frequency (tf)
and inverted document frequency (idf), a retrieval component which takes the user
query and retrieves the documents based on the ranking, and an crawling component
which collects documents from the Web. The project is very practical in that students
have to build a complete system, yet it involves many theoretical aspects of the
information retrieval, algebra, and probability. It is an ideal project for a senior level
course which requires a combination of the knowledge students have learned in their
college years.

1 Introduction

The wide spread use of the Web brought increased interests to college undergraduate courses
such as information retrieval and computer networks. Students in these courses learn the
basic concepts of the Web, the information retrieval theory (IR) and the Internet. They
hope to gain an understanding how the Internet and its applications work and practice
basic programming skills needed to program the Internet related applications. Web search
engines provide ideal case studies for such courses. Implementation of a successful Web
search engine requires a combination of information retrieval theory and solid network
programming skills. This paper describes a semester project for an undergraduate CS se-
nior elective course, CSCI 379 Computer Science Topics — Information Retrieval and Web
Search. In this course, students working in groups developed a functional Web search en-
gine. The project includes implementing a basic Web server which acts as the dispatcher,
an indexing component which builds the inverted indexing system for search, a ranking
component which ranks the documents based on term frequency (tf) and inverted docu-
ment frequency (idf), a retrieval component which takes the user query and retrieves the

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

1°856°8 abed

documents based on the ranking, and an crawling component which collects documents
from the Web. The project requires many theoretical aspects of the information retrieval,
algebra, and probability. It is an ideal project for seniors since it provided students with
the opportunities to integrate the knowledge gained in their college years. The rest of
the paper is organized as follows. We will provide an overview of the course in Section
2. The project itself is described in detail in Section 3. Interested readers may use it as
a blueprint for their projects. Section 4 discusses some issues and lessons learned in the
project. Section 5 contains some related information and a brief review of other similar
courses. Section 6 is a summary.

2 Overview Of The Course

This is a computer science elective course open to seniors who completed a junior level data
structure and algorithm course. The Modern Information Retrieval [1] by Baeza-Yates and
Ribeiro-Neto was used as the textbook. Other materials available on the Web were used as
supplements. A resource list is provided at the course Web site[4]. The course contained
42 one-hour lecture periods. We presented most of the main topics in a typical information
retrieval theory course. First we gave an overview of the information retrieval theory. Then
we introduced one of the most exciting applications of the information retrieval theory, Web
search engines. Introducing an interesting application earlier motivates students to learn
better the course materials. Students were able to see the connection between the general
IR theory we discussed in the lectures and their actual applications. The basic vector
model was used to model the documents. We discussed indexing, retrieval evaluations,
relevance feedback, Web crawling, link structure analysis and general text properties. The
Appendix lists the schedule of the course which has a complete list of the topics. The key
characteristic is that the lecture contents were closely matched with what were required for
the particular phase of the course project. Towards the end of the course after they finish
the programming project, students write a survey paper on various subjects of IR and Web
search, and present the findings to the class.

3 Web Search Engine — The Course Project

The goal of the project is to produce a limited scale, but functional search engine applying
IR theory. The search engine should be able to provide a list of relevant documents when
a query is given. The project is in a limited scale in the sense that it is required to collect
a limited number of documents (e.g. in the order of a few hundreds to a few thousands).
The limitation is due to the memory constraint on the desk-top computers that students
used and the disk quota that was allocated to students.

It is a multi-phase, team project. The following subsections give an overview of the
project and a brief description of each of the four phases of the project.

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

2'856'8 abed

3.1 An Overview

A search engine consists of a collection of software components that work together to
accomplish the task of collecting, analyzing documents over the Internet and giving the
user a list of relevant URLs when a query is issued to the search engine.

A typical search engine has the following components.

e A user interface takes the user query, passes it to the retrieval component, and
displays the results.

A crawler visits the Web and collects information about all the documents it en-
counters over the Web.

