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Abstract 
 
This paper reports on enhancing undergraduate education by doing research with students. The 
work presented was done with a freshman mathematics major at Texas A&M–Corpus Christi. 
The student joined a continuing project of the Division of Nearshore Research which  uses 
various models to predict water levels along the Texas coast. The most successful models use 
neural networks written in Matlab and are trained with a backpropagation algorithm. The training 
set consists of one year’s worth of hourly water level and wind data. Initially the weights and 
biases of all neurons are assigned at random or with the Nguyen–Widrow algorithm. With these 
weights and biases, the forecast is computed and then compared to the actual water levels. In 
each training epoch, the weights and biases are updated following the gradient of the mean 
square error between calculated forecast and actual data. The size of the mean square error is the 
main quality criterion for the success of the training; if the mean square error is small enough, 
the training stops.  Shannon’s definition of entropy as the sum of terms –p*log(p) measures the 
entropy of a probability distribution. The probability distribution of the discrepancies between 
forecasts and actual measurements over the whole training year is used to calculate the entropy 
for the error distribution after each training epoch. Once the entropy ceases to change from one 
training epoch to the next, no new information is learned by the neural network and the training 
can end. Different forecast times, different locations, different training algorithms and different 
initial weights are used to illustrate the changes in entropy during the training of a neural 
network. This investigation of a very experimental character proved to be suitable for research 
with a freshman.  
 

Introduction 
 

Research with a Hispanic Freshman Mathematics Major  
 

Often when thinking about recruiting a research student, we only consider students in the upper–
level classes, assuming that they already have some background knowledge, a proven track 
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record of academic performance and a clearer understanding of “research”. However, if the 
experiment of picking out a freshman succeeds, a wealth of positive effects ensues. 
 
The faculty member can work with this student for up to four years - which is about the time 
equivalent of having a Ph.D. student - and this time span allows for serious progress. Faculty 
members at primarily undergraduate institutions often complain about the lack of research 
interactions with students and successfully including freshmen and sophomores in their research 
can bring continuity to their group and an opportunity for more in–depth work. 
 
The student benefits by gaining individual attention and mentoring, as well as by learning 
outside the classroom and having publications. Such experience will likely have an influence in 
the student’s career choice. Research students also get financial support and sometimes the 
benefit of office space. A study1of science, mathematics, and engineering majors concludes: (p. 
384) “All students, regardless of race or ethnicity, appreciated those departments and faculty 
who had given them a discipline–specific work–study opportunity or the chance to be involved 
with a research project. We found that research opportunities for any undergraduates were rare 
on all seven campuses. However, students who had been involved in departmental research were 
very enthusiastic about their experience and felt it greatly enhanced their interest in the field.” 
Another book2 on retention management also stresses the importance of the faculty: “Retention 
management can not succeed without faculty input and advising. A school’s greatest attrition 
weapon is its faculty.” 
 
The university gains, as research projects are part of a student–centered approach to retention.  
In “Keeping Students in Higher Education”3, five forms of supportive retention practices are 
outlined: Emotional Support and sustenance, Informational support, Instrumental support, 
Material support and Identity support. An individual research project will include several of 
those practices. Retention can happen in two forms: retaining a student in academia or retaining a 
student in the chosen major. Most university wide efforts are centered at retaining a student 
enrolled, regardless of the major. Faculty efforts should address retention within the major. 
Starting in 1990, E. Seymour and N.M. Hewitt conducted a three–year study1of 335 students at 
seven universities to discover why undergraduates leave the sciences, mathematics or 
engineering (S.M.E.). On p. 32 they list “the most–commonly cited factors contributing to switch 
decisions, namely 

• Lack or loss of interest in science 
• Belief that a non–S.M.E. major holds more interest, or offers a better education 
• Poor teaching by S.M.E. faculty 
• Feeling overwhelmed by the pace and load of curriculum demands” 

Most interestingly, the study does not find switchers and non–switchers to be two different kinds 
of people. Many of the concerns are shared by both groups. The authors report that “Science and 
Mathematics switchers more commonly left their majors because neither the career options and 
material rewards nor the personal satisfaction of careers open to them, appeared to justify the 
effort involved in graduating”.  
 
