
Paper ID #38858

Rule-Based Database System for Airplane Maintenance Project

Dr. Reza Sanati-Mehrizy, Utah Valley University

Reza Sanati-Mehrizy is a professor of Computer Science Department at Utah Valley University, Orem,
Utah. He received his M.S. and Ph.D. in Computer Science from the University of Oklahoma, Norman,
Oklahoma. His research focuses on diverse areas such as: D

Cody Lance Strange
Dr. Afsaneh Minaie, Utah Valley University

Afsaneh Minaie is a Professor of Electrical and Computer Engineering at Utah Valley University. She
received her B.S., M.S., and Ph.D. all in Electrical Engineering from the University of Oklahoma. Her
research interests include gender issues in the academic sci

©American Society for Engineering Education, 2023

Rule Based Database System for Airplane Maintenance

Reza Sanati-Mehrizy Cody Strange Afsaneh Minaie

 Professor Student Professor

College of Engineering and Technology

Utah Valley University

Abstract

Organizations have many business rules (constraints) to implement in their daily

operations. This is done mainly by action assertions traditionally implemented in

procedural logic buried deeply within user’s application program in a form that is

virtually unrecognizable, unmanageable, and inconsistent1. This approach places a heavy

burden on the programmer, who must know all the constraints that an action may violate

and must include checks for each of these constraints. An omission, misunderstanding, or

error by the programmer will likely leave the database in an inconsistent state.

A more modern approach is to define assertions at a conceptual level without specifying

how the rule will be implemented. Thus, there needs to be a specification language for

business rules. Entity Relationship (ER) model is a common conceptual database design

tool used for relational database design. To enforce the business rules, some business

rules can be included in this ER/EER model in the form of constraints. This inclusion

becomes a good reminder for the programmer to include them in his database

implementation.

Some constraints can be enforced as column constraint or table constraint while tables are

being created. Complicated business rules can’t be implemented this way. Writing

trigger is a good way of implementing these complicated business rules. Trigger is a

program and is more flexible than a constraint. Trigger has Event, Condition and Action

(ECA) property. When an event takes place and consequently a condition becomes true,

the trigger acts automatically and modifies the database as needed. To write trigger, there

are options of before and after. The option before means before the operation is

performed, the trigger will be executed to make sure it is ok for the operation to be

performed. If this is the case, the operation will be executed otherwise the operation will

not be executed.

In this paper, we use the ER notation to represent some business rules (constraints)

graphically for airplane maintenance database system and write triggers to implement

them to ensure services provided for the airplanes only by well-trained mechanics. This is

a continuation of the work done by the same authors4

Introduction

Business rules define or constrain different aspects of business. By applying a business

rule, it is intended to assert business structure, or to control or influence the behavior and

daily operation of the business2. Organizations have many business rules to implement in

their daily operations. Traditionally, this is done mainly by action assertions implemented

in user’s application programs in a form that is not clearly recognizable, manageable, and

consistent. This approach places a heavy burden on the programmer to know all the

constraints that an action may violate, implement them carefully and include check for

each of these constraints. This is not a reliable approach because an omission,

misunderstanding, or error by the programmer will likely leave the database in an

inconsistent state.

The more modern and more reliable approach is to define these assertions at a conceptual

level by including them in the ER/EER model without specifying how the rules will be

implemented. This approach builds the constraints in the system to reduce the possibility

of making errors by the programmer. Thus, there needs to be a specification language for

expressing business rules. We have seen the Entity Relationship (ER) and Enhanced

Entity Relationship (EER) notations work well for specifying many business rules. In

fact, EER notation was invented to allow more business rules to be shown in graphical

form than the simpler ER notation1.

In this paper, we use the ER notation to represent business rules graphically at conceptual

level for a relational data model to enforce database consistency for the type of services a

mechanic can provide for an airplane.

Project Description

In this project, we have simplified the airplane maintenance system by including the

entity types Airplane, Mechanic, Service and Training and the relationships Requires,

Receives and Provides. Figure 1 is an Entity Relationship diagram that represents this

simple database model.

