
AC 2011-322: REUSE A ”SOFTWARE REUSE” COURSE

Nan Niu, Mississippi State University

Nan Niu is an Assistant Professor of Computer Science and Engineering at Mississippi State University.
He received his Ph.D. in Computer Science in 2009 from the University of Toronto, where he specialized
in requirements engineering for software product lines. His research interests include software reuse,
requirements engineering, program comprehension, and software engineering education. He is a member
of IEEE, IEEE Computer Society, and ASEE.

Dr. Donna Reese, Mississippi State University

Donna Reese is a professor and interim head of the Department of Computer Science & Engineering
at Mississippi State University. She has been at Mississippi State since 1989 and served for 6 years as
associate dean for the Bagley College of Engineering. She is a senior member of ACM and IEEE and was
recently recognized by Tau Beta Pi with the McDonald Mentoring award.

Kui Xie, Mississippi State University

Kui Xie is an assistant professor of Instructional Technology at Mississippi State University. He received
his Ph.D. in Instructional Psychology and Technology in 2006 from University of Oklahoma. His re-
search interests include instructional design, computer-supported collaborative learning, motivation and
cognition engagement in distance learning.

Chris Smith, PhD, PE, Mississippi State University

Dr. Smith is the Richard A. Rula Chair in Construction Engineering and Management and Assistant
Professor in the Department of Civil and Environmental Engineering at Mississippi State University. He
is a former U. S. Navy SEABEE Officer and has managed projects and programs worldwide. He has been
accepted as an expert by the U. S. Court of Federal Contract Claims in the areas of Cost and Schedule.
He is a former executive with Hill International and FTI Consulting and has been associated with the
construction of Boston’s Central Artery Tunnel, Dubai Mall in the United Arab Emirates, and the U. S.
Department of Energy’s Nuclear Waste Treatment Plant at Hanford, Washington.

c©American Society for Engineering Education, 2011

P
age 22.1254.1

Reuse a “Software Reuse” Course

Abstract

Software reuse is the use of existing software artifacts and knowledge to construct new software.
Systematic reuse has always been a major goal in software engineering since it promises large
gains in productivity, quality, and time-to-market reduction. One of the main reasons software
reuse has not been systematically practiced is due to the lack of education: In a survey collected
from 113 respondents from 29 organizations, primarily in the US, only 13% said they had
learned about reuse in school1.

This paper presents the creation of a graduate-level seminar course on software reuse in a US
institution whose software engineering program aims to educate students with strong technical
skills so they can start work as productive members on a software development team. Rather
than reinventing the wheel in curriculum development, we adapted a software reuse course
developed by Frakes at Virginia Tech2.

This paper reviews the major challenges of software reuse education, describes the reuse of
Frakes’ course modules and assessments, and discusses the modifications we made in our course.
In particular, we modified our course by incorporating two pedagogical principles: active
learning and cooperative learning. Redesigning the course from a lecture format to a seminar
format allowed the students to play active roles in leading the classes and in discovering term
paper topics that suited to their own research interests. Fostering collaborations among students
and interactions between students and instructor allowed the students to recognize their
individual accountability to the success of the group and the entire course. This paper reports
instructor experiences, lessons learned, and recommendations for other educators considering the
application of an active and cooperative learning approach for their software reuse courses.

Keywords: software reuse education; active learning; cooperative learning

Introduction

Software reuse is the process of creating software systems from existing software rather than
building them from scratch3. The simple yet powerful vision of “not reinventing the wheel” has
been successfully applied in manufacturing industries such as automobile and electronics. Reuse
as a distinct field of study in software engineering is often traced to McIlroy’s paper that
proposed basing the software industry on reusable components4. Note that McIlroy’s paper
appeared in the 1968 NATO conference, which is generally considered the birthplace of the
software engineering field. Therefore, from the beginning, software reuse has been touted as a
means for overcoming the software crisis.

