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Abstract 
 
Richardson extrapolation is applied to improve the accuracy of the numerical solution of 
boundary integral equations. The boundary integral equations arise from a direct boundary 
integral method for solving a Laplace’s equation interior Dirichlet problem. Specifically, the 
Richardson extrapolation is used to improve the accuracy of collocation. Numerical justification 
is provided to support the expectation of improved accuracy. The order of the dominant 
collocation error term is numerically estimated and numerical results are obtained for a simple 
model problem.  
 
Introduction and statement of problem 
 
The problem of interest involves the numerical solution of an interior Dirichlet problem for 
Laplace’s equation on a rectangular domain. The method of interest is a direct boundary integral 
method. The boundary integral equations are discretized using collocation, and numerically 
solved for the unknown outward normal boundary flux (normal derivative of the primary 
unknown). The discretized boundary integral equations, which are Fredholm integral equations 
of the first kind, are the boundary element equations. In particular, the emphasis is on efficiently 
improving the numerical solution of the boundary element equations. That is, we seek a more 
accurate numerical approximation for the outward normal boundary flux. Then, a more accurate 
numerical solution for the primary unknown in the domain interior can be computed using this 
more accurate result for the outward normal boundary flux. 
 
There are papers presenting collocation convergence and error estimation for Fredholm integral 
equations of the first kind, for example 2, 10. However, new material that we present in this paper 
is an enhancement of pointwise approximations along the boundary of the domain. Richardson 
extrapolation is applied to improve the accuracy of the numerical solution of the boundary 
integral equations. Specifically, Richardson extrapolation is used to improve the accuracy of the 
collocation results. The use of a numerical approximation of the rate of convergence, i.e., the 
order of the dominant error term of the normal boundary flux approximation, (as the boundary 
grid is refined) in order to justify application of Richardson extrapolation and the manner in 
which Richardson extrapolation is applied are contributions of this paper. A Mathematica 
notebook implementing the boundary element method was written by the author. 
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Model problem 
 
The model problem is to solve the Dirichlet problem for Laplace’s equation on a square: 
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where 0u  is a given sufficiently smooth function. We will use the boundary element method. 

 
Richardson extrapolation 
 
The object of Richardson extrapolation is to find a computationally inexpensive way to combine 
previously computed lower-order (less accurate) numerical results in a way that produces 
formulas with higher-order (more accurate) numerical results1. It is stated that the method is 
extremely useful when there is a reliable estimate of the form of the discretization error as a 
function of the grid length9. However, it will be proved in this paper that, even if such 
information is not available, under quite general conditions Richardson extrapolation will 
improve the accuracy of the numerical result (or, at the very least, maintain the accuracy). 
 
The following material is a brief description of Richardson extrapolation. Let q  denote an 

unknown exact quantity that is desired. Let 1q  and 2q  denote numerical approximations to q  
that are computed using the same formula (and at the same grid point) but with different, 
sufficiently small positive grid spacings, 1h  and 2h , respectively. If the dominant term in the 

discretization error is proportional to ph , for some positive number p , then we obtain 
 

phAqq 11 ≈−  +  higher-order terms         and         phAqq 22 ≈−  +  higher-order terms, 
 
where A  denotes the constant of proportionality. Taking a linear combination of these two 
expressions so as to eliminate the dominant error term and solving for q  yields 
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where all the quantities on the right-hand side are known. The expression on the right-hand side 
is the Richardson approximation, denoted q~  
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The error associated with the Richardson approximation is of higher-order, since the lowest-
order (dominant) error term from the original formula has been eliminated. Therefore, the 
Richardson approximation is a more accurate result.  
 
Since the construction of this more accurate approximation requires only a weighted average of 
previously computed results (i.e., another application of the original approximation method is 
not required), Richardson extrapolation can produce more accurate approximations with minimal 
computational cost. 
 
For situations in which p , the order of the dominant error term in the original approximation 
formula, is unknown, as will be the case in this paper, we can, instead, use three approximate 
solutions, 321 and,, qqq . These three approximations  are computed using three different 

positive grid spacings, 321 hhh >> , respectively. 

 
phAqq 11 ≈− ,          phAqq 22 ≈− ,         and        phAqq 33 ≈− . 