An indexer indexes each of the pages collected by the crawler and establishes links
between keywords and the documents that contain them.

A ranker/retriever ranks the documents for a given query according to certain
measures and retrieves the most relevant documents for the user.

e A back-end engine takes care of network and file operations.

Figure 1 indicates the relation among different components in a typical search engine.

Figure 1: Components of a Typical Search Engine

These components can be divided into two major parts, somewhat independent of each
other, as can be seen from Figure 1. Components on the left side of the document collection
answer user’s queries from the document collection. Components on the right side of the
document collection collects and indexes documents from the Web.

All students chose Java as the implementation language, though other programming
languages would be fine too. The completed projects contained somewhere between 2,000
and 3,500 lines of Java code.

3.2 Phase One — Building a Web Server

The first phase of the project is to build a simple Web server. This Web server will work
as the basis of the search engine and acts between the document collection and the user

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright © 2003, American Society for Engineering Education”

£'8G6'8 abed

through a regular Web browser. The Web server runs as an independent server program.
The user accesses the server through a browser (e.g Netscape or InternetExplorer). The
server retrieves the Web page specified by the URL.

Since network application programming was not a pre-requisite of the course, students
were given a simple Web server written in Java (about 200 lines of Java code). They are
asked to understand what the program is doing and understand the HTTP protocol that
governs the interaction between the Web server and a browser. The given server code
accesses a fixed file. The students were asked to revise the program so that the server will
access any file specified by the URL and be able to send back image files if an URL contains
one.

3.3 Phase Two — Index the Documents

In this phase of the project students build the indexing component of the search engine. The
indexer takes a sequence of file names as input. When integrated with other components
to make a complete search engine, these files are sent from the crawler(s). For each of the
files specified by the file name, the indexer processes the file in the following steps.

Lexical analysis (tokenizing) divides the input stream into tokens and extracts words
as well as URLs from the input stream. Students were advised to convert characters
into their lower case and squeeze multiple spaces between words into a single space for
easy processing. The exception is that the cases and spacing in URLs are preserved.

Stopwords removal removes stopwords from the input stream. Most students used some
stopword list from the Internet as the base and added a few of their own.

Stemming reduces a input word into its stem. Students were encouraged to use existing
programs on the Internet to do this since an implementation of a typical stemming
algorithm such as Porter’s [1] itself can take a while. We decided that should not be
a focus of the project, thus using an existing algorithm or program is a reasonable
choice.

Selecting indexing terms decides a set of words as the indexing terms. For simplicity
students were advised to use all words from the document collection as index terms,
after removing all stopwords and stemming the remaining words.

Updating the indexing system builds the inverted index system that can retrieve doc-
uments based on the index word. Figure 2 shows how a inverted indexing system may
look like. The basic index system has a list of index terms across the whole document
set. Each index has a list of posting nodes, each of which contains the information
about that term and that document. In the simplest form a pair as document ID and
term frequency is kept in the node. One may keep other information as well such
as the location of the term within the document and the importance of the term as
perceived within the text (whether or not a heading, bold faced ...). The index terms
should be sorted alphabetically for easy search.

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright © 2003, American Society for Engineering Education”

¥'8G6'8 abed

Index terms df

compuer | 3+—=[Dp7,4 | ps2 | Dpios

44+—[pbL2 [o7s D103 | D123

sgem |1~

Figure 2: An Example of Inverted Indexing System

Students were asked to test their index system on a given set of Web pages that are
accessible through our local file systems. The test set has a few HTML thousand files.
Students may choose to test on other sets of files.

3.4 Phase Three — Ranking and Retrieving Documents

The end result of the indexing phase is a term list and a collection of posting lists, one for
each term (See Figure 2 for the relation between the term list and the posting lists). Phase
Three of the project adds two more components to the program. One is the term weight
module. We used the well-known #f-idf (term frequency-inverted document frequency) in
the vector model[l, 7] as the term weight. The other is the retrieval and ranking module,
which should return a ranked list of documents for a given query.