Software crisis was a term used in the early days of computing to describe the impact of the
complexity of the problems which could be tackled. McIlroy felt that component libraries could
contribute positively to writing correct, understandable, and verifiable computer programs4.
Others have found software reuse is of interest because people want to build systems that are

P
age 22.1254.2

bigger and more complex, more reliable, less expensive and that are delivered on time5. In fact,
the advantage of amortizing software development efforts through reuse continues to be widely
acknowledged, even though the tools, methods, languages, and overall understanding of software
engineering have changed significantly since 1968.

In spite of its promise, software reuse has failed to become standard practice for software
construction3. Among the many causes of this failure, the lack of education is considered one of
the most important. In a survey conducted in 1993 among 113 respondents from 29 organizations,
primarily in the US, only 13% said they had learned about reuse in school1. Similarly, only 19%
of respondents reported that they received training about software reuse at work1. Simply put,
those who were not trained in software reuse were unlikely to practice it. The situation remained
largely unchanged. A recent software reuse status report5 published in 2005 pointed out that
reuse education is still relatively rare in both academia and industry, and that there has been little
systematic study of how best to do reuse education.

In this paper, we present the creation of a graduate-level seminar course on software reuse in a
US institution whose software engineering program aims to educate students with strong
technical skills so they can start work as productive members on a software development team.
Rather than reinventing the wheel in curriculum development, we adapted a software reuse
course developed by Frakes at Virginia Tech2. In what follows, we review the major challenges
of software reuse education, describe the reuse of Frakes’ course modules and assessments, and
discuss the modifications we made in our course. In particular, two pedagogical principles, active
learning and cooperative learning, were incorporated in our course as a means of teaching
software reuse more effectively.

Background

Software reuse has been practiced since programming began5. This certainly applies to students
who have taken computer programming courses and/or written software applications. Software
reuse can be practiced in various ways: copy and paste a textbook algorithm, copy and modify
code snippets from the internet or a previous project, refactoring and re-modularization,
instantiate a C++ template, create a library of components and modules, apply design patterns,
define domain-specific languages (DSLs) and automate application generators, leverage software
product line technologies by codifying a set of core assets and by engineering products based on
the reusable assets, to name a few.

The idea of software reuse is simple, i.e., the use of existing software artifacts or knowledge to
construct new software. We argue that one of the biggest challenges of software reuse lies in this
simple vision, i.e., there must exist something in the first place, be it software artifacts or
knowledge, for reuse to take place. This challenge also applies to reuse education, in that the
student must have produced non-trivial software artifacts or accumulated practical software
knowledge in order to appreciate the value of software reuse. This is the main reason that
software reuse should be taught as a senior-level or graduate-level course after the students have
gained sufficient software engineering background.

Even though reusable artifacts or knowledge exist, software reuse is often practiced in an ad hoc
way. This is mainly due to the fact that the artifacts or knowledge that could be reused are not

P
age 22.1254.3

built explicitly with reuse as an objective. As a result, people need to spend significant effort in
identifying reuse opportunities. Most students enrolling in a software reuse course may have
already had this kind of ad hoc reuse experience, such as copy-and-paste small-scale code
fragments. Ad hoc reuse offers very limited success because the reuse solution is for a specific
problem or task that cannot be generalized to other situations. Therefore, another challenge in
reuse education is to re-frame and transform the student’s ad hoc reuse experience toward a
systematic reuse approach. Here, systematic implies repeatable reuse practices and predictable
reuse benefits. The application of a systematic approach is key to evolve software reuse into an
engineering discipline.

Several reuse curriculum development efforts were made in the 1990’s2,6,7. While the course7
was a five-lesson section that was taught as part of a software maintenance course, each of the
courses2,6 was designed as a one-semester graduate-level seminar course. The target audience of
these early courses was practicing software professionals, such as (fulltime) Ada programmers6
or US Air Force’s (future) software engineers7. The emphasis was placed primarily on specific
code-level reuse techniques, such as structured programming6 and library construction7. In
contrast, Frakes’ course taught at Virginia Tech2 had covered a wider spectrum of reuse topics,
ranging from economics and measurement to generative programming and re-engineering. The
crucial aspect that distinguished Frakes’ course from other reuse courses was probably the
explicit introduction and teaching of domain engineering.