Figure 1: ER Diagram for Airplane Maintenance System with no Business Rule

A service requires many type of trainings, mechanic receives many type of trainings, and

a mechanic provides many types of services for many types of airplanes. However, the

question is: has the mechanic received the required training for the service he provides

before providing that service? If not, he/she should not be allowed to provide such a

service. This database model has no way of enforcing such a rule. If this is what we want,

we better include it in our ER diagram (conceptual model) as a reminder for the

programmer to implement it in his implementation which is not guaranteed that the

programmer will consider it. To do so, some constraints are included in this ER model to

enforce this type of business rule as can be seen in Figure 2 which will be implemented

by writing trigger(s).

Figure 2: ER Diagram for Airplane Maintenance System Including Business Rules

A mechanic is an individual with certain skills that make him qualified to maintain

airplanes. If the plane is serviced by an unqualified mechanic, the plane will not be

certified to fly. So, the mechanic must receive specific types of training related to

maintaining airplanes. There are many different types of training that a mechanic can

receive for maintaining airplanes such as training on landing gear, training on engines,

training on electronics, and so on. In turn the types of training that a mechanic receives

are used to determine the types of maintenance services that the mechanic can perform on

an airplane. A specific maintenance service may require that a mechanic receive more

than one type of training. Yet, a specific type of training may be useful in providing

more than a single maintenance service. To provide a service to an airplane, the mechanic

must have received all the required training before the service is provided. Therefore, the

date of providing service must be greater than the date of receiving the required

training(s). Complex rules (constraints) like this can be implemented by writing triggers.

Provides table is a ternary relationship and becomes a table with four attributes, Serial-

Number, Service-Id, Mechanic-License-Number, and data. Entering a row into this table

means providing a service to a plane by a mechanic at a certain date. To make sure that

the mechanic has received the required type of training for the type of service he is

providing, the trigger needs to check the table Required to see what training are required

for this service and then check the Receives table to make sure that this mechanic has

received all trainings plus all the dates of receiving trainings are before the date of service

before allowing this insertion into the Provides table.

Such a system guarantees that every service will be done by a qualified mechanic who

has received all the required training for that service before the service is provided. Such

a rule can’t be ignored because it will be implemented by writing a trigger and the trigger

will be fired automatically.

The following sections represent relational implementation of this database model. Figure

3 is the schema for the ER diagram in Figure 2.

Figure 3: Schema for the ER Diagram

Here are SQL queries to create the tables and insert data into the tables using Oracle

Database Management System. Some of these data are accessed from Diamond Aircraft

website3.

Mechanic Table:

CREATE TABLE MECHANIC

 (MECHANIC_LICENSE_NUMBER CHAR(8),

 ADDRESS VARCHAR2(64),

 PHONE_NUMBER CHAR(12),

 NAME VARCHAR2(64),

 CONSTRAINT MECHANIC_LICENSE_NUMBER_PK PRIMARY KEY

(MECHANIC_LICENSE_NUMBER) ENABLE

) ;

INSERT INTO Mechanic (Mechanic_License_Number, Address, Phone_Number, Name)

WITH names as (

SELECT 82345672, '123 Main St', '123-456-7890', 'Sarah Johnson' FROM dual UNION ALL

SELECT 10935645, '456 Park Ave', '234-567-8901', 'Michael Brown' FROM dual UNION ALL

SELECT 47952318, '789 Elm St', '345-678-9012', 'Jessica Davis' FROM dual UNION ALL

SELECT 59247638, '246 Oak Rd', '456-789-0123', 'David Wilson' FROM dual UNION ALL

SELECT 63750829, '135 Maple St', '567-890-1234', 'Karen Martinez' FROM dual

)

SELECT * FROM names

Training Table:

CREATE TABLE TRAINING

 (CERTIFICATION_NUMBER CHAR(8),

 CERTIFICATION_TYPE VARCHAR2(64),

 CONSTRAINT TRAINING_PK PRIMARY KEY (CERTIFICATION_NUMBER)

ENABLE

) ;

INSERT INTO Training(Certification_Number, Certification_Type)

WITH names as (

SELECT 34918567, 'Mechanic License w/Airframe' FROM dual UNION ALL

SELECT 10239568, 'Mechanic License w/Powerplant' FROM dual UNION ALL

SELECT 75986032, 'Air Agency' FROM dual UNION ALL

SELECT 61453798, 'Inspection Authorization' FROM dual UNION ALL

SELECT 86725039, 'Air Agency' FROM dual

)

