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Abstract—The design of linear microphone arrays with 
randomly spaced elements is investigated. The probability 
distribution function for the element positions is derived in the 
continuum limit by matching the response of the array to an 
objective beam function. An analysis of the expected value and 
variance of the beam is presented as a function of the angular 
direction. Comparison of these metrics to those generated from 
uniformly distributed array positions is conducted. The number 
of elements and random ensembles required to meet a desired 
sidelobe level is obtained. It is found that using a probability 
density function of a particular beam pattern can reduce the side 
lobe levels of the random samples of the transducer position. 
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I. INTRODUCTION 
    A microphone array is a device consisting of several 
microphones, referred to as array elements that can be jointly 
activated to receive sound from preferred directions. The 
configuration of microphone arrays so as to automatically tune 
to the direction of a sound source is an important problem in 
many classical applications such as teleconferencing and 
hearing devices as well as in emerging applications such as 
wireless acoustic sensor networks, spatial audio and computer 
mediated voice communications. The development of dense 
microphone arrays made up of low power elements offers the 
potential to form beams collaboratively using multiple arrays 
with randomly spaced elements.  
    Pei et al. [1] observed that directional antennas give a 
higher throughput gain because of reduced side lobes. The 
main-lobes extends towards the user giving maximum 
radiation or reception, while other lobes such as the side and 
back lobes, which represent lost energy are minimal. Lo [2] 
has shown that randomly spaced elements located along the 
aperture can lead to sidelobes with equal levels and with equal 
probability. This work examines the statistical characteristics 
of the beam pattern formed considering from randomly spaced 
elements. Section 2.0 presents the geometry of the problem 
and the analysis for developing the probability density 
function for element positions. Section 3.0 conducts the 
statistical analysis of the array response and Section 4.0 
concludes the paper. 

II. LINEAR ARRAYS AND BEAM FORMATION 
   A linear antenna array of length 2D, comprised of 2N 
elements positioned at locations x[n], n = −N,−(N − 1), ....., 1, 
2, .. N is depicted in Fig. 1. The positions are normalized with 
respect to the half-length of the array yielding a normalized 
range of positions from −1 to 1.  
     The response of the array to a time harmonic plane wave at 
frequency ω radians per second and incident at an angle θ with 
respect to the normal to the array is 

 

                   
S (θ)= 1

2N∑ n= − N

N
a [n]e

j ωc Dsin(θ)x [n ]

       (1) 
 
with c meters/second being the speed of sound. The aperture 
function a[n] will be assumed to be uniform for all elements, 
which are also taken to be omnidirectional. Defining 
 

 
Fig. 1. Uniformly Spaced Linear Array 
 
u = kDsin(θ) where k = ω/c is the wavenumber, and by 
mapping the positions to continuum values, the response can 
be written as the integral  
 

                           
R(u )= 1

2N∫ − N

N
e jux (n)dn

                    (2) 
 



III. RANDOM POSITIONING OF ARRAY ELEMENTS 
    The response in Eqn. 2 represents the case for a uniform 
distribution of length 2N with a cumulative probability F(n) = 
n/N , assuming the positions are symmetrical about x = 0. For 
element positions to be drawn from another probability 
distribution function G(x), the transformation G(x) = n/N 
yields, G′(x)dx = 1/N dn . Substitution in Eqn. 2, 
 

                          
R(u )= 12∫ − 1

1
g ( x)e jux dx

                    (3) 
 

     where g(x) = G′(x) is the probability density function (pdf) 
for the continuous valued array element positions x.  
    The objective is to determine the g(x) that best matches a 
specified beam pattern. The method of solution for deriving 
g(x) is given by the authors in [3]. The desired beam pattern 
R(u) given by van der Maas [4] modified by Ishimaru [5] is 
applied for computing g(x). The target response is  
 

                   

R(u )= sinc(u )∏ k= 1

K [1− ( uuk)
2

1− ( uk π)
2 ]

         (4) 
 