Figure 1. Domain engineering as a means of achieving systematic software reuse8

Domain engineering is the key to systematic software reuse. The basic insight is that most
organizations build software systems within a few business lines, called domains, repeatedly

P
age 22.1254.4

building system variants within those domains. This insight can be leveraged to improve the
quality and productivity of the software production process. Figure 1 shows the relationships
between domain engineering and application engineering in the context of a software product
line8. Domain engineering involves three phases: (1) domain analysis is the process of
discovering and recording the commonalities and variabilities in a set of software systems; (2)
domain design is to decide which platform components are needed; and (3) domain
implementation is the use of the information from domain analysis and design to create reusable
assets and new systems within a domain. Frakes’ course9 features the use of DARE (domain
analysis and reuse environment)10 and its online tool support11 for the students to carry out a
domain analysis project. The course has been evolved since 1993. It was last taught at Virginia
Tech’s Northern Virginia Center in spring 20109. Table 1 summarizes the topics and assessments
in its latest offering.

Table 1. Topics and assessments in Frakes’ course: Domain Engineering and Systematic Reuse9

Topics Assessments (weight percentage)
• Course Introduction
• Domain Engineering
• Product Line Engineering
• Reuse Libraries
• Reuse Design
• Architectures
• Programming Languages
• Generative Methods
• Measurement, Experimentation, Economics
• Reliability and Safety
• Re-engineering for Reuse

• Domain Engineering Project (48%)
o Use DARE to perform domain analysis for one of

the following domains: software metrics,
conflation algorithms, or one of the student’s
choice

o Use DAREonline to produce a domain book
• Midterm (30%)
• Term Paper (10%)

o Create a research proposal (project, thesis, or
dissertation) concerning domain engineering and
software reuse

• Presentations and Participation (12%)

Frakes’ course is attractive for a number of reasons. First, it addresses the two major challenges
of reuse education noted above: it teaches graduate students advanced topics in software
engineering and it teaches domain engineering as a means of achieving systematic software reuse.
Second, the domain engineering project of the course is both process-oriented (DAREonline11
helps structure the steps involved in domain analysis) and product-oriented (the domain book
outputted from DARE is a crucial component in the family asset repository). Finally, the course
has a strong research component in that the term paper allows the students to relate the reuse
course’s learning experience to their own areas of interest. For these reasons, we decided to reuse
Frakes’ course to create a graduate-level seminar course on software reuse in our institution – a
leading public research university in the US. While Frakes’ course was advantageous in many
aspects, we tried to incorporate two novel styles, active learning and cooperative learning, in our
teaching of software reuse. Next, we present the pedagogical principles.

Theoretical Support

Many college teachers nowadays move past passive learning to active learning to find better
ways of engaging students in the learning process. This means that instead of simply receiving
information verbally and visually, students are receiving and participating and doing. Active
learning derives from two basic assumptions: (1) that learning is by nature an active endeavor;

P
age 22.1254.5

and (2) that different people learn in different ways12. It has been suggested that students who
actively engage with the material are more likely to recall information13. In practice, active
learning is often used as an umbrella term that refers to several instructional strategies. Examples
of active learning activities include:

• A short written exercise is a good way to review materials and provide feedback.

• A class discussion requires the learners to think critically on the subject matter and use
logic to evaluate their and others’ positions.

• A collaborative learning group is where students are assigned in groups of 3-6 people

and are given an assignment or task to work on together.

• A class game is an energetic way to learn because it not only helps the students to review
the course material but it helps them to enjoy learning about a topic.

While other models of instruction exist to engage learners, it is important to note that lecture
does have its place and that active learning should not be done without content or objectives.
This requires students receive proper orientation and motivation, as well as constant guidance
and feedback, from the instructor. The lectures given and other examples set by the instructor
will play an even more important role in promoting active learning. In general, software
engineering educators have reported positive experiences with active learning14,15.

Cooperative learning is a type of active learning where the students work together in small
groups to facilitate their own and the other members’ learning. Millis16 describes three premises
underlying cooperative learning: (1) a respect for the individual differences among the students –
intellectual, educational, social, and ethnic – and the belief that they all possess the potential to
succeed in the class; (2) an active and constructive process that allows students to discovery and
create their own knowledge; and (3) a social activity with a shared sense of community.
Cooperative learning involves students working in teams toward a common goal. Elements of
cooperative learning include:

• Positive interdependence: Team members rely on each other to achieve the common
goal.

