
Paper ID #44681

Quantum and Classical Supervised Learning Study of Epitaxially–Grown
ZnO Surface Morphology

Mr. Andrew Steven Messecar, Western Michigan University

Andrew Messecar is a Ph.D. candidate at Western Michigan University’s Department of Computer Sci-
ence. He works with Dr. Robert Makin in the College of Engineering and Applied Sciences’ Molecular
Beam Epitaxy Laboratory. His research interests include materials and process informatics, the epitaxial
synthesis of novel electronic materials and devices, and the simulation of physical systems using quantum
and classical computation.

STEVEN DURBIN
Robert Makin, Western Michigan University

©American Society for Engineering Education, 2024



 Proceedings of the 2024 ASEE North Central Section Conference  

 Copyright © 2024, American Society for Engineering Education 1 

Quantum and Classical Supervised Learning Study of 

Epitaxially–Grown ZnO Surface Morphology  
 

       Andrew S. Messecar*           Steven M. Durbin                Robert A. Makin         

  Dept. of Computer Science             College of Engineering    Dept. of Computer Science 

Western Michigan University              University of Hawaiʻi              Western Michigan University 

     Kalamazoo, MI 49008                    Honolulu, HI 96822        Kalamazoo, MI 49008      

 

*Email: andrew.s.messecar@wmich.edu 

 

 

Abstract 

 

Material synthesis parameter spaces typically have a very high dimensionality and are often 

intractable in size. Exploring these vast, multi–dimensional processing spaces by trial–and–error 

experimentation – even for well–studied materials – is not feasible on reasonable time scales. 

Thus, considerable interest exists in the development of machine learning–based approaches for 

the rapid and accurate identification of optimal materials designs and synthesis conditions. In this 

work, data describing over 125 plasma–assisted molecular beam epitaxy (PAMBE) synthesis 

experiments of ZnO thin film crystals have been organized into a single data set. For each growth 

record, the complete set of PAMBE operating parameters for ZnO synthesis are associated with a 

measure of crystal surface morphology as determined by in-situ reflection high–energy electron 

diffraction (RHEED) patterns. Quantum and classical supervised learning algorithms – including 

logistic regression, support vector machines, and a quantum variational circuit – are trained on 

the data and used to study which growth parameters are most statistically important for 

influencing surface morphology in epitaxially–grown ZnO thin films. Comparisons are drawn 

between the generalization performances of the various algorithms that are trained on the data. 

The support vector classifier exhibited superior generalization performance among the compared 

algorithms and is used to predict the surface morphology of ZnO thin film crystal across 

processing spaces defined by the most statistically important synthesis parameters. These 

supervised learning–based predictions yield experiment design rules which can be used to inform 

future ZnO PAMBE growth trials. This analysis offers a valuable perspective on the mechanisms 

that are active during the PAMBE synthesis of ZnO and other related oxide compounds. 

 

 

1. Introduction 

 

The ability for machine learning techniques to accurately determine the underlying 

relationships between predictors and responses makes their application one of the top emerging 

strategies for studying a broad variety of complex systems. One field in which machine learning 

has begun to provide actionable insights is in the optimization of thin film material synthesis 

experiments. Recent studies have demonstrated enhanced material synthesis resulting from 
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insights gained from machine learning techniques such as tree–based algorithms, Bayesian 

optimization, and unsupervised learning algorithms for a broad variety of systems, including 

transition metal dichalcogenides1–2, perovskite oxides3–4, and arsenide nanostructures5. 

 

 In this study, we apply supervised learning algorithms to data describing the synthesis of 

ZnO via plasma–assisted molecular beam epitaxy (PAMBE). One of the advantages to PAMBE 

material synthesis is the ability to perform in–situ reflection high–energy electron diffraction 

(RHEED), which offers real–time information about the growth process as well as the structure 

and quality of the thin film6. Of particular interest is an assessment of ZnO thin film crystal 

surface morphology via RHEED patterns, since high quality surfaces are required for integrating 

ZnO into the manufacturing of electronic devices7. 