Term frequencies tf collected in the indexing phase are used to build the term weight.
A term frequency t;; is the frequency of term ¢ appeared in document j. Since we are
using the tf-idf as term weight, students need to compute the document frequency now.
Document frequency of a term is defined as the number of documents that contains the
term, which is simply the length of the posting list. With df and tf, we can compute idf,
inverted document frequency and the product of ¢f and idf. Thus the weight for term 7 in
document j is computed as

doc count

df;
This value w; ; typically is stored in the DocNode on the posting list.

)

Once the term weight for each term is computed, students can complete the ranking
and retrieving module. The basic idea is that each query is treated as one document in the
vector model. When a query is given, a sequence of steps are taken. First all the documents
containing the keywords in the query are retrieved. Then the similarity between the query
and all these documents are computed. The similarity measure used here is the cosine
similarity[1, 7] represented as follows.

o Dok Wi * W j
similarity(D;, D;) = =———>
! | Di| + | Dj|

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

G'8G6'8 abed

The documents are sorted according to the similarity scores. This list is sent back to the
user as the search result.

3.5 Phase Four — Crawling the Web

At this point students had built a basic information retrieval system that could answer
queries and retrieve relevant documents, except that these documents came from local file
systems instead of the Web. The next phase of the project is to actually collect documents
from the Internet and feed them to the partial system that had been built.

The crawler starts with a given URL. It will retrieve the page specified by this starting
URL. Parse the page, extract some more URLs from the page. Then visit the pages
following these new URLs. This process will continue until either the time allowed has
expired, or the number of retrieved pages has reached the limit, or there is no new page to
visit.

The retrieved Web pages are passed to the Indexer you built in the second phase of the
project for processing. There an inverted index will be built for all the Web pages retrieved,
ready for an end user to search.

3.5.1 General Algorithm

Traverse the Web is very similar to traverse a general graph. Each Web page can be
considered as a node in a graph. Each hyper-link can be considered as a link in a graph.
From this point of view, crawling Web is not too much different from the graph traverse
algorithm taught in a typical data structure class.

3.5.2 Some Issues To Be Considered

Because of the vast size of the Web, there are some technical and engineering issues we
have to consider for a successful, less-intrusive crawler. We list here some of the issues to
consider in crawling the Web.

e Obey the robot protocol. See http://www.robotstxt.org/wec/exclusion.html for spe-
cific details. The basic idea when crawling the Web is that first to check the server site
(typically the root page) to see if the server administrator has put the robots.txt in
place. If it is there, check the contents to see what directories are excluded for visit-
ing. When visiting each page, also check the meta tag to see if the page is excluded
for visiting.

e Self identification. When visiting a Web site the crawler should report to the server
the name of the user agent, the host where the program is running and a valid email
address of the user who initiated crawling.

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright © 2003, American Society for Engineering Education”

9'8G6'8 abed

4

Self identification is a part of good robot behavior. Another important good behavior
is not to visit the same site with a lot of rapid requests. Rather wait a few minutes
before next visit.

If there is a need to save the downloaded pages to disk files for further processing,
make sure to use synchronized thread in Java to avoid inconsistence of the file status.

Complete partial URLs. Many Web pages contain partial URLs. That is, the URLs
are relative to the current path. For example, one may encounter URLs within a
page in the form of ../../home/page.html or mypage.html. The crawler needs to
expand these partial URLs to a full URL so that the crawler can access them later.

The crawler has to keep track of the pages that have been visited in order to avoid
infinite loop. This turns out to be a challenging issue because it is not practical to
keep a complete list of visited pages. We can only keep certain number of pages in
the wvisited list.

Test the crawler in some small site within one’s own Web site first (for example ones
own university or college). Do not crawl off-campus sites until the crawler is fairly
robust.

