
2006-444: RADAR PERFORMANCE ANALYSIS SYSTEM: A SOFTWARE
SIMULATION PACKAGE IN MATLAB

Roger Lee, Coherent Systems International

Rafic Bachnak, Texas A&M University-Corpus Christi

© American Society for Engineering Education, 2006

P
age 11.1059.1

Radar Performance Analysis System: A Software Simulation

Package in MATLAB

Ru-Ying Roger Lee

Titan, an L3-Communications Company

22290 Exploration Drive,

Lexington Park, MD 20653

Rafic Bachnak

Department of Computing and Math Sciences

Texas A&M-Corpus Christi

Corpus Christi, TX 78412

Abstract

After World War II radar has been increasingly used as an integral part of complex

applications such as air-traffic control, reconnaissance and surveillance, navigation and

weather, and missile targeting and defense. Analysis of radars systems for such

applications requires representing the radar operation and performance in the context of

the overall system and the external environment. The radar performance must be

evaluated, and the impact of radar operation on system performance must be quantified.

The major objective of this paper is to present the design/development and

implementation of the automated end-to-end functional radar simulation software

package. Using the database driven approach in the software development, this paper also

discusses how the software package can be changed and used to solve problems in any

other engineering and technology curricula. Finally, this paper describes how this

software package developed in MATLAB can be converted into a C/C++ source code

and then compiled the source code into a stand-alone executable system.

1. Introduction

In the signal-processing environment, computer simulation is used extensively in

developing complex systems, including radar performance systems [1]. To analyze the

performance of these radars at a system level, it is practical to rely on basic radar

principles to model their performance, using the top-level parameters to characterize the

radar design. Computer simulation is the most practical method of supporting system

analysis due to the complex system interactions between radars and parameters relating to

the environment [2].

Radar simulations, like most real time signal processing tasks, require significant

quantities of data. This data usually represents a collection of different signals. The

organization of the data implies some constraints on the way the data is processed by

different functions [3]. Radar system technology has evolved tremendously during the

last decade. The existing PC simulation software, although lower in cost, often falls short

of meeting the high-powered simulation requirements needed to test complex radar

P
age 11.1059.2

equations [4]. In this paper, we discuss the design and development of the Radar

Performance Analysis System (RPAS). RPAS analyzes, predicts, estimates, and

evaluates the performance of a radar system in a simulation environment. Upon providing

the data such as the radar hardware parameters, antenna model, target geometry, terrain

model, weather condition, jamming inference, and the desired applications, RPAS

performs radar system design trade studies, sensitivity analysis, and performance

predictions. RPAS is a stand-alone system running on a PC with the windows operating

system and with a removable hard drive to accommodate the classified input data and

output results.

MATLAB is selected as the programming language for RPAS to reduce overhead and

speed up the development. This high level language provides abundant mathematical and

engineering in-line functions and comprehensive graphic routines for the development of

scientific and engineering system [5]. MATLAB also offers graphical user interface

(GUI) tools that allow the designer/developer to use MATLAB in an application

development environment. This combination of programming features and GUI tools

made MATLAB an extremely attractive choice for the development of RPAS. The Radar

function library database was designed/developed for six different categories: Radar

Equation, Radar Detection, Radar Search, Radar Measurement, Environment and

Mitigation Techniques, and Radar Countermeasures and Counter-Countermeasures. This

paper documents the RPAS system design and implementation. The paper also shows

how to convert the RPAS MATLAB program into C/C++ program and compile it to an

executable program so that it will run faster and can be executed without the presence of

MATLAB.

2. System Design and Radar Simulation

System Design

RPAS is designed as an open architecture system which results in a generic performance

analysis/evaluation tool. Currently, the RPAS is a static system, it analyzes/evaluates the

radar performance at the system level. Figure 1 shows the information flow among

various components in RPAS. For easy maintenance and expansion of the simulation

program, a modular approach was adopted for the implementation.

Several pushbuttons such as Figure, Result, Clear, Cancel were created by using the

GUIDE (Graphical User Interface Development Environment) facility of MATLAB [5].

In the block diagram, shaded rectangles are menu/submenu, Edit Box, and Check Box.

