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Real Options and the Use of Discrete and Continuous Interest Rates  
 
Abstract 

 

Traditional engineering economics computes the net present value with a single interest rate.  
This is not the case in real options analysis.  In options analysis, the present value of the benefits 
and the costs are needed in order to calculate the option value.  In the last few years, the 
literature has had several examples where authors use multiple interest rates and different 
compounding assumptions for calculating present values.  For example, “first” costs are almost 
always discounted using a continuous risk-free interest rate while later cash flows are often 
discounted using discrete market interest rates.   
 
This paper focuses on the compounding assumptions.  Two approaches are used: (1) Real option 
articles in Harvard Business Review, Journal of Finance, and The Engineering Economist are 
surveyed over matching periods to determine typical practices; and (2) A realistic delay option 
example is analyzed.  The goal is to determine whether compounding assumptions are practically 
important or not.  We conclude with a discussion of what should be taught in undergraduate and 
graduate engineering economy courses. 
 
Introduction 

 

Real options analysis differs from traditional engineering economics in that it attempts to provide 
a value for managerial flexibility.  This value is called the option value, which is based on the 
mathematics used to determine the value of a financial option.  The Black-Scholes equation is 
widely used to determine the value of financial options,2 and has been adapted for use in real 
options.  Binomial lattices can also be used to determine the value of either a financial or a real 
option, and some authors strongly advocate their use.  Binomial lattices use discrete time steps to 
substitute for the Black-Scholes equation which uses continuous compounding.  It has been 
demonstrated 12 that as the number of time steps increases, the binomial lattice method 
approaches the same answer as provided by Black-Scholes. 
 
The Black-Scholes equation determines the value of a European call option, and is defined as: 
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The variables are defined as follows: 
 C value of a call option 
 S0 value of the stock at the current time 
 ф(dx) cumulative standard normal distribution of the variable dx 
 X strike price 
 r risk-free interest rate 
 T time to option expiration 
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 σ volatility of the stock price 
 
The strike price is discounted to the present time using the risk-free rate of return, compounded 
continuously.  The volatility is determined by one set method.  The net result is that the Black-
Scholes equation provides one unambiguous technique to determine the value of a call option. 
 
Real options analysis is based on the same mathematics, but a new set of definitions: 
 C value of a deferral (or delay) option 
 S0 present value of the future cash flows 
 ф(dx) cumulative standard normal distribution of the variable dx 
 X project cost 
 r risk-free interest rate 
 T time to option expiration 
 σ volatility of the project’s rate of return 
 
Unfortunately, the translation from financial options to real options adds several layers of 
ambiguity.  In determining the present value of the future cash flows (S0), what interest rate and 
what compounding technique should be used?  In determining volatility, what method should be 
used?  The answers depend on where you look.  The management literature, engineering 
economics literature, and practitioner guides all present somewhat different answers.  
Unfortunately, there is no single approach to determining the value of a real option to guide the 
would-be practitioner. 
 
In this paper, we examine the question of compounding:  using either discrete or continuous 
interest rates to discount future cash flows, both positive and negative.  In a later paper we will 
address the question of risk-free interest rates for some cash flows and market rates for other 
cash flows.  The management and the engineering economics literature is first reviewed, along 
with practitioner guidebooks.  A realistic deferral option is analyzed using both discrete and 
continuous compounding to determine whether a difference in compounding can change the 
investment recommendation.  We approach this as engineering economists, where one of the first 
lessons is the connection between nominal and effective interest rates based on the number of 
compounding periods.  Also one of the first principles is that nominal interest rates cannot be 
compared until converted to equivalent effective interest rates—which can be compared.  We 
also approach this as researchers who followed typical practice where the interest rates were 
nominal rates—until we noticed that an answer that should have matched for two calculations 
did not.  We conclude with a discussion of what should be taught in undergraduate and graduate 
engineering economy courses. 
 