• Face-to-face interaction: Team members do most of the work together. They provide
assistance, encouragement, and feedback to the other team members.

• Individual accountability and personal responsibility: Each team member is
responsible for doing his/her share of the work, and is expected to master all necessary
material.

• Interpersonal and small-group skills: Team members use effective communication and

conflict-management skills.

P
age 22.1254.6

• Group processing: Team members set common goals, reflect on team accomplishments,
and make adjustments as necessary.

Since the first research study on cooperative learning in 1898, there have been nearly 700
relevant studies17. In software engineering education, for example, cooperative learning has been
applied to teach software architecture in multiple-role teams18. The results show that, in general,
cooperative learning leads to higher achievement and productivity by all students and deeper
learning with longer retention. Our work extends the literature by sharing our experiences of
incorporating active learning and cooperative learning activities in a software reuse course.

Method Details

We reused Frakes’ course modules and assessments as a baseline and created a computer science
special topics course, named “Software Reuse and Domain Engineering”, in our institution. The
institution is a public, comprehensive university that integrates research, learning, and service.
The Computer Science and Engineering Department offers undergraduate degrees in both
Computer Science and Software Engineering. At the graduate level, we offer Master of Science
(M.Sc.) and Doctor of Philosophy (Ph.D.) degree programs in Computer Science.

The newly created course was offered in the spring 2010 semester. There were ten full-time
computer science students in the course: seven were M.Sc. students and three were Ph.D.
students. For the rest of this paper, we use pseudonyms and call the students: Alice, Bob, Chris,
Dave, Eric, Frank, Grace, John, Mark, and Tom. Similar to Frakes’ course, no mandatory
textbook was required. The book, “Component Reuse in Software Engineering”19, which could
be accessed online, was optional. We relied on a series of research papers as the core readings
for the course, which provided us with a better overview of recent research in software reuse.
Our reuse course was designed to be a seminar course, not a pure lecturing course, at the outset.
The active learning and cooperative learning strategies were implemented as follows.

 ORIENTATION AND MOTIVATION

The students could be active learners only if they were motivated and found the subject matter
interesting and challenging. The first two classes of the semester were thus devoted to motivating
the students. In particular, the importance of software reuse was emphasized. In addition to the
commonly cited reuse benefits: reduced cost, assured quality, and increased productivity, the
point of “reuse is green” was conveyed to the students. This point not only related to the
historical concept of software crisis, but also tied up with the contemporary need of engineering
environmentally friendly systems. The basic argument was: If there’s no reuse, it’s a waste. The
analogy further expanded to education, i.e., the students constructed their own knowledge bases
during the formal education, so that they could reuse (retrieve and adapt) the knowledge for the
future.

Emphasis was also made for the students to realize that building things from scratch is difficult.
This was partly achieved by quoting Carl Sagan: “If you want to make an apple pie from scratch,
you must first create the universe.” The students were then made aware that the majority of
engineering tasks were not about radical design, but about normal design where different

P
age 22.1254.7

engineering solutions were studies and their tradeoffs were codified for reuse20. In software
engineering, design patterns21 were one of those attempts.

After the students realized that reuse was both necessary and beneficial, they were asked to share
their software reuse experiences. It was not surprising that most students had only opportunistic
reuse experiences, e.g., while getting ready to begin a new project, the team realized that there
were similar components developed within the organization already. In contrast, few students
had heard about software product lines or domain engineering. Examples of daily product lines
were then brought to their attentions, such as Ford vehicles, Mac computers, and even McDonald
sandwiches. The theoretical challenge of systematic reuse was summarized by the oracle
hypothesis5 concerning the ability to predict needed variabilities in future assets. The practical
challenge of systematic reuse was illustrated by the domain engineering process (cf. Figure 1).
The goal was to make it clear to the students that systematic reuse, though challenging, would
mark a relatively mature engineering level of software development. The course was to have the
students lead the study of the state of the art of software reuse and domain engineering, with the
objective for them to advance the state of the practice of the field.