Shaded ellipses are the switches, and the underlined names are the software modules. The

modules ending with CB are call back functions. For instance the ResultCB is invoked

when the Result button is pressed. The ResultCB function in turn invokes the GenResult

function. The GenResult retrieves a specific function from the Radar Library. The

retrieved function, derived from menu/submenu, uses parameter inputs, and selected data

units stored in Global Data by ParInputCB and SelectBoxCB to compute results. Solid

lines represent control flow, dotted lines represent data flow, and dot-dash lines indicate

how the GUI is enabled.

P
age 11.1059.3

Figure 1. RPAS/Function Block Diagram

Radar Simulation

This section describes the features of RPAS. As an example, the basic form of the radar

range equation gives the ratio of signal power from the target to the background noise

power at the radar receiver, which includes both noise received from the external

environment and noise added in the radar [6]. Consider the classical Radar Range

Equation,

S/N = (Pp τ Gt σ Ar)/ [(4π)
2
R
4
k Ts L] (1)

where

 S/N = radar signal-to-noise ratio (factor)

 Pp = radar transmitted peak RF power (Watts)

 τ = radar pulse duration (seconds)

 Gt = radar transmit antenna gain (factor)

 σ = target radar cross section (square meters)

 Ar = radar receive antenna effective aperture area (square meters)

 R = range from the radar to the target (meters)

 Ts = radar system noise temperature (Kelvin)

 L = radar system losses (factor)

 k = Boltzmann's constant (1.38e-23 Joule/Kelvin)

As an example, let us perform the following radar simulation. A radar antenna transmits

1kW of peak power at a frequency of 3 GHz with duration of 1 msec. The receiver has a

gain of 32dB, with the effective aperture area of 14 square feet. The system has a loss

factor of 10, and the effective noise temperature is 800K. A target with cross- section of

92.903 square meters is detected by the radar. Find the signal-to-noise ratio at a range of

20,40, and 100 nautical miles. We will use this example to guide you through the

following simulation.

P
age 11.1059.4

RPAS simulation models a parameterizable radar system, where the geometry of the

antenna, and other radar parameters can be easily changed. RPAS provides the following

special features and capabilities:

• Database design to achieve generic system

• Selection of output parameter of an equation

• User Input with Unit Selections

• Display of numerical or figure outputs

• Execution records/history saved in the LOG area

Database Design to Achieve a Generic System

The RPAS system is designed to be application independent. Therefore, to define a radar

function we see it as an elementary operation applied to generic elements. The text of

pull-down menus for category, equation, output selections, the mathematics expression of

equation, input parameters and unit selections are all read in from a master database file.

In that, the system is a generic system not only for the radar application but also for

general application. Selecting another master file, the system can become a “civil

engineering”, a “mechanical engineering”, or an “electronics engineering” Performance

Analysis System. Of course, every bottom-line equation needs to be coded for that

specific application. In the current RPAS system, all equations for radar applications are

implemented into a package called the “Radar Library”. This approach presents a simple

and concise way to define a function in a manner equivalent to functional languages

using higher-order function [7].

Selection of Output Parameter of an Equation

The RPAS groups all radar equations into 6 categories: Radar Equation, Radar Detection,

Radar Search, Radar Measurement, Environment and Mitigation Techniques, and Radar

Countermeasures and Counter-Countermeasures. The user selects a particular equation

via the “SELECT -> CATEGORY -> EQUATION pull-down menus. Using our

example, the above radar range equation is obtained from the selection of “SELECT ->

RadarEquation -> RangeEq” as shown in figure 2.

Equation (1) is Radar Range Equation having S/N as output and the other parameters as

inputs. When the user has selected this equation with this output as shown in figure 2 the

system provides the mathematical expression and prompts the user for input as shown in

figure 3. The system also provides the user with the capabilities of using the same Radar

Range Equation but selecting another output parameter, such as R, the Range. In this case

the system provide the mathematics expression of the Radar Range Equation with R as

output and again prompt user for the input parameters. Likewise, other parameters, such

as PulseWidth, in the Radar Range Equation can be selected as output. If it is for sure that

some parameters, for example Ts, will never be an output, we can disable the output

selection of this particular parameter as shown in figure 2. It is noted that in figure 2 the

allowable parameters for output are S/N, pulse width, and range. Finally, the switch

“CANCEL” shown in figure 3 can be used for canceling the previous selection and

selecting a new equation and output.