A possible conclusion from these findings is that involving a student in research may retain a 
potential switcher within the major by adding interest, respect, personalized advising and sharing 
the enthusiasm for the subject. And starting retention efforts in a student’s freshman year is the 
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optimal timing to not lose them to other majors or careers. Such efforts can be applied equally 
well, or targeted toward, minority students. 
 
The setting of this student project 

 
Texas A&M University–Corpus Christi ("The Island University") is a comprehensive four–year 
university with more than 8,000 students. A&M–Corpus Christi's proximity to water has enabled 
the university to become a hub of the latest coastal, marine and environmental research. For this 
public university, 37% of the student body consists of Hispanic students, a group whose retention 
is very important for a university in an overwhelmingly Hispanic region such as South Texas.   
This paper describes an example of research done with a Hispanic freshman at Texas A&M 
University–Corpus Christi during the Fall 2004 semester. While this is not part of a larger 
retention program, it may illustrate some possibilities of working with freshmen. The student, 
Jeremy Flores, attended Texas A&M University–Corpus Christi in the Fall 2004 and took three 
courses, two of them in Mathematics. One of the mathematics courses was Advanced Calculus, 
for which he lacked the formal prerequisites, but wanted to take regardless. In Fall 2003 he had 
attended MIT, but for health reasons did not finish his first semester there. In Spring 2004 he had 
taken some classes that sparked his interest, for example in music, and helped tutor mathematics 
in the tutoring center on campus. This is certainly not the usual background or situation of a 
freshman. Having been recruited in the Advanced Calculus class for a research project in 
Applied Mathematics, Jeremy was supported as a research student under a NASA grant which 
allowed him to be paid for up to 19.5 hours of research activity per week.  
 
Research Set–up 
 
The student was incorporated into an integrated research environment within the Division of 
Nearshore Research and the Department of Computing and Mathematical Sciences at TAMU-
CC. Within the academic unit he was included in weekly research meetings with Dr. Zimmer, 
Dr. Sadovski and their research students. On the Division of Nearshore Research side, Dr. Tissot 
helped him understand the Matlab program for neural networks and gave him a share of an office 
to further interaction with other research students.  Jeremy Flores was included in the meetings 
of the whole DNR research group and pointed towards the web pages for the Division of 
Nearshore Research  (http://lighthouse.tamucc.edu)  with past presentations and background 
material on water level forecasts. Jeremy was also given some literature to study, starting with a 
textbook on entropy4

.
 

Theoretical Background  
 

Neural Networks 
 
A neural network mimics the function of the human brain. It takes its inputs and processes them 
through a network of neurons, usually arranged in two or more layers. The neurons combine 
weighted inputs, add a bias and then apply a transfer function before giving their output as an 
input for the next layer. Figure 1 shows a schematic of a two–layer feed–forward neural network 
with two neurons in the first layer and one in a second layer, using transfer functions f and g. The 
weights are denoted by and the biases are denoted by . j,ia jb
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Figure 1: Schematic of a feed–forward neural network with one hidden layer and transfer 
functions f and g. 
 
Initially the weights and biases are assigned random values, which are balanced by the Nguyen–
Widrow algorithm to avoid starting the minimization process at a local minimum. Then the 
network uses its training inputs and compares the output to the target outputs. After comparing, 
the weights and biases areadjusted to reduce the mean square error between outputs and targets. 
This process is called one training epoch. To work well, the network goes through a series of 
training epochs. There are a few conditions which will abort the training process, for example 
reaching a zero mean square error, a singular gradient matrix, or a repeating pattern of 
adjustments. Otherwise the decision of how long to run the training rests with the designer of the 
neural network. Usually the size of the mean square error is used as the decision factor on how 
long to train. But this one number does not always tell the full story of how accurate the 
predictions are. 
 
Different training algorithms are implemented in Matlab. A slow but sturdy algorithm is the 
gradient descent method. The fastest algorithm is the Levenberg–Marquardt algorithm, which 
does not have to compute a Hessian Matrix, using only the Jacobian matrix of first derivatives of 
the network errors with respect to the weights and biases. 
 