 SHORT WRITTEN EXERCISE

Recall that active learning should not be done without content. In a seminar-style course like
ours, students must read the assigned reading(s) before the seminar and come to the class
prepared. For each seminar, one required research paper and several background/optional
readings were provided. We asked each student, except for the class discussion leader, to write
an individual review of the required reading one day before the class day. To keep the paper
review a short written exercise, we provided a template that included:

• A one-paragraph (3-5 sentences) summary of the paper;

• At least two bullet points that highlighted the student’s “ah-ha” moments while reading
the paper;

• At least two bullet-point questions that would provoke class discussion; and

• A free-form comments that had no length limit.

The “ah-ha” moments helped the students to record their favorite points, the least favorite points,
insights, and other personal opinions about the paper. The students were also encouraged to
record questions, confusions, and gaps in knowledge about the paper or the topic in general.
These points were shared with the student who would lead the class discussion. The discussion
leader found the reviews resourceful and was always willing to address several questions raised
in the reviews in the seminar. This effectively promoted student interactions.

 LEARNING BY TEACHING

Each student was asked to lead part of the seminar on a self-selected topic. The ten topics are
listed in Table 2. The topics were pre-determined by the instructor, and the required and

P
age 22.1254.8

background readings for each topic were provided right after the orientation class. The students
had the opportunities to access all the readings and discuss interested topics with the instructor
before selecting a topic to lead the class discussion. The topic selection was done on a first-
come-first-serve basis. The students replied a group e-mail to achieve that. Alternatively, this
could be done through postings in a newsgroup or an online bulletin board.

Table 2. Topics and assessments in our course: Software Reuse and Domain Engineering

Topics (class discussion leader) Assessments (weight percentage)
• Course Orientation (Instructor)
• Introduction and Motivation (Instructor)
• Domain Engineering and DARE (Instructor)
• Feature Orientation (Eric)
• Requirements Reuse (Mark)
• Design and Architecture Reuse (Tom)
• Reuse Libraries (Bob)
• Programming Languages (Alice)
• Generative Methods (John)
• Measurement and Experimentation (Dave)
• Reuse Economics (Chris)
• Re-engineering for Reuse (Grace)
• Indexing and Retrieval (Frank)
• Advanced Topic 1

o Systematic Literature Review (Grace, Dave,
John, Bob)

• Advanced Topic 2
o Software Ecosystems (Tom, Mark, Eric)

• Advanced Topic 3
o Software Visualization and Reuse (Chris,

Frank, Alice)
• Course Evaluation and Summary (Instructor)

• Domain Engineering Project (40%)
o Use DARE to perform domain analysis for

one of the following domains: software
metrics, conflation algorithms, or one of the
student’s choice

o Use DAREonline to produce a domain book

• Term Paper (40%)
o A practical application of some method in

software reuse and domain engineering
o A critical review, e.g., a systematic literature

review, of some aspects of software reuse
o Encouraged to link the term paper with the

student’s thesis work

• Presentations and Participation (20%)
o Lead class discussion individually
o Lead advanced topic as a group
o Write paper reviews individually
o Present term paper

Learning by teaching is an efficient instructional strategy that mixes guidance with active
learning. It allows students to play active roles in the class by teaching new content to each other.
In our reuse course, the student’s leading discussion was regarded as an instance of learning by
teaching for several of reasons. First, the student who led the class discussion was instructed not
to give a presentation or a lecture of the paper. Instead, since the audience had already read the
paper and submitted individual reviews, the discussion leader could provide a very succinct
summary of the paper and spend more time in discussing thought-provoking topics. Second,
most concerns addressed were raised by the audience. As noted above, the instructor shared with
the discussion leader the suggested discussion points from individual reviews. This not only
ensured a dynamic pool of discussion points from one topic to another, but also promoted the
audience’s active participation in the discussion. Finally, the discussion leader was responsible
for only part of a class, typically the first half to two-thirds. The instructor would always follow
up the discussion by further presenting supplementary materials, clarifying confusions, giving
insights, and providing feedbacks to the discussion leader and the rest of the class.