SELECT * FROM names

Receives Table:

CREATE TABLE RECIEVES

 (MECHANIC_LICENSE_NUMBER CHAR(8),

 CERTIFICATION_NUMBER CHAR(8),

 DATE_RECIEVED DATE,

 PLACE VARCHAR2(64),

 CONSTRAINT RECIEVES_PK PRIMARY KEY (MECHANIC_LICENSE_NUMBER,

CERTIFICATION_NUMBER) ENABLE

) ;

INSERT INTO Recieves(Mechanic_License_Number, Certification_Number, Date_Recieved, Place)

WITH names as (

SELECT '82345672', '34918567', '01/30/2012', 'FAA' FROM dual UNION ALL

SELECT '10935645', '10239568', '06/15/2000', 'FAA' FROM dual UNION ALL

SELECT '47952318', '75986032', '12/01/2020', 'FAA' FROM dual UNION ALL

SELECT '59247638', '61453798', '08/22/2006', 'FAA' FROM dual UNION ALL

SELECT '63750829', '86725039', '04/04/2004', 'FAA' FROM dual

)

SELECT * FROM names

Service Table:

CREATE TABLE SERVICE

 (SERVICE_ID CHAR(8),

 PART_ID CHAR(8),

 DESCRIPTION VARCHAR2(64),

 DATE_COMPLETED DATE,

 INTERVAL VARCHAR2(32),

 SERVICE_COST NUMBER,

 SERVICE_TYPE VARCHAR2(32),

 HOUR NUMBER,

 CONSTRAINT SERVICE_PK PRIMARY KEY (SERVICE_ID) ENABLE

) ;

INSERT INTO Service(Service_ID, Part_ID, Description, Date_Completed, Interval, Service_Cost,

Service_Type, Hour)

WITH names as (

SELECT '56231478', NULL, 'Inspect landing gear', '01/30/2020', 50, 430, 'Inspection', 8 FROM dual

UNION ALL

SELECT '52179568', '93245168', 'Oil change', '08/25/2022', NULL, 110, 'Maintenance', 2 FROM

dual UNION ALL

SELECT '98563215', '83124657', 'Replace and torque spark plugs', '04/02/2021', NULL, 160,

'Maintenance', 2 FROM dual UNION ALL

SELECT '12368460', NULL, 'Inspect cabin and cockpit', '03/25/2022', 50, 70, 'Inspection', 1 FROM

dual UNION ALL

SELECT '97256414', NULL, 'Inspect fuselage', '11/11/2021', 50, 130, 'Inspection', 1 FROM dual

)

SELECT * FROM names;

Parts Table:

CREATE TABLE PARTS

 (PART_ID CHAR(8),

 SERVICE_ID CHAR(8),

 PART_NAME VARCHAR2(64),

 QUANTITY NUMBER,

 PRICE NUMBER,

 CONSTRAINT PARTS_PK PRIMARY KEY (PART_ID) ENABLE

) ;

INSERT INTO Parts(Part_ID, Service_ID, Part_Name, Quantity, Price)

WITH names as (

SELECT '93245168', '52179568', 'Oil', 1, 40 FROM dual UNION ALL

SELECT '83124657', '98563215', 'Spark plug', 4, 60 FROM dual

)

SELECT * FROM names;

Customer Table:

CREATE TABLE CUSTOMER

 (CUSTOMER_ID CHAR(8),

 ADDRESS VARCHAR2(128),

 NAME VARCHAR2(64),

 PHONE_NUMBER VARCHAR2(12),

 CONSTRAINT Customer_pk PRIMARY KEY (CUSTOMER_ID) ENABLE

) ;

INSERT INTO Customer(Customer_ID, Address, Name, Phone_Number)

WITH names as (

SELECT '54123610', '116 E 1200S Springfield UT 64278', 'John Smith', '435-262-9857' FROM dual

UNION ALL

SELECT '25493582', '3456 Market St CA 94111', 'Thomas Matthews', '435-956-1246' FROM dual

UNION ALL

SELECT '72165893', '12 Oak Ave CA 90001', 'George Stephens', '801-659-8424' FROM dual

UNION ALL

SELECT '13489267', '567 Park Ave IL 60601', 'Mark Phillips', '234-562-4258' FROM dual UNION