 
Let the grid spacings be chosen so that 
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for some constant c , such that c<1 . Then, after some algebra, we obtain for the Richardson 
extrapolation formula 
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Further, the value of p  can be numerically approximated using the three previous 
approximations to obtain 
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In the example that is investigated in this paper (see Numerical results), we do not have an 
explicit form for the error terms, and thus the two preceding formulas will be used.  
 
Rationale for the application of Richardson extrapolation 
 
The following question arises: If the form of the error terms is lacking, can we be guaranteed that 
the Richardson extrapolation result is an improvement?  
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We can answer this question in the affirmative by developing the connection between 
Richardson extrapolation and Aitken’s delta-squared method for accelerating convergence of 
iterative methods1. We will now show that, under some quite general conditions, Richardson 
extrapolation is guaranteed to improve the accuracy of the numerical result. 
 
We will use the following theorem1. 
 
 
Theorem 1: Suppose that the sequence of approximations ∞=1}{ nnq  converges to the limit q  such 

that 
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for some constant 10, <≤ λλ . Then the associated sequence of iterates ∞=1}~{ nnq , where  
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converges to q  faster than ∞

=1}{ nnq  in the sense that  
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The proof follows almost directly from1 (page 87, problem 16), and is most easily done using a 
computer algebra system, for example, Mathematica. 
 
Proof: It is helpful to define the quantities 
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Note that by hypothesis, we have 
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Rearrange the equation defining nδ  so as to solve for nq . Similarly, solve the equation defining 

1+nδ  for 2+nq . This gives 
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Substitute these two results into the definition of nq~ . Then substitute that result and the above 

expression for nq  into the expression 
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and simplify to get 
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Finally, take the limit as .∞→n  The desired result follows. Ñ 
 
 
Now consider approximating an unknown quantity, for example, the normal boundary flux at a 
specific boundary point, q, using the three successive grid spacings, 321 hhh >> , chosen 

sufficiently small and so that qq
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, where the approximations 321 and,, qqq , are 

computed using 321 and,, hhh , respectively. Further assume that the errors 3,2,1, =− iqqi , 

have the same sign. Theorem 1 implies that if 321 and,, qqq  are converging to q  with 

convergence as described (also see definition1), then Richardson extrapolation (which is, in fact, 
given by the formula for nq~ ) computed using 321 and,, qqq , will give a more accurate 
approximation. 
 
Boundary element method 
 
The following material gives a summary of the boundary element method5, 7. The boundary 
element method will be described in the restricted context of this paper. We will be interested in 
solving an interior Dirichlet problem for Laplace’s equation on a rectangular domain in the 
plane. A direct boundary element method will be used, and this involves solving a Fredholm 
integral equation of the first kind. The relevant equations involve both single and double layer 
potential integrals3. 
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The boundary integral method transforms the given partial differential equation into an 
equivalent set of integral equations over the boundary of the solution domain. The main 
advantage is that the numerical solution of the boundary integral equations only requires 
subdividing the boundary curve of the solution domain. This is in contrast to other standard 
numerical methods such as finite difference methods or the finite element method, in which the 
entire solution domain must be discretized. A Green’s identity and the fundamental solution of 
the partial differential equation are used to transform the original partial differential equation 
problem into a problem which involves only boundary integrals. After discretization, the 
boundary integral equations are referred to as boundary element equations. Two of the most 
common discretization methods for numerically solving the boundary element equations are 
collocation and the Galerkin finite element method. In this paper, we focus on the the use of 
collocation. We then enhance the collocation method result via Richardson extrapolation (see 
Numerical results).  
 
It turns out that, in the classical direct boundary element method, we use the following boundary 
integral equation, 
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where ),( yxx =r
 and ),( ηξξ =

r
. The integral equation has both a single layer potential integral 

and a double layer potential integral. The symbols qu  and  denote the primary unknown and its 

outward normal flux on the boundary, respectively. Similarly, the symbols **  and qu  denote the 
known fundamental solution and its known outward normal flux on the boundary, respectively. 
This integral equation is discretized and the resulting linear system of algebraic equations is 
solved to obtain a numerical approximation for the only unknown quantity appearing in the 
equation, q , the outward normal flux on the boundary.  
 
Note: This integral equation is a Fredholm integral equation of the first kind. Problems involving 
Fredholm integral equations of the first kind are not always well-posed. However, it can be 
shown that for a large class of functions 0u (the given Dirichlet boundary function), this 
boundary integral equation has a unique solution6. 
 