Literature Review 

 

Harvard Business Review (HBR) was surveyed from 1998 through 2008.  While this journal 
does not focus on mathematics, it contains some of the most influential articles on real options 
over the past ten years.  One article16 written for the practioner was reprinted as the real options 
chapter in Canada et al.5 Luehrman describes discounting the future cash flows using a market 
interest rate using discrete compounding.  While other HBR articles1,11,17 discuss net present 
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value and underlying project values, the other Harvard Business Review articles do not describe 
the method of discounting future cash flows. 
 
The Journal of Finance was also surveyed from 1998 through 2008.  There were several articles 
regarding real options, 6,7,8,9,13,14 and all started from a theoretical basis in differential equations.  
The perspective of the Journal of Finance authors was consistent:  mathematics are based on 
calculus and discounting was performed on a continuous basis.   
 
The Engineering Economist contains more real options articles (30) between 1998 and 2008 than 
any other single journal we have seen.  Unfortunately, the approach to discounting future cash 
flows and future costs were not consistent from author to author.  Overall, the split between 
discrete and continuous discounting of future cash flows is fairly even.  However, the trend 
seems to be towards more use of continuous discounting.   
 
Discounting future costs was also not consistent.  The Black-Scholes equation uses continuous 
discounting of future costs, but many authors used binomial lattices.  There was disagreement 
among those using lattices:  some used continuous discounting (which was more common), and a 
few used discrete discounting.   
 
Several books were also surveyed.  Four practitioner guides were surveyed, 1,10,18,20 and they 
were consistent regarding the discounting of future values.  Future net benefit cash flows 
followed discrete discounting, while future “initial investment” costs were discounted 
continuously.  One widely used basic finance book 4 contained a chapter on real options 
analysis,\ and continued this approach.  One engineering economics text 19 has a complete 
chapter on options analysis and also discounts future net benefit cash flows in discrete time while 
discounting future investment costs continuously. 
 
There is no single approach to discounting in real options analysis.  Those who focus on the use 
of calculus tend to use continuous mathematics throughout.  Those who do not focus on calculus 
are divided, and it does not matter whether the approach uses Black-Scholes (a continuous 
application) or binomial lattices (a discrete time method).  There is no agreement on a single 
approach to discounting in the literature to guide the practitioner. 
 
Why This Lack of Consistency in Approach? 

 

Does continuous compounding of cash flows make sense?  For financial options, stock prices 
vary continuously in markets that are open essentially 24 hours a day.  So for financial options, 
continuous compounding is appropriate.  For engineering (real) projects, increased cash flows 
may be obtained from new products or product cost savings may be obtained from implementing 
a new technology.  The improved cash flows may occur with every product that is sold, which 
occurs nearly continuously.  So the use of continuous compounding can be justified in real 
engineering projects. 
 
However, we suggest that two real drivers behind the use of continuous compounding in real 
options do not include the close link between continuous compounding and the above reality of 
distributed cash flows.  Rather the two drivers are: 
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≠ Transfer of methodology from financial options to real options 

≠ The greater mathematical ease of manipulating, differentiating, and integrating formulas 
containing er

 rather than (1 + i). 
 
Does discrete compounding of cash flows make sense?  Our accounting systems are based on 
discrete increments of time.  Budgets are set annually, and are usually updated monthly.  Future 
information can not be obtained in increments smaller than what is reported, and in the case of 
real projects, this is done monthly or annually, not continuously.  So discrete compounding may 
also be appropriate. 
 
However, we suggest that the use of discrete compounding is not driven by the above link 
between compounding periods and accounting and budgeting.  Instead we suggest that the key 
driver is spreadsheets — where existing formulas and cash flow tables are based on discrete 
compounding. 
 
Given the above, it appears that the differences in compounding is driven by whether the 
application is theoretical or practical. 
 
Since both the risk-free and the market interest rates are and should be based on the real world, 
they will be stated in consistent terms.  Thus, we suggest that in reality either both rates are 
nominal interest rates or both rates are effective interest rates.  These are being developed 
without reference to the kind of compounding that is being done. 
 
