AC 2007-2969: ROBOT MOTION PATH ADJUSTMENT BASED ON MULTIPLE SENSOR RECOGNITION OF A MOVING HUMAN/OBJECT

Pavel Ikonomov, Western Michigan University

Alamgir Choudhury, Western Michigan University

Dr. Pavel Ikonomov, Asst. professor, Mechanical and Industrial & Manufacturing Engineering Departments, research interests include CAD/CAM, robotics, virtual reality systems simulation and modeling. He has more than 23 years of industrial and academic experience including 13 years in Japan. Focused interests are in the area of sensors, vision, and computing systems. He has taught courses in 3-dimensional modeling and virtual reality, CAD, CAM, manufacturing system integration. He also was at NIST leading Virtual Reality simulation for assembly and has been working on application of VR for Nanoassembly optical tweezers project.

Jorge Rodriguez, Western Michigan University

Sam Ramrattan, Western Michigan University
Abstract

This study proposes a solution to provide expansion of the currently limited workspace between humans and robots and other similar automation. The robot shall be able to detect and recognize moving human or object in the unknown environment using different sensors. Human or object is detected and recognized by several sensors when enters in the predefined area close to the robot. The collected data is plotted and a point cloud of the human is formed. From the point cloud a complete 3D model surface of the human is built. Further, when human movements are considered, 3D space motion envelopes are constructed. Those envelopes’ intersections with robot motion envelope, defined from a pre-programmed path, can provide safe solution.

With this comprehensive information of the sensors, robot can react to the human or object motion and can modify its path to avoid collision and behavior accordingly.