Issues and Lessons Learned

The course project was a huge success. Students’ responses were overwhelmingly positive.
They were extremely happy to see actual, relevant URLs returned by the search engine
they developed for the given queries. Such comments are abundant in the team reports
and course evaluations. A few issues call for special attentions.

e Giving students a project that is “real” in the sense that it works in production

environment demystifies many of the concepts and technical details. Students would
otherwise not be able to appreciate many important issues, especially many of the
engineering issues, with which such a software project would have deal. It empowers
the students. They are more confident in their capability to tackle complicated issues.
At the same time, they appreciate the delicate details a piece of successful software
would have to deal with.

The project was manageable due to its well defined phases. Each phase concentrated
on a section of the problem. When combined as a working search engine, there was
not a sudden jump in complexity.

The project was designed for team work. Students learned pros and cons working in
a team environment. Most liked the team work. Many commented that it was very
productive working as a team.

Students were assigned to write a research survey paper in an area that deals with
issues related search engines. Students chose a subject area interesting to them the

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

/'856'8 abed

most. After the experiences of implementing a simple search engine, students had a
better and deeper understanding of the issues when they read research papers.

e One of the weaknesses of this project is that we didn’t have a very good design
phase. Some students pointed out that they’d wish there were more time for design.
It would be preferable if more design were incorporated from software engineering
point of view. The difficulty was the constraint on time. Students completed their
programming project in the 11th week of the semester, leaving about three weeks for
a research paper project. There was not much time for a detailed design. We need
to investigate further how we can tackle the issue of design.

e Because students ran their project from lab computers or from their own personal
computers, they encountered the problem of limited resources. The program would
run out of memory, the disk quota would be exceeded. For practical purpose we had
to tell students to limit the number of pages to be indexed to a few thousands.

5 Related Information

Traditional information retrieval predates the Web and the wide spread use of the Internet
[7]. The main theme in the theory of information retrieval is to develop algorithms and
data structures to increase the recall and precision of relevant documents for a given query
[1, 7]. Recall measures how many relevant documents are retrieved out of all the relevant
documents, and precision measures how many relevant documents are retrieved out of the
total returned documents for a given query. To test an algorithm or a data structure,
one would run the program against a given set of documents with known query results
which have been generated and examined by human experts. Researchers exchange ideas
and results in conferences such as TREC (Text REtrieval Conference) [8]. An information
retrieval course can concentrate on these subjects without ever using the Web and the
Internet. Examples of this type of course concentrating on the information retrieval side
include CMPSCI 646 at the University of Massachusetts [2], CS529 at the Illinois Institute
of Technology|3] among others. On the other hand, retrieving relevant information through
the Web is a direct application of the information retrieval theory. Many recent information
retrieval courses incorporate the subject of Web search into the teaching. Examples include
DS 575 at the DePaul University [5], CS 378 at the University of Texas — Austin [6], CS 466
at John Hopkins University [9] among others. The programming projects in these courses
deal with various parts of the Web search including search engines, crawling, retrieval and
user interface. Most of these projects use the technology of CGI, making it rely on existing
Web servers. What made our project different was that we emphasized the whole picture of
Web search. Our project included every components in a Web search retrieval system, the
Web server, the crawler, indexing, ranking and retrieving components. The only software
requirement for our project is a high-level programming language that supports network
programming. All student groups chose Java as their implementation language, other
languages such as C/C++ will do as well.

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

8'8G6'8 abed

6 Summary

We described a semester project for the CSCI 379 Computer Science Topics — Information
Retrieval and Web Search course at Bucknell University. Students implemented a complete
Web search engine allowing the users to actually issue queries and get relevant URLSs back.
The project included all components of a typical search engine, indexing, crawling, ranking,
retrieving and providing a Web-based user interface. Implementing the project required a
balanced combination of information retrieval theory and solid network programming. The
responses from students were very positive. We believe this is a very useful, challenging
team project that can benefit students even after their graduation.