Dr. Tissot has written a Matlab program to produce water level forecasts along the Texas coast5. 
In Jeremy’s work, he used a scaled–down version of this program, which only uses past water 
levels at one station as inputs, and does not test the network performance for other years or 
calculate all the performance criteria for the forecast.  
 
One of the goals in forecasting is to have a forecast that is within 0.15m of the actual water level 
at least 90% of the time. We define Central Frequency (CF) as the percentage (represented by a 
decimal in the figures below) of forecasts that are within 15 cm of the actual water levels. MSE 
denotes the Mean square error between forecasts and water levels.  
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Entropy 
 
From a discrete probability distribution with probabilities , one can calculate the 
entropy E according to Shannon’s definition: 
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the surprise factor: the smaller a probability is, the larger the surprise is when an event with that 
probability occurs. Entropy is the expectation of the surprise factor. Entropy units when a natural 

logarithm is used are nats. For a uniform probability distribution, 
n
1pi =  for  and in 

that case, 

n,...,1i =

)nln()nln(*
n
1E

n

1i
== ∑

=

. If only one outcome is possible, for example 

, which is the case for a deterministic process, then we need the special 
definition   , which can be justified by L’Hôpital’s Rule, to obtain   

. These are the two extreme possibilities; all other possible values of the entropy 
lie in between. For a normal distribution, the entropy is a function of the standard deviation: 
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entropy. Entropy measures the sharpness of the distribution, while change in entropy measures 
the change in information. If the entropy decreases, information is acquired.  
 
Combining Entropy and Neural Networks 
 
Dr. Sadovski had suggested the combination of the two ideas as a method of studying the 
training of a neural network. A literature search found that other groups have previously 
combined entropy and neural networks, but in different ways. An overview of interactions 
between neural networks and entropy can be found in a textbook6on the subject.  One group7was 
studying how efficient a neural network is in using its neurons by calculating the entropy of the 
network. Pruning a neural network describes one possible design process, which starts with a 
large neural network and discards minimally used neurons until a smaller, more efficient network 
is obtained. For feature extraction via a recurrent Boltzmann machine without hidden units 
mutual entropy has been used8 to extract statistically independent features without loss of 
information. 
 

The student project 
 
Project description 
 
The project described here used an existing Matlab neural network program for water level 
forecasts and modified it with stops and calculations after each training epoch. The new program 
reads the training data, initializes the neural network and does one epoch of back–propagation 
training. One epoch of training refers to one update of the weights and biases for the entire neural 
network. After the training epoch, the program then simulates the neural network and calculates 
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the forecast error for every hour of the training year. The resulting forecasting errors are grouped 
into 20 bins:  (–10m, –1m),  (–1m, –0.8m),  (–0.8m, –0.6m),  (–0.6m, –0.4m), (–0.4m, –0.3m),  
(–0.3m, –0,2m), (–0.2m, –0.15m), (–0.15m, –0.1m), (–0.1m, –0.05m), (–0.05m, 0m) and the 
corresponding positive error ranges.  
 

0
0.2
0.4
0.6
0.8

-10
-0 .8 -0 .4 -0 .2 -0 .1 0 0.1 0.2 0.4 0.8

error size in meters after 1 epoch

pr
ob

ab
ili

ty

0

0.05

0.1

0.15

0.2

0.25

-10
-0.8 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.8

error size in meters after 2 epochs

pr
ob

ab
ili

ty

0
0.05
0.1

0.15
0.2

0.25
0.3

-10
-0.8 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.8

error size in meters after 5 epochs

pr
ob

ab
ili

ty

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

-10
-0.8 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.8

error size in meters after 10 epochs

pr
ob

ab
ili

ty

Figure 2. Error probability histograms for a neural network trained on 1998 data to forecast 
hourly water levels at Bob Hall Pier, shown after 1, 2, 5 and 10 training epochs, trained with the 
Levenberg–Marquardt algorithm. 
 
The entropy can be calculated from the error histogram. The program writes the epoch number, 
number of past water levels used, forecast time, error distribution, entropy, MSE and CF into an 
array that at the end of the whole program is exported as an Excel spreadsheet. 
  