There are three levels of consistency with interest rates in real options that we want to examine: 

≠ Consistency with typical practice in the literature (continuous compounding for initial 
investment cost and common practice of discrete compounding for later “net” benefit 
cash flows) 

o Typical practice seems to conflict with the next level of consistency 

≠ Consistency of interest rates with real world data 
o Stated as nominal interest rates è ok for r in continuous, adjust i for discrete to 

match effective continuous rate  
o Stated as effective interest rates è adjust r for continuous to nominal rate that 

gives that effective rate, ok for i as effective rate for discrete 

≠ Consistency of interest rates for different types of cash flows (next paper). 
 
Is the difference in compounding significant?  To answer this we analyze a numerical example.  
Note: this example was created from our earlier work to analyze this question.  It was not 
designed to show a problem exists. 
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Case Study

 15 

 

A consumer products company is getting ready to start a new sunscreen product which blocks 
the sun's ultraviolet rays.  Launching the product requires a current investment of $11.5 million.  
The company's hurdle rate for this type of project is 20%. 
 
The company has recently identified a new sunscreen active ingredient, which is not yet 
available.  Including it would delay the product’s launch by one year.  However, it would 
improve product efficacy and increase cash flows if it were used.  The investment would be 5% 
higher if the project is delayed one year because the project would need to adopt a crash 
schedule.  The life of the equipment and the new formulation technology is ten years in either 
scenario.  Table 1 shows the expected cash flows and costs, along with their anticipated ranges.  
The present value (using the hurdle rate and discrete compounding) of the “Launch Now” option 
is -$1.45 million and the NPV of the “Delay 1 year” option is -$0.05 million.  The NPV analysis 
recommends that the project be abandoned.  The volatility of the project is estimated to be 0.136, 
or 13.6%, using the logarithmic present value returns method (as described in Copeland 10). 

 
 
 Table 1.  Sunscreen Cash Flows 
 

Cash Flows, $million  
Year Launch now Delay 1 year 

  Lower 
   Limit 

 Upper 
  Limit 

1 1.0 0.0    -40%   +20% 
2 2.0 1.0    -40%   +30% 
3 2.5 2.5    -40%   +40% 
4 3.0 3.5    -40%   +40% 
5 3.0 3.5    -40%   +40% 
6 3.0 3.5    -40%   +40% 
7 3.0 3.5    -40%   +40% 
8 3.0 3.5    -40%   +40% 
9 3.0 3.5    -40%   +40% 

10 3.0 3.5    -40%   +40% 
11 0.0 3.5    -40%   +40% 

     
Initial Investment     11.50 million 12.08 million      -5%   +15% 
Salvage value       0.75 million   0.75 million  -100% +100% 
Hurdle rate             20%         20%    -20%   +20% 
Risk-free rate               5%           5%    -40%   +40% 
Delay cash flow premium     0.5 million    -40%   +20% 

 
 

Because this is a fairly simple delay option, the option value may be calculated using the Black-
Scholes method.  A binomial lattice could also be used, obtaining essentially the same answer if 
enough time steps were incorporated. 
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Matching the most common assumption in the literature and the Black-Scholes equation, the 5% 
risk-free rate was compounded continuously for the initial investment costs.  Then the question 
is, does it matter whether the 20% market interest rate is compounded discretely or continuously 
for the delay option cash flows.  For a valid comparison we must use the same effective interest 
rate.  (Note: the compounding question also applies to the risk-free rate, but its much lower value 
means that the difference between nominal and effective interest rates is much smaller.)   
 
If we assume the 20% is a nominal rate, the easiest way to convert from discrete to continuous 
compounding is to replace the discrete interest rate with its equivalent effective continuous rate 
of 22.14% using equation (3).  If we assume that the 20% is an effective rate, then the direction 
of calculation is reversed and the nominal rate, r, for continuous compounding is 18.23%. 
 

