
2006-1854: REAL-TIME SYSTEMS SCHEDULING TOOL DEVELOPMENT

Daniel Ghiringhelli, Monmouth University
Daniel Ghiringhelli is completing his Masters in Software Engineering from Monmouth
University, West Long Branch, NJ. He received his BS in Computer Science from Stevens
Institute of Technology in Hoboken NJ in August, 2002. His research interests include ubiquitous
computing, home theater system automation, software and network security.

Jiacun Wang, Monmouth University
Jiacun Wang received the PhD in computer engineering from Nanjing University of Science and
Technology (NUST), China, in 1991. He is currently an associate professor of the software
engineering department at Monmouth University, West Long Branch, New Jersey, USA. From
January 2001 to August 2004, he was a member of scientific staff with Nortel Networks in
Richardson, Texas. Prior to joining Nortel, he was a research associate of the School of Computer
Science, Florida International University (FIU) at Miami. Prior to joining FIU, he was an
associate professor at NUST. His research interests include software engineering, discrete event
systems, formal methods, wireless networking, and real-time distributed systems. He authored
Timed Petri Nets: Theory and Application (Norwell, MA: Kluwer, 1998), and published more
than 50 research papers in journals and conferences. He is an editor of IEEE Transactions on
Systems, Man and Cybernetics, Part C, and has served as a program committee member for many
international conferences. Dr. Wang is a senior member of the IEEE.

© American Society for Engineering Education, 2006

P
age 11.1065.1

Real-Time Systems Scheduling Tool Development

Abstract

This paper presents a real-time system (RTS) scheduling tool which implements some of the

most popular scheduling algorithms. It allows users to specify real-time tasks in a RTS, then

evaluates task scheduleability and plots the simulated schedules. It can be used by both

instructors and students of RTS classes.

1. Introduction

Real-time systems are those systems that are required to respond to an external event in some

timely manner
6,8

. An RTS is always subjected to timing constraints. The timing constraints

imposed on hard real-time systems are absolute and must be satisfied. Therefore, special

consideration needs to be taken when designing how a real-time system will execute all the

possible tasks it may be assigned over any period of time.

RTS scheduling is a critical, and perhaps the most important part in teaching a real-time system

class. Dozens of well-known scheduling algorithms are introduced in many textbooks
7,4

, but can

sometimes be difficult to explain with just words and graphs. It is desirable that, given a set of

real-time task specifications, we have a dedicated software tool to carry out scheduleability

analysis and schedule generation. However, such tools are not yet available. Commercial real-

time operating system products, such as VxWorks
9
, provide logic instruments with a graphical

view of schedules, but they only work with a fully developed RTS - not a RTS model in terms of

task specifications.

This paper presents a RTS scheduling tool newly developed at the Software Engineering

Department of Monmouth University. The tool implements some of the most popular RTS

scheduling algorithms, such as Earliest Deadline First (EDF), Least Slack Time First (LST), and

Deadline Monotonic (DM). The tool evaluates RTS task scheduleability and plots the simulated

scheduling results. It also comes with a very friendly user interface which allows users to easily

(1) add or delete tasks/jobs, (2) specify or modify the real-time parameters of tasks/jobs, (3)

select tasks/jobs for scheduling, and (4) select scheduling algorithms. For periodic tasks, the tool

automatically calculates the hyperperiod and plots the schedule for one hyperperiod. As jobs are

pre-empted and move to a waiting state, the tool displays the jobs in a waiting queue over the

entire scheduling simulation.

The tool is developed primarily for education purpose. It is helpful for both instructors and

students: First, it allows instructors to illustrate as many scheduling examples as possible during

the limited class hours by simply changing the RTS tasks/jobs set or their real-time parameters.