 

    where 

uk= ± (K+ 1) π√ A2+ ( k− 12 )
2

A2+ (K− 1
2
)
2

, K = 18, and  
A = 1.1 is the sidelobe parameter.  
    Substituting the target response in Eqn. 3 and taking its 
inverse Fourier Transform, g(x) can be evaluated using 
contour integration in the complex u plane with the condition 
that g(x) is nonzero for |x| < 1. The result is 
 

g ( x)= x+ ∑ m= 1

K
(− 1)m sin (mπ x)

mπ ((mπ
um )

2

− 1)
     

∏ j≠ m

K
1− (mπu j )

2

1− (mj )
2

(5) 
 
  Fig. 2 depicts the pdf g(x) obtained from the method 
described above. This function serves to determine the random 
placement of array elements along its aperture. The transducer 
location x(n) is a random variable that is drawn from the 
probability density function g(x).  

   The next section compares the expected beam pattern and its 
variance as a function of u and determines the number of 
random ensembles and elements required to meet a set 
performance metric. The results for g(x) are compared with 
the case for uniformly distributed element positions in the 
region where x : (0, 1). 
 

Fig. 2. Probability Density Function of Element Position x 
 

IV. BEAM PATTERN ANALYSIS 
The beam response given by Eqn. 3 is a random function of 
the angle u = kDsin(θ). The expectation and variance with 
respect to u will vary with the number of array elements N. 
The convergence of these metrics will depend on the number 
of random ensembles of position vectors considered in the 
beam formation. Fig. 3 and Fig. 4 shows the rate of 
convergence of the maximum variance in u. Analysis was 
conducted for N ranging from 16 to 256. For each value of N, 
the number of ensembles denoted NEN was increased until the 
mean and variance converged. It can be seen that 
approximately 150 ensembles are required for convergences in 
both cases. However the magnitude of the variance is lower 
for the uniform distribution case. 

 

Fig. 3. Maximum Variance vs NEN for Uniformly Distributed x 
 



The expected value µR(u) of the response and the one standard 
deviation µR(u) + σ(u) are shown in Fig. 5 for the uniformly 
distribution case. It is seen that there is a small probability that 
the first side-lobe level can fluctuate to levels above −30 dB 
although the successive sidelobe levels decrease with u.  
 

Fig. 4. Max Variance vs NEN for x Sampled from g(x) 
 

Fig. 5. Expected Beam Pattern and one σ deviation for Uniformly Distributed 
x  
     Fig. 6 shows µR(u) and µR(u) + σ(u) for the nonuniform 
case. Also shown in Fig. 6 is the target function given in   
Eqn. 4. The expected value is seen to match the target function 
well. The sidelobe amplitudes are all below the -30 dB level 
and are also of a uniform level in comparison with the results 
for uniform distribution. 
 
 
    Finally, Fig. 7 shows the manner in which the maximum 
variance decreases with the number of elements of the array. 
Although for small N the variance is lower for the uniformly 
distributed positions, the values are comparable with increase 
in N. The design considerations should take into account this 
tradeoff between the number of array elements and bound on 
the variance of the sidelobes levels. 
 
 

Fig. 6. Expected Beam Pattern and one σ deviation for Nonuniformly 
Distributed x  
 

 
Fig. 7. Trade Off: Variance and Number of Elements 

 

V. CONCLUSION 
A statistical analysis of random beam patterns was conducted 
considering random positions of array elements. Two 
probability distributions, one uniformly distributed along the 
aperture length and another designed to patch a desired beam 
pattern were considered. The uniform case was found to 
deliver a smaller variance but the mean sidelobe level being 
non-uniform in amplitude with angle, could result in 
exceeding the threshold level of −30 db. The pdf designed to 
match a target beam pattern however results in a uniform 
sidelobe level and although the maximum variance was higher 
than the uniform case, with sufficient number of elements, the 
one standard deviation level µR(u) + σ(u) was below the 
reference level of -30 dB. To obtain lower variances for the 
nonuniform case, the number of transducers has to increase. 
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