P
age 11.1059.5

Figure 2 SELECT-> RadarEq ->Range

User Input with Unit Selections

After the system responds to user’s selection of equation and output parameter as shown

in figure 3, the user should enter data to the prompted input parameters. The valid inputs

are: (a) single value x, (b) a sequence of values separated by commas (,) as x,y,z, (c)

beginning and ending values with step value 1 as x:z, and (d) beginning, step, and ending

values as x:y:z. If the input is other invalid data, the system will flash an error of “illegal

input at n-th input” in the “system error box” at the left bottom corner of the screen. Also,

shown in figure 3, to be a user friendly system, the system provides the user with the

capability of selecting various commonly used units for inputs and output, and once a

unit is selected the other units of the same parameter will be automatically unselected. A

user can also start with a clean “sheet of input” by clicking the “CLEAR” switch and then

entering a new set of data. Using our example, the values and units of input parameters of

the radar range equation are selected as shown in Figure 3.

Display of Numerical and Figure Outputs

After the parameter inputs and data unit selections are entered, the user can click the

“RESULT” switch for numerical output or the “FIGURE” switch for an output plot. If

some of the input data or unit selection is not entered, the system will flash an error

“Some input parameters are not entered” in the system error box. The data formats (b),

(c), and (d) described in the last paragraph provide a row vector for the input. If more

than 2 inputs are vectors, the system will flash an error “More than two vectors in input,

STOP processing” and no further processing will occur. If every input is a singleton, then

the “RESULT” switch will yield a singleton output. In this case, a click of the “FIGURE”

switch will cause the system to flash error “Cannot plot a figure because no input vector”.

If only one input is a vector then a click of “RESULT” switch will yield a vector result

and a click of “FIGURE” switch will plot a 2-dimension figure of input vector vs. output

vector. If two inputs are vectors, then these two inputs will form a mesh and a click of

“RESULT” switch will yield a 2-dimensional output and a click of “FIGURE” switch

will yield a 3-D plot with the two inputs vector as x- and y-axes and output as a z-surface.

When a 3-D plot is displayed, the user can further leverage the MATLAB figure utility to

manipulate the figure such as 3-D rotation. Figure 3 shows the result of our example after

the “RESULT” switch is clicked. Figure 4 shows the 3D figure of our example after the

“FIGURE” switch is clicked and after a rotation is applied to the figure.

P
age 11.1059.6

Figure 3. Execution of the Range Equation

Execution Records/history in the LOG Area

After an equation (with user’s input) is executed (either the “RESULT” or the “FIGURE”

switch is clicked), the equation, the input and the output will also be displayed in the

LOG area in the left side of the screen, as shown in figure 3, for review or for printing out

a hardcopy. The LOG text will be concatenated from one run to the next run. A

“ClearLog” switch is also available to clear the text in the LOG area.

Figure 4 3D plot of Radar Range Equation

3. Building a Stand-Alone RPAS Executable System

This section describes how the RPAS MATLAB program in m-files can be converted

into RPAS C/C++ program and then compiled into a stand-alone RPAS executable

system. The advantages of building a PRAS executable system are: (1) it is a stand-alone

system that can be executed in and PC without the presence of the MATLAB, and (2) it

P
age 11.1059.7

runs faster. Depending on the complexity of functions and computational intensity, the

compiled version can run up to 5 times faster [8]. A set of tools that automatically

converts MATLAB files into C/C++ source code, offers programmers the ability to create

stand-alone applications using a very extensive library of predefined functions [8]. The

RPAS MATLAB program was successfully converted to a stand-alone executable file.

The tools required for generating stand-alone applications are: MATLAB, the MATLAB

Compiler, the MATLAB C/C++ Math Library, and a C/C++ compiler. The MATLAB

C/C++ Graphics Library is also required in order to create stand-alone applications that

make use of Handle Graphics
®
 functions.