 

 Our aim in this manuscript is to examine the performance of two classical and one 

quantum supervised learning technique(s) when predicting the surface quality of PAMBE–grown 

ZnO as a function of thin film deposition parameters. This work encompasses the results of 

ongoing doctoral research on exploring the applicability of supervised machine learning 

technologies to the study of the processing spaces for epitaxially–grown thin film crystals. 

 

2. Experimental Details 

2.1 Data 

 

 Information describing ZnO PAMBE synthesis experiments was organized into a tabular 

data set of 294 data points. Each ZnO sample was grown inside of a single Perkin–Elmer 430 

molecular beam epitaxy (MBE) chamber equipped with an oxygen plasma source. The growth 

experiments of interest to this project were monitored via in–situ RHEED diagnostics (see Figure 

1). RHEED patterns are formed by electrons, incident at shallow angles, diffracting the surface 

of the grown sample and contain real–time information about sample crystallinity, growth mode, 

and deposition rate6. Of interest for this study is the nature of the streak–like features observed 

within RHEED patterns of monocrystalline material samples. These RHEED patterns contain 

information regarding the growth mode and corresponding nature of the sample’s surface6. 

Uniform, solid streaks in the pattern, as shown in Figure 1a, are characteristic of an atomically 

flat sample surface. By contrast, spotty parallel lines, as can be seen in Figure 1b and Figure 1c, 

indicate an uneven crystal surface. By visually inspecting images of RHEED patterns acquired 

during ZnO deposition, a binary classification of surface quality was developed to correspond 

with each image. RHEED patterns representing atomically flat ZnO sample surfaces were 

numerically represented in the data set by a value of 1, while patterns resulting from uneven 

(either partially or completely) ZnO surfaces were assigned a value of 0. 

 



 Proceedings of the 2024 ASEE North Central Section Conference  

 Copyright © 2024, American Society for Engineering Education 3 

 
 

Fig 1. Diagrams of RHEED patterns corresponding to (a) flat, monocrystalline ZnO sample, (b) 

partially uneven, monocrystalline ZnO, and (c) fully uneven, monocrystalline ZnO sample.  

 

 

For every available RHEED image, the binary classification corresponding to 

epitaxially–grown ZnO sample surface quality was paired with the complete set of PAMBE 

operating parameters that were in place when the image was acquired. This includes values for 

substrate temperature, zinc effusion cell temperature, oxygen gas flow rate, plasma source 

forward power level, and growth duration. Statistical metrics for the input variables over the 

complete data set are listed in Table 1. By pairing PAMBE operating parameters with the 

resulting surface quality in this way, the data set can be used to map the values of the synthesis 

parameters to the binary response variable using supervised learning.  

 

 

Table 1: Characteristic values of the PAMBE operating parameter data for the 294 data points 

describing ZnO epitaxy that are utilized in this study. Included are the maximum, minimum, 

arithmetic mean, median, and mode values of each PAMBE synthesis parameter in the data set. 

 

 Maximum Minimum Mean Median Mode 

Substrate Temperature 800 °C 300 °C 559.2 °C 600 °C 650 °C 

Zinc Effusion Cell Temperature 500 °C 334 °C 471.8 °C 465 °C 345 °C 

Oxygen Flow Rate 5.0 sccm 0.5 sccm 1.14 sccm 1.0 sccm 0.5 sccm 

RF Plasma Source Power 500 W 200 W 360.8 W 400 W 400 W 

Growth Duration 240 min 15 sec 57.96 min 9.5 min 180 min 
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2.2 Model Development 

 

All data analysis and development of machine learning models was done in the Python 

and R open–source programming languages8–9. Multiple supervised learning algorithms were 

developed in order to investigate how effectively each model can learn the underlying 

relationship between PAMBE operating parameters and the resulting surface morphology of 

epitaxially–grown ZnO as it has been numerically labeled in this project. Logistic regression was 

implemented in R for the purpose of assessing the statistical importance of the different input 

variables for influencing the binary numerical response. A series of three additional supervised 

learning techniques, two conventional algorithms and one quantum machine learning algorithm, 

were implemented in Python to map the input values of the ZnO PAMBE growth parameters to 

the binary response output variable. 