Then, once we have an approximation for q on the boundary, that approximation is substituted 
into 
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Then, u  (as well as q , if desired) can be approximated in the interior of Ω  by simply 
numerically evaluating a set of integral equations in which all integrand quantities are now 
known, and the problem is solved. 
 
Numerical results 
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The numerical example for the model problem (see Model problem) has the exact solution4 
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Mathematica Version 6.0.1 was used to write a boundary element method notebook 
implementing collocation in the classical direct boundary element method. Piecewise constant 
(discontinuous) elements (basis functions) for the primary variable and its normal boundary flux 
were used. The collocation (evaluation) points were selected as the midpoints of each geometric 
element (subinterval) on a uniform element grid on the square boundary. Note that the geometry 
nodes that delineate the end points of each boundary element are different from the collocation 
nodes, which are at the element midpoints. 
 
Initially, a relatively coarse uniform geometry grid was used on the boundary. The number of 
geometry x-nodes on a horizontal edge of the square domain was set equal to the number of 
geometry y-nodes on a vertical edge, denoted by 91nynodesnxnodes == . The boundary grid 
was then refined in such a way so as to have the collocation nodes in the coarse boundary grid 
remain as collocation nodes in the two other refined grids that were used to construct the 
Richardson extrapolation result. The numbers of boundary geometry nodes were taken 
successively as 55nynodesnxnodes ==  for the intermediate boundary grid, and as 

163nynodesnxnodes ==  for the refined boundary grid. Each successive value of nxnodes (and 
nynodes ) is computed by the formula 
 

1   1)  - nxnodes ofnumber  (previous 3nxnodes ofnumber current += . 
 
This formula ensures that the collocation nodes in the coarse boundary grid will also be 
collocation nodes in the successively refined boundary grids. Each successive boundary element 
is uniformly trisected by successive Richardson refinements.  
 
Even though the focus of this paper is on numerically approximating q , the outward normal 
boundary flux (which is then used to approximate u , the primary unknown in the domain 
interior), it is instructive to view the overall problem solution. A typical coarse grid solution for 
the primary unknown,u , in the domain interior is shown in Figure 1. If the interior flux were of 
interest, then that could also be approximated. The 3-dimensional boundary element solution plot 
is compared with that of the exact solution in Figure 2. Even for this coarse grid, the boundary 
element solution looks good, although that is in part due to the simplicity of the underlying 
problem. 
 
In Data Table 1, the numerical results obtained from executing the Mathematica boundary 
element notebook three times, using the coarse, intermediate, and refined boundary grids, are 
compared with the Richardson extrapolation result that is computed using these three data sets. 
These four numerical approximations for the outward normal boundary flux are then compared 
with the exact solution values at the selected flux boundary nodes. Specifically, the Richardson 
extrapolation should be compared with the results from the fine grid to see which is closer to the 
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exact values. As shown in Data Table 1, the Richardson extrapolation gives the best numerical 
results. 
 
Data Table 2 gives some of the same information as that in Data Table 1. Instead of the flux 
values, though, the error values are displayed. 
 
 

Figure 1. 
Mathematica graphic of a boundary element coarse grid solution  

at selected grid points 
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Figure 2. 

Mathematica graphics of exact versus boundary element solutions  

 
 
 
The numerical justification for application of Richardson extrapolation, with the expectation that 
this would improve the numerical result, is provided by Data Table 3. The numerical 
approximations for the order of the dominant error term of our outward normal boundary flux, 
p , appear in Table 3 (see the approximation formula for p  in Richardson Extrapolation). The 
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value in Table 3 that appears to be an ‘outlier’ occurs in a region in which the exact solution 
changes relatively rapidly.  
 
The conclusion from Table 3 is that the approximation (before the Richardson extrapolation is 
applied) exhibits convergence with, numerically, 8.1≈p , for most of the selected points. This 
is used to justify the application of Richardson extrapolation with the expectation that we will get 
a more accurate result (see Rationale for the application of Richardson extrapolation). For 
this numerical example, we do obtain more accurate results from the Richardson extrapolation, 
as supported by the data in Tables 1 and 2. It is observed in this numerical example that the 
Richardson extrapolation has slightly improved the numerical results for the normal boundary 
flux. 
 