A MathWorks utility, mbuild, provides an easy way to specify an options file that can be

used to set the compiler and linker settings, change compilers or compiler settings, switch

between C and C++ development, and build an application. The Compiler (mcc)

automatically invokes mbuild under certain conditions. In particular, mcc -m or mcc –p

invokes mbuild to perform compilation and linking. To prevent mcc from invoking

mbuild automatically, the -c option can be used; for example, mcc -mc filename. On

systems where there is exactly one C or C++ compiler, the mbuild utility automatically

configures itself for the appropriate compiler. On systems where there is more than one

C or C++ compiler, the mbuild utility lets the user select which compiler the user want to

use. Once a C or C++ compiler is selected, that compiler becomes the default compiler.

The user may later specify another compiler by following the same procedure.

The Compiler, when invoked with the -m macro option, translates input MATLAB files

into C source code that is usable in any of the supported executable types. The Compiler

also produces the required wrapper file suitable for a stand-alone application. Then, an

ANSI C compiler compiles these C source code files and the resulting object files are

linked against the C/C++ Math Library. Similarly, the Compiler (mcc), when invoked

with the -p macro option, translates input M-files into C++ source code that is usable in

any of the executable types except MEX. The source code for a stand-alone C or C++

application consists either entirely of M-files or some combination of M-files, MEX-files,

and C or C++ source code files. After compiling the C or C++ source code, the resulting

object file is linked with the object libraries.

4. Summary

We have described the design and implementation of RPAS. With examples presented in

this paper we have shown how RPAS could be applied to model and simulate problems

in different applications. Due to the predominance of MATLAB as a major tool of

engineering and scientific research it was naturally advantageous to develop RPAS

entirely within MATLAB. Furthermore, MATLAB offers graphical user interface tools,

which provides a high level of flexibility in design and implementation. RPAS can be

fully integrated into any course with minimal effort and can provide a robust method for

solving engineering problems with a computer. In the future, we will expand RPAS into a

dynamic system to analyze/evaluate the radar performance at operational level in an

environment where the radar equation, target geometry, terrain model, weather condition,

and jamming can change in time. To achieve that, the target and environment will be

modeled and then the radar performance will be assessed by simulation to simulate the

real operation with the desired parameters.

P
age 11.1059.8

References

1. G. Desodt, D. Muller, D. Puzenat, “OSCAR, a simulation environment dedicated to the design and

performance assessment of RADAR system, “International Conference on Radar, Paris, 1994.

2. Barton, D. K., Modern Radar System Analysis, Norwood, MA; Artech, 1988.

3. F. H. M Fransen, F. Balasa, M. F. X. B. Van Swaaij, F.V. M. Cathoor, and H. J. De Man “Modeling

Multidimensional Data and Control Flow”, IEEE Trans on VLSI Systems, 1993.

4. Radar Systems Analysis and Design using MATLAB, Bassem R. Mahafza, 2000.

5. Mastering MATLAB 6, A Comprehensive Tutorial and Reference, Duane Hanselman, and Bruce

Littlefield, 2001.

6. Radar System Performance Modeling, G. Richard Curry, 2001.

7. Modeling Radar Systems Using Hierarchical Dataflow, Karim P. Khair, and Edward A. Lee,

Proceedings of ICASSP, May 1995.

8. R. Bachnak and R. Lee, “ The MATLAB Compiler Suite: M-Files to C/C++ Executable Programs,”

Proceedings of the 2002 ASEE Annual Conference and Exposition, June 16-19, 2002 Montreal, CA.

RU-YING ROGER LEE

Dr. Ru-Ying Roger Lee is a retired senior scientist from the Radar and Antenna Division, Avionics

Department of Naval Air Warfare Center in Patuxent River, Maryland. He currently works as a Senior

Scientist Engineer for Titan, an L3-Communications Company. He received his BS degree in Mathematics

from National Taiwan University, MS degree in EE from the Pennsylvania State University, and Ph.D. in

Mathematics from University of Pennsylvania. His area of research is in simulation, signal processing and

image processing; specifically for the applications of the Radar Systems in general and Synthetic Aperture

Radar in particular.

RAFIC BACHNAK

Rafic (Ray) Bachnak is Professor and Coordinator of Engineering Technology at Texas A&M University-

Corpus Christi (A&M-CC). He received his B.S., M.S., and Ph.D. degrees in Electrical and Computer

Engineering from Ohio University in 1983, 1984, and 1989, respectively. Dr. Bachnak was previously on

the faculty of Franklin University and Northwestern State University.

P
age 11.1059.9

