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Abstract

Richardson extrapolation is applied to improve the accurhttye numerical solution of
boundary integral equations. The boundary integral equatiise from a direct boundary
integral method for solving a Laplace’s equation interimicbBlet problem. Specifically, the
Richardson extrapolation is used to improve the accuroyllocation. Numerical justification
is provided to support the expectation of improved accufidoy.order of the dominant
collocation error term is numerically estimated andherical results are obtained for a simple
model problem.

Introduction and statement of problem

The problem of interest involves the numerical soluaban interior Dirichlet problem for
Laplace’s equation on a rectangular domain. The methodesést is a direct boundary integral
method. The boundary integral equations are discretizad asilocation, and numerically
solved for the unknown outward normal boundary flux (redrderivative of the primary
unknown). The discretized boundary integral equations,iwdme Fredholm integral equations
of the first kind, are the boundary element equatianparticular, the emphasis is on efficiently
improving the numerical solution of the boundary elenaeptations. That is, we seek a more
accurate numerical approximation for the outward noboahdary flux. Then, a more accurate
numerical solution for the primary unknown in the daminterior can be computed using this
more accurate result for the outward normal boundary f

There are papers presenting collocation convergence amcestimation for Fredholm integral
equations of the first kind, for exampté®. However, new material that we present in this paper
is an enhancement of pointwise approximations along thedaoy of the domain. Richardson
extrapolation is applied to improve the accuracy of thmerical solution of the boundary
integral equations. Specifically, Richardson extrapateisoused to improve the accuracy of the
collocation results. The use of a numerical approxmnabif the rate of convergence, i.e., the
order of the dominant error term of the normal boundapydpproximation, (as the boundary
grid is refined) in order to justify application of Ricaon extrapolation and the manner in
which Richardson extrapolation is applied are contrilmstiof this paper. Mathematica

notebook implementing the boundary element method watewby the author.



Model problem

The model problem is to solve the Dirichlet problem forlaee’s equation on a square:

0°u  d0°u _ . . o
— +—— =0, indomain Q ={(x y)| 0<x<1 0<y<1}
ox° oy

u=u,, onboundarypQ ={(x,y)| 0<x<1,y=0andy=1 0<y<1,x=0andx=1},
whereu, is a given sufficiently smooth function. We will uses boundary element method.

Richardson extrapolation

The object of Richardson extrapolation is to find a corgutally inexpensive way to combine
previously computed lower-order (less accurate) numerisalteein a way that produces
formulas with higher-order (more accurate) numericsiilte. It is stated that the method is
extremely useful when there is a reliable estimateeform of the discretization error as a
function of the grid length However, it will be proved in this paper that, evestith
information is not available, under quite general cooa# Richardson extrapolation will
improve the accuracy of the numerical result (othatvery least, maintain the accuracy).

The following material is a brief description of Rictison extrapolation. Leqj denote an
unknown exact quantity that is desired. lggtand g, denote numerical approximations o

that are computed using the same formula (and at thegaanaoint) but with different,
sufficiently small positive grid spacinghl, and h,, respectively. If the dominant term in the

discretization error is proportional to’, for some positive numbep , then we obtain

g-g, = Ah” + higher-order terms and q-q, =Ah} + higher-order terms,

where A denotes the constant of proportionality. Taking a lineannation of these two
expressions so as to eliminate the dominant erroraadsolving forq yields

_ hy q—-h" g,
hP -hP + higher-order terms,

where all the quantities on the right-hand side are kndie expression on the right-hand side
is the Richardson approximation, denotgd

p P g,
q_hzoahl

q th hlp
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The error associated with the Richardson approximatiohhgyher-order, since the lowest-
order (dominant) error term from the original formuées libeen eliminated. Therefore, the
Richardson approximation is a more accurate result.

Since the construction of this more accurate approximagiQuires only a weighted average of
previously computed results (i.e., another application obtlggnal approximation method is
not required), Richardson extrapolation can produce mongaecapproximations with minimal
computational cost.

For situations in whichg, the order of the dominant error term in the origaggroximation
formula, is unknown, as will be the case in this papercan, instead, use three approximate
solutions,q,, q,, and q,. These three approximations are computed using threeediffe

positive grid spacingsy, > h, > h,, respectively.
q-q, = Ah”, g-q, = Ah?, and q-qg,=Ah}.
Let the grid spacings be chosen so that

h _ M _

4 =2=c
h, h :

for some constant, such thatl< c. Then, after some algebra, we obtain for the Raden
extrapolation formula

P Q1Q3‘Q22
94=9= h—20,+03 -

Further, the value op can be numerically approximated using the three previous
approximations to obtain

In(Z3,)
P="In(o)

In the example that is investigated in this paper K&g®erical results), we do not have an
explicit form for the error terms, and thus the twegading formulas will be used.