ALL

SELECT '78214569', '100 Main St NY 10001', 'Jeff Lance', '216-654-2345' FROM dual

)

SELECT * FROM names;

Airplane Table:

CREATE TABLE AIRPLANE

 (AIRPLANE_SERIAL_NUMBER CHAR(8),

 REGISTRATION_NUMBER CHAR(6),

 CUSTOMER_ID CHAR(8),

 MODEL_NUMBER VARCHAR2(12),

 ENGINE_TYPE VARCHAR2(32),

 TOTAL_TIME NUMBER,

 PROPELLER_TYPE VARCHAR2(32),

 MANUFACTURER VARCHAR2(32),

 CONSTRAINT AIRPLANE_PK PRIMARY KEY (AIRPLANE_SERIAL_NUMBER)

ENABLE

) ;

INSERT INTO Airplane(Airplane_Serial_Number, Registration_Number, Customer_ID,

Model_Number, Engine_Type, Total_Time, Propeller_Type, Manufacturer)

WITH names as (

SELECT '13246589', 'N32465', '54123610', 'DV20 katana', 'Rotax 912ULS', 7821, 'Sensenich',

'Diamond Aircraft' FROM dual UNION ALL

SELECT '26489753', 'N62495', '25493582', 'DA20-A1', 'Jabiru 3300', 5367, 'XOAR', 'Diamond

Aircraft' FROM dual UNION ALL

SELECT '65498732', 'N32059', '72165893', 'DA50C', 'Corvair', 6325, 'Hoffmann', 'Diamond

Aircraft' FROM dual UNION ALL

SELECT '35126984', 'N03482', '13489267', 'HK36', 'HKS 700E TTS/TTC', 8624, 'Harzell', 'Diamond

Aircraft' FROM dual UNION ALL

SELECT '36247591', 'N63048', '78214569', 'DA62', 'Subaru EA81', 5634, 'MT-Propeller', 'Diamond

Aircraft' FROM dual

)

SELECT * FROM names;

Requires Table:

CREATE TABLE REQUIRES

 (CERTIFICATION_NUMBER CHAR(8),

 SERVICE_ID CHAR(8),

 CONSTRAINT REQUIRES_PK PRIMARY KEY (CERTIFICATION_NUMBER,

SERVICE_ID) ENABLE

) ;

INSERT INTO Requires(Certification_Number, Service_ID)

WITH names as (

SELECT '34918567', '56231478' FROM dual UNION ALL

SELECT '10239568', '52179568' FROM dual UNION ALL

SELECT '75986032', '98563215' FROM dual UNION ALL

SELECT '61453798', '12368460' FROM dual UNION ALL

SELECT '86725039', '97256414' FROM dual

)

SELECT * FROM names;

Provides Table:

CREATE TABLE PROVIDES

 (Airplane_Serial_Number CHAR(8),

 SERVICE_ID CHAR(8),

 MECHANIC_LICENSE_NUMBER CHAR(8),

 DATE_PROVIDED DATE,

 CONSTRAINT PROVIDES_PK PRIMARY KEY (Airplane_Serial_Number,

SERVICE_ID, MECHANIC_LICENSE_NUMBER) ENABLE

) ;

ALTER TABLE PARTS ADD CONSTRAINT PARTS_SERVICE_FK FOREIGN KEY

(SERVICE_ID)

 REFERENCES SERVICE (SERVICE_ID) ENABLE;

ALTER TABLE SERVICE ADD CONSTRAINT SERVICE_PARTS_FK FOREIGN KEY

(PART_ID)

 REFERENCES PARTS (PART_ID) ENABLE;

ALTER TABLE AIRPLANE ADD CONSTRAINT Airplane_Customer_fk FOREIGN KEY

(CUSTOMER_ID)

 REFERENCES CUSTOMER (CUSTOMER_ID) ENABLE;

And here is the trigger to prevent providing service if the mechanic has not received all

the required training before doing that service:

create or replace trigger PROVIDES_T1

BEFORE insert or update of Date_Provided on PROVIDES

FOR EACH ROW

declare

Date_Training_Recieved date;