Second, it helps students to understand how the scheduling process proceeds with a given

scheduling algorithm. Third, but not least, it allows students to compare and contrast the

scheduling results of a given RTS model with different scheduling algorithms. As students are

assigned various scheduling exercises, the RTS scheduling tool helps to reinforce the scheduling

algorithm concepts they have learned by providing the correct schedules and the schedules’

P
age 11.1065.2

properties which the students can independently analyze. The tool was written in Java and

provides a framework for the expansion of additional algorithms and features.

The paper is organized as follows: An overview of the tool functionalities and interface is given

in Section 2. The implemented scheduling algorithms are introduced in Section 3. In Section 4,

the high-level design of the tool is presented. Section 5 concludes the paper.

2. Tool Overview

The graphical user interface (GUI) of the RTS Scheduling Tool was designed to give users

constant live feedback of the underlying scheduling simulation. It was built upon the Standard

Widget Toolkit (SWT) framework developed by the Eclipse Foundation (www.eclipse.org)

which provides a native windowing support for desktop Java applications.

Task

Table

Schedule Simulator

Controls
Hyperperiod

Task

Queue

Task

Commands

Scheduling

Options

Figure 1 Tool GUI.

The main GUI for the RTS scheduling tool is shown in Figure 1 and has the following key

features:

‚ Task Table – The task table lists all tasks that are available to be selected for scheduling

simulation. Within the task table, individual task items can be modified by double-

clicking its value. The user can edit a task’s name, phase, period, duration, relative

deadline and color. The “Fully Scheduled?” field is a read-only field that is updated

when a simulation completes. This column answers the question: “Did this task meet all

P
age 11.1065.3

its deadlines and is therefore scheduleable?” Finally, there is a checkbox next to each

task which indicates whether or not the task will be scheduled in the next simulation run.

‚ Task Commands – The task commands allow for the addition of new tasks and deletion

of existing tasks.

‚ Scheduling Options – The scheduling options allow the user to select what type of

scheduling algorithm to execute during the simulation run. There is also an “Aperiodic

Mode” checkbox that turns on or off periodic scheduling. If this box is checked, then

only the first job from each task will be scheduled.

‚ Task Queue – The queue dynamically displays any tasks that are blocked by the

currently executing task.

‚ Schedule (CPU Execution Canvas) – The execution canvas displays each task’s

execution history (opaque) as well as the currently executing task (transparent).

‚ Hyperperiod – The hyperperiod is calculated for every simulation run and is shown

below the CPU execution canvas. The simulation runs until the current time reaches the

calculated hyperperiod.

Simulating the scheduling of a set of tasks in the RTS scheduling

tool requires two primary steps: configuring the task set via the task

pane and selecting the simulation algorithms. To add a new task,

the “Add Task” button can be clicked which displays the dialog box

shown in Figure 2. Each task’s properties (Name, Phase, Period,

Duration and Relative Deadline) can be customized to any non-

negative integer.

Once the task has been added to the task table, the user can double-

click any field to edit the value. Colors can also be selected from

the color drop-down box. The “Fully Scheduled?” column is read-

only. To delete a task, the user can select the task and click the

delete button. To enable the task for simulation, the user checks the

check-box next to the task name.

After tasks are configured, the user can then select the algorithm

from the Task Simulator pane. The periodic/aperiodic options can also be selected from the

checkbox next to the “Run in Periodic Mode” option. Aperiodic tasks will simulate one-time

jobs that do not arrive periodically. Thus each task’s period is ignored. Finally, the user can

click “Start” to begin the simulation. Once the simulation reaches the calculated hyperperiod, it

automatically terminates. The “Reset” button can be used at any time to clear the CPU

Execution Canvas and associated Queue.

Figure 2 Add task.

Once the hyperperiod expires, the simulator calculates the overall scheduleability of each task.

In the sample run shown in Figure 3, the 2
nd

 task in dark blue is marked as not being schedulable.

Analysis of the CPU execution history reveals that the periodic scheduling of Task 2 at time t=39

was not scheduled, thus Task 2 was outstanding when the hyperperiod expired.

P
age 11.1065.4

Figure 3 Simulation complete.