Rationale for the application of Richardson extrapolation

The following question arises: If the form of the eienms is lacking, can we be guaranteed that
the Richardson extrapolation result is an improvement?
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We can answer this question in the affirmative by dgie@pthe connection between
Richardson extrapolation and Aitken’s delta-squared methaatctmlerating convergence of
iterative methods We will now show that, under some quite general d¢@rdi, Richardson
extrapolation is guaranteed to improve the accuracy afuheerical result.

We will use the following theoreln

Theorem 1: Suppose that the sequence of approximatjopk,_, converges to the limig such
that

o<iim, , I 1=)<q

for some constand, 0< A <1. Then the associated sequence of itergdel., , where

2
. Oh 9n+2 ~ 9n+1
an =

In = 20n+1+ An+2

converges tay faster thar{q,},., in the sense that

im, ., gl=q =0.

The proof follows almost directly frohfpage 87, problem 16), and is most easily doneguesi
computer algebra system, for exampliathematica.

Proof: It is helpful to define the quantities

_ 917 _ %27
n=—qn—_q—_A and 5n+1=—qm_A.

Note that by hypothesis, we have

We also have

2
G = On 9n+2 ~ 91

O ~ 2041+ An+2
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Rearrange the equation definidg so as to solve fofln. Similarly, solve the equation defining

On4q for An42. This gives
_-araA*an, T ad, d -
q, = )'+5n an qn+2-q—q)|+)|qn+1—q5n+1+qn+15n+1.

Substitute these two results into the definitiorggf Then substitute that result and the above
expression foig, into the expression

dn — ¢
dn—9q -

and simplify to get

an_q B (A +5n) (5n -0 )

- n+1
ah—d

12 o
(A-D°+A5 +0 (A+3 -2

1

Finally, take the limit ash - . The desired result follows.

Now consider approximating an unknown quantity,egample, the normal boundary flux at a
specific boundary pointq, using the three successive grid spacitgs; h, > h,, chosen

929 — 939
sufficiently small and so thag, -q ~ q,-q , where the approximations, d,, and g,, are

computed usindy, h,, and h,, respectively. Further assume that the ergprsqg, i =1, , 2,3
have the same sign. Theorem 1 implies that,ifq,, and g, are converging t@ with

convergence as described (also see defifjtiomen Richardson extrapolation (which is, in fact
given by the formula fofy,) computed usingy, d,, and q,, will give a more accurate

approximation.
Boundary element method

The following material gives a summary of the bcamycelement methdd’. The boundary
element method will be described in the restricteatext of this paper. We will be interested in
solving an interior Dirichlet problem for Laplacegguation on a rectangular domain in the
plane. A direct boundary element method will bedysad this involves solving a Fredholm
integral equation of the first kind. The relevaquations involve both single and double layer
potential integrafs
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The boundary integral method transforms the given palitfarential equation into an
equivalent set of integral equations over the boundattyeo$olution domain. The main
advantage is that the numerical solution of the bounidéegral equations only requires
subdividing the boundary curve of the solution domain. &his tontrast to other standard
numerical methods such as finite difference methodkeofinite element method, in which the
entire solution domain must be discretized. A Greatésitity and the fundamental solution of
the partial differential equation are used to transfdwenariginal partial differential equation
problem into a problem which involves only boundary integrisfier discretization, the
boundary integral equations are referred to as boundargeteaguations. Two of the most
common discretization methods for numerically solutimg boundary element equations are
collocation and the Galerkin finite element methaedthis paper, we focus on the the use of
collocation. We then enhance the collocation metlesdlIt via Richardson extrapolation (see
Numerical results).

It turns out that, in the classical direct boundagnment method, we use the following boundary
integral equation,

[ a@u x&)ds, = =3u,(X) + [us(&) q' (%) ds; X9Q,

0Q

where X = (x,y) and& =(&,n7). The integral equation has both a single layeem! integral
and a double layer potential integral. The symhod®dq denote the primary unknown and its

outward normal flux on the boundary, respectiv8iynilarly, the symbolsi” andq™ denote the

known fundamental solution and its known outwardwmal flux on the boundary, respectively.
This integral equation is discretized and the tewylinear system of algebraic equations is
solved to obtain a numerical approximation forahé/ unknown quantity appearing in the
equation,q, the outward normal flux on the boundary.