Date_Of_Service date := :NEW.Date_Provided;

begin

SELECT Date_Recieved INTO Date_Training_Recieved FROM Recieves

WHERE Recieves.Mechanic_License_Number =

:NEW.Mechanic_License_Number;

if Date_Of_Service < Date_Training_Recieved THEN

 RAISE_APPLICATION_ERROR (-20201, 'Mechanic must recieve training

before he/she provides this service.' ||CHR(10)|| 'Date service is being provided:

'||Date_Of_Service || CHR(10)||'Date training has been recieved:

'||Date_Training_Recieved);

end if;

end;

The following queries are to insert rows into provides table which means providing

services:

INSERT INTO Provides

VALUES('13246589', '56231478', '10935645', '05/21/2020')

INSERT INTO Provides

VALUES('26489753', '52179568', '10935645', '01/01/2016')

INSERT INTO Provides

VALUES('65498732', '98563215', '59247638', '08/24/2018')

INSERT INTO Provides

VALUES('65498732', '52179568', '63750829', '03/16/2019')

INSERT INTO Provides

VALUES('35126984', '98563215', '63750829', '12/27/2022')

The above insertions into Provides table work well because the mechanic has received

the required training. The trigger allows the insertions.

However, the following insertions will not work because the mechanic has not received

the required trainings. The trigger throws an error message and ignores the insertions.

INSERT INTO Provides

VALUES('35126984', '98563215', '82345672', '12/27/2000')

ORA-20201: Mechanic must receive training before he/she provides this service.

Date service is being provided: 12/27/2000

Date training has been received: 01/30/2012

INSERT INTO Provides

VALUES('35126984', '98563215', '59247638', '07/27/2006')

ORA-20201: Mechanic must receive training before he/she provides this service.

Date service is being provided: 07/27/2006

Date training has been received 08/22/2006

The following section shows the contents of these table after all the insertions:

Here are some queries to retrieve information from these tables:

Query One:

Get the name and Id of every Mechanic with an Air Agency License Number

SELECT mechanic.name, mechanic.Mechanic_License_Number

FROM Mechanic

JOIN Recieves

ON Mechanic.Mechanic_License_Number = Recieves.Mechanic_License_Number

JOIN Training

ON Recieves.Certification_Number = Training.Certification_Number

WHERE Training.Certification_Type = 'Air Agency'

Query Two:

Get the service descriptions and IDs that require an Air Agency certification

SELECT service.Description, service.Service_ID

FROM Service

JOIN Requires

ON Service.service_ID = Requires.service_ID

JOIN Training

ON Requires.certification_number = Training.Certification_Number

WHERE Certification_Type = 'Air Agency';

Query Three:

Get the name, and mechanic license of each mechanic and the services they provided and

the hours they spent on each service

SELECT Mechanic.Mechanic_License_Number, Mechanic.Name, Service.Service_ID,

Service.Description, service.Hours

FROM Mechanic

JOIN Provides

ON Mechanic.Mechanic_License_Number = Provides.Mechanic_License_Number

JOIN Service

ON Service.Service_Id = Provides.Service_ID

Conclusion

In this paper, we have used the ER notation to represent some business rules graphically

at conceptual level in a relational data model to enforce database integrity and/or

consistency. The constraints that have been represented in this paper make sure that the

service to airplane is provided by a qualified mechanic. Continuing with our airplane

servicing system we learn that each type of service requires specific tools. Also, airplane

service takes place in certain locations such as hanger where the tolls are kept. The future

of this work will include additional constraints to ensure the correctness of operations

such as “a maintenance service is only provided in a hanger using proper tolls by a well-

qualified mechanic”. Also when a service to an airplane is done, a stored procedure is

executed to print an invoice for the customer.

This is a sample project that students in our database class implement to get hands-on

experience.

References:

 [1] J. A. Hoffer, M. B. Prescott and F. R. McFadden, “Modern Database

 Management”, Seventh Edition, Prentice Hall, 2005.

 [2] A. Perkins, “Business Rules = Meta Data”, the proceedings of the:

 Technology of Object-Oriented Languages and Systems, IEEE, 2000.

 [3] http://support.diamond-air.at/techpubs+M52087573ab0.html :

 [4] Reza Sanati Mehrizy, Curtis Welborn, and Afsaneh Minaie, “Representing and Enforcing

 Business Rules in Relational Data Model”, American Society for Engineering Education

 (ASEE) Annual Conference, June 2006.

http://support.diamond-air.at/techpubs+M52087573ab0.html