P
age 22.1254.9

 CLASS GAME

One of the advantages of mixing active learning with learning by teaching is that students could
choose their own methods and didactic approaches in leading the class discussion. Several
students designed games to better engage the class. An example was the puzzle game designed
by Alice. Alice led the discussion on “programming languages”, and the required reading was
Jon Bently’s classic “programming pearls”22 in which domain-specific languages (DSLs) were
argued to be an effective reuse technique. Alice exploited the DSL, PIC22 in designing a novel
puzzle game. She randomly distributed a fragment of a picture to each student, and then showed,
line by line, a program written in PIC via the projector. The PIC program was supposed to draw
one component (e.g., a box, an ellipse, an arrow, etc.) at a time, and if the student believed the
PIC program’s output was the component that had been distributed to him or her, the student
would come to the board and stick his or her component in a proper position. If every student
matched his or her component with the PIC program in the right order and position, a picture
would be completed by the end of the game. Figure 2 illustrates PIC. The picture used in the
puzzle game in the class was more complex and had more components than that of Figure 2.

Figure 2. Illustration of the puzzle game

 ROADMAP

Figure 3 shows a roadmap after each of the ten students had led the discussion. The roadmap
acted as a summary by emphasizing the students’ individual contributions across the domain
engineering process. It provided the context and the big picture, so that the students could
recognize their individual accountability to the success of the entire course. Note that the topics,
measurement and experimentation led by Dave and reuse economics led by Chris, were so broad
that they affected the whole picture. For Grace’s topic, re-engineering for reuse, an arrow/flow
from application engineering to domain engineering was shown.

 COLLABORATIVE LEARNING GROUPS AND ADVANCED TOPICS

As shown in Table 2, three advanced topics were discussed toward the end of our reuse course.
These topics emerged either by students’ research area or by their choices of the term paper topic.
The instructor assigned 3 to 4 students into each group. The group worked together to deliver a
presentation to the entire class about the given topic. We felt such a collaborative learning group
was an effective way to implement active learning because it caused the students to review the
work at an earlier time to participate.

ellipse(0.3, 0, 0.6, 0.4)
text(0.3, 0, “Input”)
arrow(0.75, 0, 0.3, 0)
box(1.2, 0, 0.6, 0.4)
text(1.2, 0, “Processor”)
arrow(1.65, 0, 0.3, 0)
ellipse(2.1, 0, 0.6, 0.4)
text(2.1, 0, “Output”)

Input Output Processor

Bob Eric Grace

P
age 22.1254.10

Figure 3. Domain engineering roadmap emphasizing individual contributions

Table 3. Term paper topic influenced by individually- or group-led topic in class

Student Basic Topic Led Advanced Topic Led Term Paper Topic

Grace (a) Re-engineering for Reuse

(k) Systematic Literature
Review

(k) on “Reusability
Metrics”

Dave (b) Measurement and Experimentation (k) on “Software Product
Line Methodologies”

John (c) Generative Methods (k) on “Reuse
Programming Languages”

Bob (d) Reuse Libraries (k) on “Reuse in Software
Security Engineering”

Tom (e) Design and Architecture Reuse

(l) Software Ecosystems

(l) on “Mobile Games
Development”

Mark (f) Requirements Reuse (f) on “Functional
Requirements Retrieval”

Eric (g) Feature Orientation (g) on “From E-Commerce
to M-Commerce”

Chris (h) Reuse Economics

(m) Software Visualization and
Reuse

(m) on “Reuse Library
Visualization”

Frank (i) Indexing and Retrieval (i) + (m) on “Visual
Search”

Alice (j) Programming Languages “Software Reuse and
Decision Making”

P
age 22.1254.11

We felt that the workload of writing paper reviews should be reduced for the advanced topics,
since each student had already written nine individual reviews thus far. As a result, the group had
the freedom to choose required and background readings for the rest of the class, and no paper
review was required. The instructor provided paper suggestions when needed. The group might
assign no reading at all but rely on class presentation to introduce and discuss the topic. In fact,
two of the groups assigned no readings before the class, but conveyed the seminar well in
explaining the core ideas. Because games turned out to be very engaging in some of the
individually led seminars, all the three groups adopted class games to make their seminars more
interesting.