It should be noted that the numerical approximations of rate of convergence are dependent on the 
specific grid points (see Table 3). Therefore, these numerical values could be used to perform 
selective Richardson extrapolation. That is, Richardson extrapolation could be performed only at 
or near the grid points for which the p  values are smaller, with the refined grid results used 
elsewhere.  
 
 
Data Table 1. Comparison of numerical normal boundary flux values with the exact value at selected boundary

grid points. The column headings specify the rectangular grid point coordinates along the boundary of the
square domain. The row headings indicate the numerical method used to compute the normal boundary flux
values in that row Hor the exact valueL. The Richardson extrapolation values are computed using a linear
combination of the numerical results from the nxnodes=19, 55, and 163 results. All values are rounded.  

 
H0.25 ,0L H0.75 ,0L H1,0.25 L H1,0.75 L H0.75 ,1L H0.25 ,1L H0,0.75 L H0,0.25 L

nxnodes=19 −7.13323 −5.91798 4.69755 −7.99548 7.94792 4.53466 3.19096 4.25788

nxnodes =55 −7.14568 −5.93317 4.67228 −7.98659 7.94867 4.52827 3.18262 4.24312

nxnodes =163 −7.14751 −5.93527 4.66903 −7.98552 7.94891 4.52754 3.18158 4.24114

Richardson

extrapolation

−7.14782 −5.93561 4.66855 −7.98537 7.94903 4.52745 3.18143 4.24083

Exact normal

boundary flux

−7.14782 −5.93561 4.66855 −7.98538 7.94897 4.52745 3.18143 4.24082
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Data Table 2. Comparison of pointwise normal boundary flux errors at selected

boundary grid points. The column headings specify the rectangular grid point coordinates
along the boundary of the square domain. The row headings indicate the numerical method
used to compute the normal boundary flux in that row. All error values are rounded.  

 
H0.25,0L H0.75,0L H1,0.25L H1,0.75L H0.75,1L H0.25,1L H0,0.75L H0,0.25L

nxnodes=19 1.46×10−2 1.76×10−2 2.9×10−2 −1.01×10−2 −1.05×10−3 7.21×10−3 9.53×10−3 1.71×10−2

nxnodes=55 2.14×10−3 2.45×10−3 3.72×10−3 −1.21×10−3 −2.98×10−4 8.18×10−4 1.19×10−3 2.31×10−3

nxnodes=163 3.16×10−4 3.45×10−4 4.75×10−4 −1.37×10−4 −5.51×10−5 9.1×10−5 1.47×10−4 3.19×10−4

Richardson

extrapolation

1.85×10−6 7.11×10−6 −3.86×10−6 9.8×10−6 6.11×10−5 −2.23×10−6 −3.13×10−6 9.05×10−6

 
 
 
 
Data Table 3. Comparison of numerical estimates for the value of p, the

order of the dominant error term prior to Richardson extrapo lation, at selected
boundary grid points. The column headings specify the rectangular grid point
coordinates along the boundary of the square domain. All values are rounded.

H0.25,0L H0.75,0L H1,0.25L H1,0.75L H0.75,1L H0.25,1L H0,0.75L H0,0.25L

Estimate for p 1.74726 1.79941 1.86807 1.9277 1.02581 1.97894 1.89037 1.82413  
 
 
Conclusions and extensions 
 
We have presented conditions under which Richardson Extrapolation is guaranteed to improve 
an approximation. We demonstrated how to approximate the order of the dominant error term, in 
the case in which the form of the error terms is unknown and how to apply the Richardson 
extrapolation with respect to collocation. Finally, we verified, for our numerical example, that 
the Richardson flux approximation was more accurate than the previously obtained flux 
approximations on which it was based. 
 
An extension of this work is in process, with collocation to be replaced by the Galerkin finite 
element method. That is, the finite element method will be used to numerically solve the 
boundary integral equations. Analytic justification that application of Richardson extrapolation 
improves these numerical approximations will be given using results from Rannacher and 
Wendland8. These results give a formula for the pointwise error bound in which the dominant 
term is )(hO . We will have an analytic foundation which guarantees that Richardson 
extrapolation will give an accuracy that is better than )(hO , where h  is the grid spacing. 
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