3. Scheduling Algorithms

The RTS scheduling tool currently supports the simulation of three primary real-time scheduling

algorithms known as the Deadline Monotonic (DM) algorithm, sometimes referred to as the

Fixed Priority Scheduling algorithm, the Earliest Deadline First (EDF) algorithm, and the Least-

Slack Time First (LST) algorithm. DM, EDF and LST are also most widely used algorithms for

periodic tasks, while EDF and LSF are two well-known algorithms illustrating priority-driven

one-time jobs scheduling. Periodic tasks are specified by the following parameters:

‚ Phase: The release time of the first job of a task.

‚ Period: The amount of time between the arrivals of two consecutive jobs of a task.

‚ Duration: The execution time of a job in a task.

‚ Relative Deadline: The job deadline relative to release time.

For one-time jobs, we only need to know their phases, durations and relative deadlines.

Deadline Monotonic (DM)

The DM algorithm is one of the simplest scheduling algorithms to implement
1,2

. It is considered

a static metric algorithm because it operates solely over pre-computed priority values. In

practice, a real-time system may have a separate program (or human analyst) that calculates task

priorities prior to execution. These priorities are then saved for the DM scheduler to reference at

run-time.

The DM scheduler always schedules the highest priority task (the one with the lowest relative

deadline) that is available at any given time. The DM scheduler will pre-empt any lower priority

P
age 11.1065.5

task until the higher priority task completes execution. This simple static comparison provides a

lightweight scheduler that requires little CPU overhead.

Consider the following tasks:

‚ Task 1: Phase = 0, Period = 9, Duration = 3, Relative Deadline = 8

‚ Task 2: Phase = 0, Period = 3, Duration = 2, Relative Deadline = 4

The RTS scheduling tool generates the schedule shown in Figure 4, which illustrates that Task 1

is not schedulable. In the DM scheduler, it can be seen that Task 2 will always pre-empt Task 1,

at any given time. Thus at time t=0, t=3, t=6 (since Task 2’s period = 3), Task 2 is immediately

scheduled. Consider the time t=6. At this moment, Task 1 has executed for 2 seconds and

requires just 1 additional second to complete execution before it’s deadline at t=8. Conversely,

Task 2 has yet to execute (for the new instance) and its deadline is at t=9. It is important to note

that in this scenario, the DM scheduler will cause Task 1 to miss its deadline, while it would

have been possible for both tasks to complete before their deadline.

Figure 4 DM schedule of tasks (0, 9, 3 8) and (0, 3, 2, 4).

Earliest Deadline First (EDF)

The EDF scheduler was designed to address some of the short-comings of the DM scheduler
3
.

Since the DM algorithm is limited to static task properties, it has no way of detecting the

scenario illustrated above. The EDF scheduler provides more optimal CPU utilization through

the dynamic prioritization of tasks. EDF can always schedule any set of tasks that are

schedulable by the DM algorithm. As new tasks arrive, the EDF algorithm will always schedule

the task whose deadline is soonest. Therefore, as long as the utilization of the process set is less

than the total capacity of the processor then all deadlines will be met
4
.

P
age 11.1065.6

Revisiting the scenario described above reveals that both Task 1 and Task 2 are schedulable as

seen in Figure 5. At time t=6, Task 1 is not pre-empted since its deadline (t=8) is dynamically

compared to the next deadline of Task 2 (t=9) and found to be nearer than Task 2. Thus Task 1

completes at t=7 and Task 2 completes before the hyperperiod expires (t=9).

Figure 5 EDF schedule of tasks (0, 9, 3 8) and (0, 3, 2, 4).

Despite the theoretical improvements EDF algorithms offer over DM algorithms, in practice,

DM schedulers are the most common method used in real-time systems. This can be attributed

to a number of factors
4
:

‚ DM is more simple (and easier) to implement on a RTS then EDF. Additionally, since all

priority-processing is done statically offline, the RTS resources do not require this

additional overhead at run-time.