The collaborative learning groups not only offered the benefits of cooperative learning (positive
interdependence, face-to-face interaction, individual accountability and personal responsibility,
interpersonal and small-group skills, and group processing), but also helped the students to
discover term paper topics that suited to their own research interests. A summary of each
student’s term paper topic, together with its relations to basic and advanced topics covered in the
class, is given in Table 3.

Lessons Learned

A comparison between Table 1 and Table 2 highlights our revisions from Frakes’ course. We
combined “reuse design” and “architectures” into one seminar, split “measurement and
experimentation” and “reuse economics” into two seminars, and skipped “reliability and safety”
as one of the basic software reuse topics. We added “feature orientation”, “requirements reuse”,
and “indexing and retrieval” to the basic topic’s list, and further augmented the course with three
advanced reuse topics. As for the assessment components, we dropped the midterm and
emphasized more on class participation and the term paper that could potentially contribute to
the graduate student’s research.

As in Frakes’ course, textbook was only optional in our course. Our students hardly read the
textbook, mainly because reading and reviewing a dozen research papers were already time-
consuming but also seemed sufficient. We felt that the status of software reuse textbooks could
be greatly improved. On one hand, many books on software reuse were just collections of
(outdated) readings. On the other hand, students gave negative ratings for the single-author or
single-group authored textbooks2.

Our course, in general, was successful. The students gave the course an overall rating of 5
(average=5, deviation=0.1) on a 5-point Likert scale (1 – negative end, 5 – positive end). We
attributed the success to both the high quality of Frakes’ course and our implementations of the
active learning and cooperative learning strategies. We literally copied the domain analysis
project from Frakes’ course, because the project had good tool support and was both process-
and product-oriented. The students liked the short paper review requirements that asked them to
provide succinct bullet points.

We also identified several areas for improvement. First, some students would prefer to read a
successful reuse story, e.g., a real-world case study, earlier in the course. Currently, one such
paper23 was assigned when “re-engineering for reuse” was discussed. The syllabus could be re-
structured to accommodate the need. Moreover, a few students made the leading class discussion

P
age 22.1254.12

very much like a paper presentation. Other active learning methods, such as student debate,
might be tried to improve the students’ communication and presentation skills.

Summary

From the beginning of the software engineering field, reuse was recognized as a key enabler to
overcome the software crisis. More than forty years later, software reuse is still seen as
potentially a powerful means of improving software practice and productivity. The lack of reuse
education has been a main factor that hinders the practitioners to systematically practice software
reuse.

In this paper, we have presented our creation of a graduate-level seminar course on software
reuse in a US institution. We reviewed the major challenges of reuse education and identified
Frakes’ course as a baseline to create our course. We described the reuse of Frakes’ course
modules and assessments, and also reported the modifications we made in our course. We
incorporated active learning and cooperative learning in our course, and discussed our detailed
implementations. Our experiences showed that: (1) Redesigning the course from a lecture format
to a seminar format allowed the students to play active roles in leading the classes and in
discovering term paper topics that suited to their own research interests; and (2) Fostering
collaborations among students and interactions between students and instructor allowed the
students to recognize their individual accountability to the success of the group and the entire
course.

Recall Carl Sagan’s quote that we used in the course orientation to motivate the class: “If you
want to make an apple pie from scratch, you must first create the universe.” Without Frakes’
course, creating a software reuse course from scratch would be very difficult for us. Now with
more creations of software reuse courses like ours, we hope to contribute to overcoming the
difficulty to bring the seemingly simple idea of reuse to the forefront of software engineering.
More importantly, by incorporating more effective and novel pedagogical principles and sharing
the experiences of teaching software reuse, we hope to make the next generation of software
practitioners realize software reuse’s full potential.

Bibliography

[1] W. B. Frakes and C. J. Fox. Sixteen Questions about Software Reuse. Communications of the ACM, 38(6): 75-87,
June 1995.