Once the first training epoch is done and the error data stored, the network trains for a second 
epoch, without reinitializing the network. At the end of the second epoch, the entropy and other 
values are calculated and added as a new row in the array. Then the training process is continued 
following the same procedure. Training and simulation for 40 epochs in this fashion takes only a 
few minutes.  
 
Part of the student’s assignment was to include loops into the existing Matlab program to 
calculate entropy at the end of the training process. The initial setup was to train for one epoch, 
and calculate the entropy of the resulting error distribution, then restart, train for two epochs and 
calculate the entropy, then restart and train for three epochs and so on. This did not produce 
satisfactory results, as the random choice of initial weights and biases produced unrelated 
distributions and the entropies showed no clear patterns. A next attempt was to start with an 
initial value of zero for all initial weights and biases. This zero initialization was found to be a 
local minimum for the mean square error and the training algorithm was unable to leave this 
minimum. Sometimes the initial guess is significantly better than it is at other times.  
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Finally, the spreadsheet that the Matlab the program created during the training is used to 
analyze the changes in entropy through Excel charts. The figures 2 to 6 were created within this 
setting. 
 
The student’s role 
 
The student was given a working version of the neural network program. His first task was to 
understand how the program functions by performing some calculations for a different research 
project in which the effect of different performance functions on the forecasts generated by 
neural network models were studied. This included rerunning the program with different 
parameters and training functions. After the student could competently handle the existing 
program, he was asked to add loops to the program that would train for different numbers of 
epochs and calculate the entropy. The student himself had the idea of exporting the data on 
entropy, epochs and errors into an Excel spreadsheet. Not having taken a statistics class yet, he 
needed a bit of a background lecture on relative frequencies and probability, which he quickly 
absorbed. He also read literature on entropy himself and even suggested the use of mutual 
information as an improvement for this study. In each of the weekly meetings he had progress to 
show and he approached the project with great enthusiasm. 
 
Here is how the student feels about this project: “I believe that I have gained much from my 
experience with the project. Working on research so early in my college career has given me a 
better qualification for any internships and summer programs that I might choose to apply for 
since I have had prior experience with something as complex as neural networks. Furthermore, I 
feel that this research was an excellent starting point for understanding AI systems, which is a 
field that I am considering as a career choice. The professors and research assistants proved 
valuable resources whenever I had problems with both theory and applications of the ANN, and 
they also provided me with online resources and printed publications which gave me a better 
background on subjects. The possibility for me to receive pay and the flexible schedule were also 
most welcome. Over all, it was - and still is - a pleasant experience that has bolstered my 
understanding of research projects and ANN structures.” 
 
Research findings 
 
Intuitively, one expects that initially with random weights and biases, the forecast is far off and 
large errors account for the bulk of the histogram. Then the program adjusts the weights and 
centers the errors around 0, which will increase the entropy. Then a third phase happens: as the 
forecasts improve, the errors get smaller and the entropy decreases again. The example in Figure 
2 above illustrates the change in entropy during the training of a neural network computing 12 
hour forecasts for Bob Hall Pier based on 1998 hourly data. 
 
In the spreadsheet exported from Jeremy’s program it is possible to generate plots of the entropy, 
the Central Frequency and the mean square error of the forecasts as a function of the training 
epochs. 
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Figure 3. Graphs of the entropy of the error distribution, the mean square error and the Central 
Frequency of neural net water level forecasts for 1998 Bob Hall Pier data, trained with the 
Levenberg–Marquardt algorithm for 10 epochs. The central frequency is measured in decimals, 
not percent. 
 
Figure 3 illustrates that entropy is a different criterion than the mean square error: by the nature 
of the training algorithm, the mean square error is (generally) a decreasing function, whereas 
entropy is not monotonic. This, however, only affects the early stages of the training process. 
Once the errors are centered at zero, both the entropy and the mean square error should decrease. 
 
Figure 4 illustrates the usefulness of entropy over sole reliance on the mean square error. The 
example uses a different station and a different training algorithm. 
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Figure 4. Graphs of the entropy of the error distribution, the mean square error and the Central 
Frequency of neural network water level forecasts for 1998 Morgans Point data, trained with the 
gradient descent algorithm for 200 epochs. The central frequency is measured in decimals, not 
percent. 
 