‚ DM can be considered more stable and predictable. If the RTS is overloaded, where a set

of tasks will certainly miss their deadlines, then the DM scheduler guarantees that lower

priority tasks will be the first to miss their deadlines. However, the EDF scheduler makes

no such guarantee and can result in critical tasks missing deadlines before routine tasks.

‚ The EDF focuses purely on deadline, but deadline is not the only metric that can

determine priority. The static “deadlines” used by DM can incorporate other factors as

well.

Least Slack Time First (LST)

Also called Minimum Laxity First (MLF) algorithm, the LST algorithm assigns priorities to jobs

based on their slacks: the smaller the slack, the higher the priority. LST is also optimal. The

P
age 11.1065.7

difference between EDF and LST is, EDF algorithm does not require any knowledge of the

execution times of jobs, but the LST algorithm does
5
.

Hyperperiod and Scheduleability

The RTS Scheduling Tool calculates the hyperperiod for the given task set before every

simulation. The hyperperiod is fundamentally the least common multiple for all the task periods

plus the maximum phase of all the tasks. When the “Start” button on the simulator is clicked, the

hyperperiod is calculated and displayed below the CPU Execution Canvas. A task is said to be

schedulable if every periodic instance of the task is fully completed on-time before the expiration

of the hyperperiod. If a task is blocked in the queue at hyperperiod expiration or missed any

deadline during the simulation, it is not fully schedulable for the given task set.

4. Tool Design

The RTS scheduling tool was designed to run as a stand-alone desktop GUI application that can

be easily ported between various operating systems. Thus the Java programming language was a

natural fit. Java’s open specification and extensive library support provides an extremely

capable platform on which to develop robust applications. The Java Virtual Machine (JVM) is

designed to run on top of all common operating system platforms and thus provides easy

portability of source code. RTS Scheduling Tool was developed on top of the Java 2 Platform,

Standard Edition (J2SE) 5.0 version of java. It has been tested against Sun Microsystems’

distribution of J2SE Runtime Environment (JRE) version 5.0.

The Java Development Kit (JDK) distribution comes standard with the Java Swing package,

however RTS Scheduling Tool was developed on the SWT framework distributed by the Eclipse

Foundation (www.eclipse.org) as part of the core eclipse platform. This development tradeoff

was made due to the native operating system support provided by SWT. SWT is an open source

widget toolkit for java designed to provide efficient, portable access to the user-interface

facilities of the operating system on which it is implemented (Ref: SWT). Conversely, Java

Swing does not provide the same platform abstraction but instead programmatically generates

cross-platform widgets not necessarily native to the target operating system.

The RTS Scheduling Tool was developed on Windows XP Professional using the Eclipse 3.0

Integrated Development Environment (IDE). The IDE provides native support for JUnit testing

and ant build facilities. The RTS Scheduling Tool is distributed via an executable jar which can

be generated at build time and simply executed by double-clicking.

The RTS Scheduling Tool follows the Model View Controller (MVC) architecture as shown in

Figure 6. The MVC architecture is a commonly used design pattern that provides a clean

separation between the logical functions of application components. The MVC architecture in

general divides the system into 3 components:

‚ Model: Maintains and stores all the data associated with the application and performs

system functions over the data. P
age 11.1065.8

‚ View: Abstracts the data from the model for feedback to the user; passes user actions to

the controller for logical processing.

‚ Controller: Responsible for the application logic and coordination between the view and

the model.

Model

View

Controller

Simulator

CPUQueue

Notifier

status?

ready

Controlling

Thread

Simulation

Thread

Figure 6 RTS scheduling tool model view Controller architecture.

It is not uncommon for the view to interact directly with the model for synchronization of data.

However, the MVC architecture of the RTS Scheduling Tool intentionally separated the

dependence between the view and model to enable a two-threaded system interaction interfacing

directly between the model and controller. SWT constraints prevent the initiation of data

transfer from a daughter thread to its parent thread. As seen in Figure , the Controlling Thread

(parent) must therefore poll the simulator for change of status updates. To improve performance,

this interaction occurs only when the model alerts the controller of a status change by setting a

ready flag. When this flag is set, the controller will perform a deep query of the model and

subsequently update the view.