Note: This integral equation is a Fredholm integ@guiation of the first kind. Problems involving
Fredholm integral equations of the first kind ao¢ always well-posed. However, it can be
shown that for a large class of functiomg(the given Dirichlet boundary function), this

boundary integral equation has a unique solfition

Then, once we have an approximation oon the boundary, that approximation is substituted
into

u(®) = [u () a'(x.&)ds, - [ a(é) u’(%,8)ds, X0Q.

0Q
Then,u (as well asq, if desired) can be approximated in the interio€oby simply
numerically evaluating a set of integral equationahich all integrand quantities are now
known, and the problem is solved.

Numerical results
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The numerical example for the model problem (geelel problem) has the exact solutidn
u(x, y) = e’ cosk—Z) + e*™ cosgry - %) + A me> cosby - %) .

Mathematica Version 6.0.1 was used to write a boundary element mettietiouk

implementing collocation in the classical direct bdany element method. Piecewise constant
(discontinuous) elements (basis functions) for the pyimariable and its normal boundary flux
were used. The collocation (evaluation) points werecsedl as the midpoints of each geometric
element (subinterval) on a uniform element grid on the sgo@undary. Note that the geometry
nodes that delineate the end points of each boundaryrgl@aneedifferent from the collocation
nodes, which are at the element midpoints.

Initially, a relatively coarse uniform geometry grid wesed on the boundary. The number of
geometryx-nodes on a horizontal edge of the square domain wasjsakto the number of
geometryy-nodes on a vertical edge, denotedrbyodes= nynodes=19. The boundary grid

was then refined in such a way so as to have tfecation nodes in the coarse boundary grid
remain as collocation nodes in the two other refigeds that were used to construct the
Richardson extrapolation result. The numbers ohldaty geometry nodes were taken
successively asxnodes= nynodes= 5for the intermediate boundary grid, and as

nxnodes= nynodes=163 for the refined boundary grid. Each successivaesaf nxnodes(and
nynodes) is computed by the formula

currentnumberof nxnodes= 3(previousnumberof nxnodes- 1) + 1.

This formula ensures that the collocation noddséncoarse boundary grid will also be
collocation nodes in the successively refined bamndrids. Each successive boundary element
is uniformly trisected by successive Richardsomeshents.

Even though the focus of this paper is on numdyiegdproximatingq, the outward normal

boundary flux (which is then used to approximatethe primary unknown in the domain
interior), it is instructive to view the overallqgislem solution. A typical coarse grid solution for
the primary unknowny, in the domain interior is shown in Figure 1.Hétinterior flux were of
interest, then that could also be approximated.3Ftdanensional boundary element solution plot
is compared with that of the exact solution in [Fggl. Even for this coarse grid, the boundary
element solution looks good, although that is it gae to the simplicity of the underlying
problem.

In Data Table 1, the numerical results obtainethfexecuting thdélathematica boundary
element notebook three times, using the coarsrnediate, and refined boundary grids, are
compared with the Richardson extrapolation re$ait is computed using these three data sets.
These four numerical approximations for the outwaydnal boundary flux are then compared
with the exact solution values at the selected lloxndary nodes. Specifically, the Richardson
extrapolation should be compared with the resuttsfthe fine grid to see which is closer to the
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exact values. As shown in Data Table 1, the Richardstrapolation gives the best numerical
results.

Data Table 2 gives some of the same information asrtlizata Table 1. Instead of the flux
values, though, the error values are displayed.

Figure 1.
Mathematica graphic of a boundary element coarse grid solution
at selected grid points

Figure 2.
Mathematica graphics of exact versus boundary element solutions

EEM Solution

R R g g e
SRR

The numerical justification for application of Ricdaon extrapolation, with the expectation that
this would improve the numerical result, is provided byaDEdble 3. The numerical
approximations for the order of the dominant error tefwuo outward normal boundary flux,

p, appear in Table 3 (see the approximation formulgfam Richardson Extrapolation). The
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value in Table 3 that appears to be an ‘outlier’ occuesriegion in which the exact solution
changes relatively rapidly.