In the example shown in Figure 4, the mean square error alone is not an indicator of sufficient 
training: even though the mean square error is relatively small, the entropy is still increasing, 
whereas towards the end of the training phase, the entropy should decrease. The increasing 
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entropy is explained by the histograms in Figure 5, which show that after 20 epochs, the errors 
are all on the large positive side, and have just started spreading out, whereas after 200 epochs, 
the error distribution is wide and centered near zero. The width of the distribution will need to be 
decreased for a good neural network model. 
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Figure 5. Error Probability Histograms for a neural network trained on 1998 data to forecast 
hourly water levels at Morgans Point, after 20 and 200 training epochs, trained with the gradient 
descent algorithm. 
 
The difference between this example (Figures 4 and 5) and the first example (Figures 2 and 3) is 
that here we used a slower training algorithm and a station, Morgans Point, for which neural 
network models and other models have more difficulties computing accurate forecasts. In this 
example 200 training epochs were not sufficient, as the errors are still skewed to the right and 
have not yet entered the phase of reducing the standard deviation. The fact that the central 
frequency after 200 epochs is only 71.54% is another indication of likely insufficient training. 
 
To illustrate the statement, a longer training session for the Morgans Point data was executed, 
training for 2000 epochs instead of the 200 in the previous example. The neural network had one 
hidden neuron and  one output neuron and was trained using on hourly data for 1998. It used 12 
hours of previous water levels as input data for a 12-hour forecast. At epoch 1500, the MSE is 
0.0298, the CF is 71.58%, and the entropy is 2.3945 nats. At epoch 2000, the MSE is 0.02817, 
the CF is 72.31% and the entropy is 2.3788 nats. The entropy is decreasing during these 500 
training epochs, but very slowly. Even after 2000 epochs, the distribution is not symmetric and 
hence not a normal distribution. The still decreasing entropy suggests that even 2000 epochs 
were not sufficient to train the neural network as well as possible. 
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Figure 6. Graphs of the entropy of the error distribution, the mean square error and the central 
frequency of neural net water forecasts for 1998 Morgans Point data, trained with the gradient 
descent algorithm for 2000 epochs. The central frequency is measured in decimals, not percent. 
 
 

Conclusions 
 
Research with a freshman student can be mutually rewarding. Although Jeremy Flores may not 
be a typical student for this institution, other freshman students could quite conceivably also be 
nurtured into good research students on similar projects. The NASA grant that supported Jeremy 
Flores has also supported a number of other research students who were only a little further 
ahead in their undergraduate program. There is no official minimum qualification for a research 
student; the faculty member who assumes responsibility for the student needs to decide, on 
prerequisite information versus in-project learning. The student’s comments on the project 
indicate favorable results on S.M.E. retention 
 
A project with an experimental character rather than a purely theoretical endeavor may be better 
suited for such a purpose. The first few steps for Jeremy Flores consisted of operating an existing 
software program and learning how the code functions. No theoretical background was initially 
required, but as the project progressed, all sides felt the need for better knowledge of the existing 
literature. There was no prerequisite knowledge, but clearly a corequisite, which was fulfilled by 
discussions with the faculty members, with other research students or researchers and by 
independent reading. Questions from the student were encouraged and quickly answered. 
 
Students are fast learners and can come up with good programming tricks. Jeremy Flores 
successfully adapted the existing neural network program to the specialized program needed for 
this project. 
 
For the faculty members involved a student project asks for fast paced work; often things must 
be accomplished in just one semester. This is a great motivator to not rest on or laurels.  
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This student’s work showed that the change in entropy can help to understand the training phase 
of a neural network better. Once the entropy decreases and then stabilizes, the useful part of the 
training is over and no new information is obtained. Entropy is not in a linear relation to the 
mean square error. This project, which lasted for less than one semester, has produced results 
that will be used in further development of neural network models for water level forecasts. 
 
Jeremy Flores hopes to return to MIT and has applied for readmission at MIT for Fall 2005. He 
presented a paper on his work with different performance functions for the training of a neural 
network at the 13th Meeting of the South Texas Mathematics Consortium in Harlingen on 
February 19, 2005. When he leaves TAMU-CC, his research position will be offered to another 
student who shows enthusiasm and ambition to learn. 
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