[2] W. B. Frakes. A Graduate Course on Software Reuse, Domain Analysis, and Re-engineering. In Proceedings of
the Sixth Annual Workshop for Institutionalizing Software Reuse, Owego, NY, USA, November 1993.

[3] C. W. Krueger. Software Reuse. ACM Computing Surveys, 24(2): 131-183, June 1992.

[4] M. D. McIlroy. Mass Produced Software Components. In Software Engineering; Report on a conference by the
NATO Science Committee, pp. 138-150, Garmisch, Germany, October 1968.

[5] W. B. Frakes and K. Kang. Software Reuse Research: Status and Future. IEEE Transactions on Software
Engineering, 31(7): 529-536, July 2005.

P
age 22.1254.13

[6] Gertrude Levine. A Course in Software Reuse, Department of Computer Science, Fairleigh Dickinson University,
Teaneck, New Jersey, 07666, http://www.umcs.maine.edu/~larry/latour/WISR/wisr4/proceedings/detex/levine.detex
1992.

[7] J. E. Cardow and W. D. Watson, Jr. A Practical Approach to Teaching Software Reuse. In Proceedings of the
Seventh SEI CSEE Conference (Software Engineering Education), A Course at Air Force Institute of Technology,
Lecture Notes in Computer Science, Volume: 750, pp. 517-525, San Antonio, TX, USA, January 1994.

[8] F. van der Linden. Software Product Families in Europe: The Esaps & Café Projects. IEEE Software, 19(4): 41-
49, July/August 2002.

[9] W. B. Frakes. CS 6704 – Advanced Topics in Software Engineering: Domain Engineering and Systematic Reuse,
http://frakes.cs.vt.edu/6704S09.htm Virginia Tech’s Northern Virginia Center, Fairfax, VA, spring 2010.

[10] W. B. Frakes, R. Prieto-Diaz, and C. Fox. DARE: Domain Analysis and Reuse Environment. Annals of
Software Engineering, 5(1): 125-141, January 1998.

[11] R. F. D. Santos and W. B. Frakes. DAREonline: A Web-Based Domain Engineering Tool. In Proceedings of
the Eleventh International Conference on Software Reuse, pp. 246-257, Falls Church, VA, USA, September 2009.

[12] C. Meyer and T. B. Jones. Promoting Active Learning: Strategies for the College Classroom, San Francisco:
Jossey-Bass, 1993.

[13] J. S. Bruner. The act of discovery. Harvard Educational Review, 31(1): 21-32, 1961.

[14] S. Ludi. Active-Learning Activities that Introduce Students to Software Engineering Fundamentals, In
Proceedings of the Tenth Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education, pp. 128-132, Caparica, Portugal, June 2005.

[15] S. Ludi, S. Natarajan, and T. Reichlmayr. An introductory software engineering course that facilitates active
learning. In Proceedings of the Thirty-Sixth SIGCSE Technical Symposium on Computer Science, pp. 302-306, St.
Louis, MO, USA, February 2005.

[16] B. Millis. Enhancing learning – and more! – through cooperative learning. Idea paper #38, The IDEA Center,
2002.

[17] D. Johnson, R. Johnson, and E. Holubec. Cooperative Learning in the Classroom, Alexandria, VA: Association
for Supervision and Curriculum, 1994.

[18] S. Chenoweth, M. Ardis, and C. Dugas. Adapting Cooperative Learning to Teach Software Architecture in
Multiple-Role Teams. In Proceedings of ASEE Annual Conferences & Expositions, Honolulu, HI, USA, June 2007.

[19] E. S. de Almeida et al. Component Reuse in Software Engineering (C.R.U.I.S.E), http://cruise.cesar.org.br/.

[20] W. G. Vincent. What Engineers Know and How They Know It: Analytical Studies from Aeronautical History,
The Johns Hopkins University Press, 1990.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[22] J. Bently. Programming Pearls: Little Languages. Communications of the ACM, 29(8): 711-721, August 1986.

[23] M. F. Dunn and J. C. Knight. Software Reuse in an Industrial Setting: A Case Study. In Proceedings of the
Thirteenth International Conference on Software Engineering, pp. 329-338, Austin, TX, USA, May 1991.

P
age 22.1254.14