 

The two conventional supervised learning models, a support vector classifier (SVC) and 

support vector regressor (SVR), were built using the “Scikit–Learn” Python library10. The 

hyperparameters for these three algorithms were tuned by a Bayesian optimization selection 

process that was completed using “Scikit–Optimize”11. 3–fold cross validation was implemented 

during the hyperparameter tuning process. The performance of each tuned algorithm was 

evaluated on a separate test data set consisting of 25% of the available data. 

 

 A quantum variational circuit was also developed and trained upon the data using the 

“Qiskit” Python library12. This model consisted of 5 qubits, one for each of the input values, and 

one classical register for measuring the output value. Each qubit in the circuit was subjected to a 

rotational gate at an angle corresponding to the values of the input data13. In a manner analogous 

to the adjustment of weights in artificial neural network algorithms, the difference between the 

output measured at the classical register and the real output value in the training data was used to 

iteratively adjust the rotational gate angles via stochastic gradient descent over the course of 

multiple training epochs. 

 

3. Results and Discussion 

 

P–values were first calculated between each of the operating parameters and the binary 

response (see Figure 2a). These values were read by fitting the data set to a logistic regression 

function using the generalized linear model function in R and reading the output summary of the 

fitted model9. The calculated p–values for the zinc effusion cell temperature, oxygen gas flow 

rate, and substrate (growth) temperature variables all fall below 0.05, with the values 

corresponding to zinc effusion cell temperature (0.0064) and oxygen gas flow rate (0.0358) 

having the smallest magnitude. 
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Fig 2. P–values calculated between operating parameters and the binary response. The zinc 

effusion cell temperature, oxygen gas flow, and substrate temperature variables all have p–values 

less than the 0.05 threshold. 

 

 

Prior to training any of the models, the data set was normalized and then separated into a 

training set (75%) and test set (25%). During Bayesian hyperparameter tuning, the training data 

set was further partitioned into 3 subsets for cross validation. For the SVC, the values for the 

regularization parameter and kernel coefficient were optimized and a polynomial kernel of 

degree 4 was found to result in the optimal generalization performance. Similarly, for the SVR, 

the values for the regularization parameter and kernel coefficient were optimized and a 

polynomial kernel of degree 1 was found to result in the optimal generalization performance. The 

hyperparameters of the quantum variational circuit were not subjected to Bayesian optimization, 

but the learning rate of the optimizer used during training was manually optimized. Additionally, 

the rotation gates of the quantum variational circuit were adjusted according to a stochastic 

gradient descent optimization routine which involved a mean squared error (L2) loss function 

and a learning rate of 0.1. The circuit was evaluated 104 times for each data point during training 

in the interest of generating sufficient statistics. 

 

For each algorithm, once the optimized parameters were selected, the performance of the 

algorithm was evaluated using the test data set to calculate an appropriate accuracy test score. 

The SVC and quantum variational circuit were both evaluated using the accuracy metric: the 

total number of correct classifications divided by the total number of predictions. The SVR was 

evaluated for generalization performance by calculating the mean squared error (MSE) of the 

predictions made on the test data set. To calculate the classification accuracy of the SVR, the 

values predicted by the trained regressor were threshold into either 0 (uneven) or 1 (flat), based 

upon whether the predicted value was below or above 0.5, respectively. The test accuracy scores 

for each trained algorithm are reported in Table 2. Between the two classical machine learning 

models, the SVR performed slightly worse on the test data set after training with an accuracy of 

0.891 on the testing data. The SVC displayed improved generalization performance compared to 
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the SVR in the form of a higher test score, as shown in Table 2. The quantum variational circuit 

achieved a lower accuracy than all of the classical supervised learning algorithms; however, this 

is not unexpected since the performance of quantum machine learning techniques on classical 

data is particularly sensitive to the encoding strategy chosen to represent the data in a quantum 

mechanical state as well as the quantity and nature of the data that is available for training13. 