The RTS Scheduling Tool has a relatively simple package layout for the source as shown in

Figure 7. The rts (real-time scheduler) package is the root package of the system that contains

the application entry point as well as the primary controller classes. The run-time event loop

occurs in this package. The rts.algorithms package contains the abstract algorithm class

and all the sub-classes that inherit from the abstract algorithm class. The algorithm package is

responsible for all scheduling decisions made by the simulator.

The rts.model package provides the underlying simulation data elements used by the

system. For example, all data pertaining to tasks are stored in the rts.model package. This

package also contains the simulation loop that is executed by the simulation thread described in

P
age 11.1065.9

Figure 7. Finally, the rts.gui package provides the GUI controls used to display simulation

data. These controls inherit from the open source Eclipse SWT library.

Figure 7 RTS scheduling tool package view.

5. Concluding Remarks

The RTS scheduling tool is a fully operational RTS task scheduler that allows for the analysis of

various real-time scheduling algorithms. It was designed primarily as a courseware for RTS

classes. We asked a few of students who took RTS course in the past to try the tool, and the

feedback from them was quite positive. We will use this tool in our RTS Specification and

Design course this fall.

With a user-friendly graphical user interface and a stable underlying simulator, the RTS

scheduling tool provides a scalable architecture for future enhancements. Its development upon

open-source technology, tools and utilities further provides a maintainable base of support.

To say that the RTS Scheduling Tool is completely operational does not preclude its potential for

some upgrades and modifications. Below is a list of items that have yet to be fully supported,

but have limited functionality in its current state:

‚ GUI Validation: Basic task parameters are verified (no negative numbers or characters),

but the logical correctness of these values are not validated by the system. It may be

desirable to provide the user with a warning message if they select values that are

logically incorrect, e.g. a period that is shorter than a task’s duration.

‚ Simulation Pause/Restart Capability: The initial design planned for this capability

however it was not fully implemented in the final release. It may be nice to have at some

point.

P
age 11.1065.10

‚ Extended Algorithm Support: This capability exists however it just needs to be written.

Adding additional algorithm support will only increase the usefulness of the tool.

‚ Application Installer: The RTS Scheduling Tool would benefit from an installer that

would automatically check the client’s system for required dependencies, such as JRE 1.4

or later and the SWT library.

Bibliography

1. P. Altenbernd, Deadline-monotonic Software Scheduling for the Co-synthesis of Parallel Hard Real-time

Systems, European Design and Test Conference, 1995.

2. N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings, Hard Real-Time Scheduling: The Deadline

Monotonic Approach, Proceedings 8th IEEE Workshop on Real-Time Operating Systems and Software, Atlanta,

GA, USA, May 1991.

3. T. P. Baker, Multiprocessor EDF and Deadline Monotonic Schedulability Analysis, 24th IEEE International

Real-Time Systems Symposium, 2003.

4. A. Burns and A. Wellings, Real-Time Systems and Programming Languages, England: Pearson Education

Limited, 2001.

5. R.I. Davis, K.W. Tindell and A. Burns, Scheduling Slack Time in Fixed Priority Pre-emptive Systems,

Proceedings Real-Time Systems Symposium, pp. 222-231, December 1993.

6. P. A. Laplante, Real-Time Systems Design and Analysis: An Engineer’s Handbook, 2nd Edition, New York:

IEEE Press, 1997.

7. Q. Li and C. Yao, Real-Time Concepts for Embedded Systems, San Franscisco: CMP Books, 2003.

8. J. Liu, Real-Time Systems, Prentice Hall, 2000.

9. Wind, WxWorks Programmer’s Guide, Wind River Systems, Inc., 2002.

P
age 11.1065.11