   Dr

C
r =e -1   (3) 

 

  Where 
D

r  is the discrete interest rate 

   
C

r  is the equivalent effective rate compounded continuously 

 
The option value was explored over the range of interest rates that would be expected within the 
case study.  These were also investigated with three risk-free rates, again within the case’s 
expected limits. 
 
 

Figure 1.  Effect of Discrete and Continuous Compounding, Sunscreen Project 
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The results are shown in Figure 1.  As expected, continuous discounting of the positive cash 
flows decreases the option value.  The impact is quite noticeable, especially at the lower hurdle 
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rates.  Real options have been criticized for overstating the value of a project, 3,21 and discrete 
compounding could be one source of this problem. 
 
Is this a truly significant difference?  Sensitivity analysis was conducted on the variables of the 
case, and a tornado diagram of the results is shown in Figure 2.  Of the input variables, the 
volatility has the greatest impact on the option value and the hurdle rate (compounded annually) 
is the second most influential variable.  Continuous discounting decreases the maximum option 
value, and the difference between discrete and continuous discounting is more significant than 
any remaining variable.  The compounding assumption has a significant effect on the value of the 

option. 

 
 
 Figure 2.  Tornado Diagram for the Sunscreen Case. 
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The expanded net present value (ENPV) is determined by adding the net present value with the 
option value.  The ENPV is a primary tool for deciding whether to invest in the project.  With 
discrete discounting of the future cash flows, an ENPV of $0.07 million results with a (weak) 
recommendation to invest.  With continuous discounting of the cash flows, the ENPV drops to   
− $0.03 million, with a (weak) recommendation to abandon.  Because real options analysis is 
used primarily when NPV is near zero, the method of discounting can change the decision 
outcome.  
 
Recommendations for the classroom 

 

We believe that a detailed study of real options analysis is not appropriate for an undergraduate 
course.  Real options requires an understanding of sensitivity analysis and decision trees, and 
these should be taught at the undergraduate level; however, options analysis should probably be 
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limited to making the student aware of its existence.  We believe that real options does have a 
role to play in advanced graduate courses.  While the use of options analysis remains 
controversial, it is a subject that the advanced engineering economics student should understand.  
If engineers are to take part in the debate, then we must first understand the methodology and test 
it on real world applications to projects.  That is our domain as engineering economists and 
engineering managers. 
 
Finance academics tend to view the world from the perspective of calculus and continuous 
equations.  While this may be confining, it is at least consistent.  As engineering economists, we 
deal with both discrete and continuous problems; this unfortunately can lead to inconsistency. 
 
There is no single approach to solving real options problems.  This lack of uniformity may be 
one of the many issues hindering more widespread adoption.   
 
Most of the literature discounts future costs using continuous discounting.  This is true when 
directly applying the Black-Scholes equation (and related models), and continuous discounting is 
the predominant technique when using binomial lattices.  While not universal, continuous 
discounting of future costs is practiced by a strong majority. 
 
For realistic numerical examples, spreadsheets are and will continue to be the modeling tool 
used.  Thus compounding of future net benefit cash flows will be discrete.  However, we can still 
be consistent with reality by adjusting all interest rates to be an effective rate first.  This may 
require adjusting the “market” interest rate or the “risk-free” rate.   
 
Conclusions 

 

There is no uniform approach to using either discrete or continuous discounting when using real 
options.  The business literature consistently uses continuous discounting, in keeping with their 
calculus-based approach to options analysis.  Practitioner books are consistent in continuous 
discounting of future costs while using discrete discounting of future positive cash flows.  The 
engineering economy literature is not consistent.   
 
The use of discrete or continuous interest rates can have a significant effect on the value of the 
option, and the choice of compounding method can change the decision outcome.  This is not a 
meaningless topic.  We recommend ensuring that consistent assumptions about compounding 
and effective interest rate values be made.   
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