 

 

Table 2: Test accuracy scores of the optimized supervised learning models. Each algorithm was 

tested upon 25% of the available data after undergoing parameter tuning. The optimized SVC 

algorithm exhibits the best test performance of these algorithms while the trained quantum 

variational circuit implemented here displays the lowest performance on the testing data. 

 

Algorithm Test Score 

Support Vector Classifier 0.904 

Support Vector Regressor 0.891 

Quantum Variational Circuit 0.581 

 

 

The trained SVC algorithm displayed superior generalization performance on the data 

and was used to predict the morphology of an epitaxially–grown ZnO thin film crystal surface 

across a broad range of possible PAMBE synthesis parameters.  The SVC was selected over the 

other algorithms to generate visualizations of predicted trends in the processing space, which are 

characteristic of the relationship being estimated by the machine learning algorithm, due to its 

superior accuracy on the testing data. The SVC was trained on the training data set and then used 

to predict the response variable across a broad range of possible combinations of oxygen gas 

flow rate and zinc effusion cell temperature, as shown in Figures 3. Other synthesis parameters 

are held at their median training values for the predictions which are shown in Table 1, except 

substrate temperature which is varied from 400 °C to 800 °C in 200 °C increments from Figures 

3a to 3c. 

 

 With a substrate temperature of 400 °C, as shown in Figure 3a, a roughly parabolic area 

of the processing space (in blue) commencing with oxygen flow rates equal to 2.0 sccm is 

predicted to result in flat ZnO sample growth; this domain occurs for a plasma power setting of 

400 W and a range of zinc effusion cell temperatures that broadens as the oxygen gas flow rate is 

increased. This region corresponding to a flat ZnO surface morphology is predicted to increase in 

area as the substrate temperature is increased to 600 °C and 800 °C, as seen in Figures 3b and 3c. 

This demonstrates the importance of growth temperature on the resulting surface morphology of 

epitaxially–grown ZnO. 
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Fig 3. Predicted surface quality – flat (blue) or uneven (red) – for epitaxially–grown thin film 

ZnO crystals as predicted by a trained SVC algorithm. Predictions were made allowing zinc 

effusion cell temperature and oxygen gas flow rate to vary while holding the settings of plasma 

source power and growth duration constant at the median training data values listed in Table 1. 

(a) For a plasma source power setting of 400 W and a growth duration of 9.5 minutes, as listed in 

Table 1, a growth temperature of 400 °C is predicted to yield a roughly parabolic domain of the 

processing space corresponding to the growth of flat ZnO crystal surfaces. (b–c) As the substrate 

temperature is increased to 600 °C and 800 °C, the region of the processing space resulting in 

flat ZnO surface growth is forecasted to broaden. 

 

 

4. Summary and Conclusion 

 

294 data points describing the PAMBE operating parameters and resulting surface 

morphology for ZnO PAMBE synthesis experiments were organized together into a single 

tabular data set. P–values were calculated between operating parameter values and the binary 

descriptor of ZnO surface roughness as determined by RHEED patterns. The calculated p–values 

indicate that the values of zinc effusion cell temperature, oxygen gas flow rate, and substrate 

temperature are all statistically influential on the surface roughness of epitaxially–grown ZnO. 

Quantum and classical supervised learning models were tuned, trained, and compared for 

generalization performance. The combination of Bayesian hyperparameter selection and 3–fold 

cross validation produced a SVC algorithm displaying a test score superior to those of the other 

algorithms. The trained SVC was used to predict the surface morphology of PAMBE–grown thin 

film ZnO crystals across processing spaces defined by the most statistically significant growth 

parameters. Increasing the combination of substrate temperature, zinc effusion cell temperature, 

and oxygen gas flow rate is predicted to improve the surface morphology of PAMBE–grown 

crystals of ZnO. The resulting predictions offer new insight on the processing space for 

epitaxially–grown ZnO that can be used to inform the design of future experiments. Although the 

quantum variational circuit implemented in this study did not outperform the classical supervised 

learning models, this project granted the opportunity for doctoral research to expand into novel 

applications of both quantum and classical machine learning. It also broadened the range of 

materials under consideration in the doctoral work to include additional materials (oxide 

semiconductors) that are relevant for electronic devices. 
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