The conclusion from Table 3 is that the approximatiaiqite the Richardson extrapolation is
applied) exhibits convergence witiymerically, p = 1.8, for most of the selected points. This
is used to justify the application of Richardsotrgmolation with the expectation that we will get
a more accurate result (deationale for the application of Richardson extrapolatior). For

this numerical example, we do obtain more accuegelts from the Richardson extrapolation,
as supported by the data in Tables 1 and 2. bhsemwved in this numerical example that the
Richardson extrapolation has slightly improvedrbenerical results for the normal boundary
flux.

It should be noted that the numerical approximatiofrate of convergence are dependent on the
specific grid points (see Table 3). Therefore, ¢hmsmerical values could be used to perform
selective Richardson extrapolation. That is, Ridean extrapolation could be performed only at
or near the grid points for which the values are smaller, with the refined grid resusied

elsewhere.

Data Table 1. Comparison of numerical normal boundary flux values with the exact value at selected boundary
grid points. The column headings specify the rectangular gd point coordinates along the boundary of the
square domain. The row headings indicate the numerical methd used to compute the normal boundary flux
values in that row (or the exact valug. The Richardson extrapolation values are computed using arlear
combination of the numerical results from the nxnodes19, 55, and 163 results. All values are rounded.

(0.25,0) (0.75,0) (1,0.25) (1,0.75) (0.75,1) (0.25,1) (0,0.75) (0,0.25)

nxnodes=19 -7.13323  -5.91798  4.69755 -7.99548  7.94792 4. 53466 3.19096 4.25788
nxnodes =55 -7.14568  -5.93317  4.67228 -7.98659  7.94867 4.52827 3.18262 4.24312
nxnodes =163 -7.14751  -5.93527  4.66903 -7.98552  7.94891 4.52754 3.18158 4.24114
R char dson -7.14782  -5.93%61  4.66855 -7.98537  7.94903 4.52745 3.18143 4.24083

extrapol ation

Exact normal -7.14782  -5.93561  4.66855 -7.98538  7.94897 4.52745 3.18143 4. 24082
boundary flux

Proceedings of the 2008 Midwest Section Conference of the American Society for Engineering Education



10

Data Table 2. Comparison of pointwise nhormal boundary flux erors at selected
boundary grid points. The column headings specify the rectagular grid point coordinates
along the boundary of the square domain. The row headings irdate the numerical method
used to compute the normal boundary flux in that row. All error values are rounded.

(0.25,0)  (0.75,0) (1,0.25)  (1,0.75)  (0.75,1)  (0.25,1)  (0,0.75)  (0,0.25)

nxnodes=19 | 1.46x102 1.76x10°2 2.9x102  -1.01x102 -1.05x1073 7.21x10-3 9.53x10°3 1.71x10-2
nxnodes=55 |2 14x10°3 2.45x1073 3.72x10°% -1.21x103 -2.98x10°4 8.18x104 1.19x10°3 2.31x10°3
nxnodes=163 | 3.16x104 3.45x104 4.75x10% -1.37x104 -5.51x107° 9.1x107°  1.47x10°4 3.19x10°4

Richardson  [1.85x10°% 7.11x10® -3.86x10°8 9.8x10®  6.11x10° -2.23x10® -3.13x10°6 9. 05x10®
extrapol ation

Data Table 3. Comparison of numerical estimates for the vale of p, the
order of the dominant error term prior to Richardson extrapo lation, at selected
boundary grid points. The column headings specify the rectagular grid point
coordinates along the boundary of the square domain. All vales are rounded.
| (0. 25, 0) (0.75,0) (1, 0. 25) (1,0.75) (0.75,1) (0.25,1) (0, 0.75) (0, 0. 25)

Estimte for p ‘ 1.74726 1.79941 1.86807 1.9277 1.02581 1.97894 1.89037 1.82413

Conclusions and extensions

We have presented conditions under which Richardsomiodation is guaranteed to improve
an approximation. We demonstrated how to approximate the @irttesr dominant error term, in
the case in which the form of the error terms is umknand how to apply the Richardson
extrapolation with respect to collocation. Finally, vegified, for our numerical example, that
the Richardson flux approximation was more accuratetti@previously obtained flux
approximations on which it was based.

An extension of this work is in process, with collogcatto be replaced by the Galerkin finite
element method. That is, the finite element methdidb&iused to numerically solve the
boundary integral equations. Analytic justification thpplication of Richardson extrapolation
improves these numerical approximations will be givengueesults from Rannacher and
Wendland. These results give a formula for the pointwise relaund in which the dominant
term is O(h) . We will have an analytic foundation which guaesa# that Richardson

extrapolation will give an accuracy that is bettem O(h ), whereh is the grid spacing.
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