References

[1] Richardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval, Addison-
Wesley, 1999.

[2] <http://ciir.cs.umass.edu/cmpsci646/>, course Web site for CMPSCI 646 Information Re-
trieval at the University of Massachusetts, Fall 2002.

[3] <http://ir.iit.edu/ dagr/cs529/>, course Web site for CS 529 Information Retrieval at the
Illinois Institute of Technology, Fall 2001.

[4] <http://www.eg.bucknell.edu/ cs379/IR-Web/>, course Web site for CSCI 379 Computer
Science Electives — Information Retrieval and Web Search, Fall 2002.

[5] <http://maya.cs.depaul.edu/ " classes/ds575/syllabus.html>, course Web site for DS 575 In-
telligent Information Retrieval at the DePaul University, Winter 2003.

[6] <http://www.cs.utexas.edu/users/mooney /ir-course/>, course Web site for CS 378 Intelli-
gent Information Retrieval and Web Search at the University of Texas — Austin, Fall 2002.

[7] Gerard Salton, Automatic Text Processing, Addison-Wesley, 1989.

[8] Annual Text REtrieval Conference, <http://trec.nist.gov/>, National Institute of Standards
and Technology.

[9] <http://www.cs.jhu.edu/ yarowsky /csd66.html>, course Web site for CS 466 Information
Retrieval and Web Agents at John Hopkins University, Spring 2002.

Biographical Information

XTANNONG MENG is an Associate Professor in the Department of Computer Science at
Bucknell University in Lewisburg, Pennsylvania, U.S.A. His research interests include distributed
computing, data mining, intelligent Web search, operating systems and computer networks. He

received his Ph.D. in computer science from Worcester Polytechnic Institute in Worcester, Mas-
sachusetts, U.S.A.

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

6°'856'8 abed

Appendix — Course Schedule for CSCI 379 at Bucknell
CSCI 379.01 Fall 2002 Schedule

The following is a tentative schedule of the material that will be covered. References to
chapters from the textbook are given for each topic. Materials from other reference sources will
also be used in lectures.

Week 1: | 8/28 | Introduction and overview Baeza-Yates Chpt. 1
Week 2: | 9/2 Web search Baeza-Yates Chpt. 13.1-13.4
Week 3: | 9/9 Basic IR models Baeza-Yates Chpt. 2.1.-2.5
Week 4: | 9/16 | Text processing and indexing | Baeza-Yates Chpt. 7.1-7.2, 8.1-8.2
Week 5: | 9/23 | Retrieval evaluation Baeza-Yates Chpt. 3
Week 6: | 9/30 | Relevance feedback Baeza-Yates Chpt. 5.2, 10.7, papers
Week 7: | 10/7 | Exam One chapters covered since beginning
10/9 | Query languages Baeza-Yates Chpt. 4
Week 8: | 10/14 | Query operations Baeza-Yates Chpt. 5
10/19 | Fall break
Week 9: 10/23 | Crawling and meta-crawling Baeza-Yates Chpt. 13, papers
Week 10: | 10/28 | Link analysis Baeza-Yates Chpt. 13, papers
Week 11: | 11/4 | Text properties Baeza-Yates Chpt. 6.1-6.4,6.6
Week 12: | 11/11 | Exam two chapters covered since Exam One
11/13 | Text operations Baeza-Yates Chpt. 7.3-7.6
11/15 | Guest lecture Current research
Week 13: | 11/18 | User interface Baeza-Yates Chpt. 10
Week 14: | 11/25 | String match Baeza-Yates Chpt. 8.4-8.6
11/27 | Thanksgiving break
Week 15: | 12/2 | Student team presentation
12/9 | Float
Final Date determined by university | Comprehensive

“Proceedings of the 2003 American Society for Engineering Education Annual Conference &

Exposition Copyright (© 2003, American Society for Engineering Education”

01°'856°8 abed

