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Abstract 

RISC-V FPGA, also written RVfpga, is a freely available course that provides instructions and 

resources, including the unobfuscated RISC-V system-on-chip (SoC) itself, to show how to 

readily use and understand a RISC-V SoC, from writing C and assembly programs down to 

understanding and expanding the system. These materials bridge the gap between the availability 

of the open and royalty-free RISC-V instruction set architecture (ISA) and actually being able to 

use and experiment with a commercial RISC-V processor/SoC and the RISC-V toolchain. In 

addition to providing the SoC source code in Verilog/SystemVerilog and showing how to readily 

use the RISC-V toolchain to compile, debug, and load C and RISC-V assembly programs onto 

the SoC, both in simulation and on an FPGA (field programmable gate array), RVfpga shows 

how to expand the system to add peripherals and how to explore and modify the 

microarchitecture, including adding instructions, measuring performance using built-in 

performance counters, and exploring microarchitectural features, from the most fundamental 

aspects, such as pipelining and caches, to other more specific and advanced capabilities, such as 

superscalar execution, non-blocking loads and divide operations, secondary ALUs for resolving 

data hazards, unaligned loads and stores, scratch pad memories for both instruction and data, and 

advanced branch prediction. We also show how to use several simulators: the Whisper 

instruction set simulator (ISS) and three Verilator-based simulators: RVfpga-Trace, RVfpga-

ViDBo, and RVfpga-Pipeline. The simulators enable users to fully use the materials without the 

expense of purchasing an FPGA board; thus, the course may be completed without cost. This 

paper also describes an RVfpga EdX MOOC (massive open online course) that we are 

completing, which includes ten in-depth chapters, accompanying videos and tutorials, and 

exercises. This online course can be used on its own or as a guide to instructors in how to present 

and teach the RVfpga content. In addition to these materials, we have also run ten 1-day RVfpga 

workshops that were taught world-wide over the past year. The RVfpga materials are most 

typically implemented as a two-semester course: the first being a junior-level course in digital 

design, computer architecture, and embedded systems with a follow-on course, at the 

senior/master’s level, in microarchitecture, but the materials may also be used in a condensed 1-

semester course or for self-study. 
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1. Introduction 

The recent and ongoing development of the open and royalty-free RISC-V architecture has 

become increasingly pervasive in industry and research [1]. Because it is open and royalty free, it 

is more accessible for both academia and industry, and the hurdle of costly and time-consuming 

licensing is removed. Other features that make RISC-V appealing are its extensibility, which 

enables a wide range of microprocessors, from low-cost microcontrollers to high-performance 



cores. Although the architecture is open and royalty-free, most RISC-V processor cores are not. 

However, several companies and groups have provided commercial open-source cores, including 

the VeeR cores from CHIPS Alliance, which were originally SweRV cores from Western Digital 

[2]. The ecosystem built around the RISC-V architecture, including the toolchain and simulators, 

has also been steadily developing since RISC-V’s inception in 2010. 

 

Despite these developments, the ability to readily access, use, and work with the RISC-V 

architecture and open-source RISC-V systems still faces barriers, including lack of 

understanding the architecture and its extensions, the inability to access, understand, and use 

RISC-V tools, and the difficulty in gathering and using all of the pieces needed to deploy, 

understand, and expand a commercial, non-trivial, RISC-V core and SoC with its accompanying 

development environment and tools. While some courses exist to address some or parts of these 

issues [3, 4, 5, 6, 7, 8], this RVfpga course aims to address all of these challenges by showing the 

complete path from system setup to using, programming, understanding, and expanding the 

RISC-V core and SoC, including learning how to use the RISC-V toolchain and simulators, how 

to use and understand a commercial RISC-V SoC targeted to an FPGA, and how to extend and 

modify the SoC and core [9]. In addition to developing the materials for this course, including a 

Getting Started Guide, twenty labs, hands-on tutorials, and accompanying exercises and 

solutions to many of the exercises, the course also provides the HDL (Verilog and 

SystemVerilog) source code for the RISC-V SoC. The materials are provided in their source 

format (.docx for labs and instructions, .pptx for slides, and .txt for text files), to enable 

instructors to readily adopt and adapt the materials for their own use. To increase accessibility, 

the authors have also given one-day workshops throughout 2022 and 2023 and are now 

completing an RVfpga MOOC (massive open online course) in EdX that will be available by 

summer 2023. After completing this course, users will walk away with a working RISC-V 

development environment and system that they know how to use and extend. 

 

The course also embodies the collaboration inherent in open-source movements by being 

developed collaboratively by Imagination Technologies and their industry and academic 

partners, including the authors, RISC-V International, the Linux Foundation, and many other 

universities and industries. The course is freely available in both EdX and in its full download 

from the Imagination Technologies University Programme [10], which requires a short, several-

minute registration [11]. 

 

The remainder of this paper describes the course goals as well as an overview of the course and 

its structure, including a brief introduction to the RVfpga core and SoC, a description of the 

required software tools (all of which are free) and optional hardware, and an overview of the 

twenty RVfpga labs. We then describe the RVfpga EdX course and the workshops that we have 

given internationally. We conclude by describing future improvements we plan to implement this 

year and by summarizing the course’s features and what we have accomplished. 

 

2. RVfpga Course Goals, Overview, and Structure 

The RVfpga course aims to enable users to understand and use a commercial RISC-V core and 

system and then learn how to extend the system for learning, research, and experimentation. 

Users are expected to have a fundamental understanding of digital design and computer 

architecture in general before beginning the course. Such topics are covered in many textbooks, 



including Digital Design and Computer Architecture: RISC-V Edition [12]. The RVfpga course 

then builds on and expands those topics through hands-on labs and exercises.  

The RVfpga course has two subsections, also referred to as subcourses, each of which could be 

implemented as a semester-long course. The first subsection focuses on learning to use the 

system, including programming the SoC, using existing peripherals, and extending the system to 

add other peripherals. The second subsection focuses on microarchitecture, including 

understanding the pipelined core and the system’s microarchitectural features such as branch 

prediction, memory hierarchy, and hazard handling. Both subsections also show how to 

experiment with peripheral and microarchitectural modifications and extend the SoC. The EdX 

MOOC mainly covers the first subcourse, and the entire RVfpga course materials are available 

for free download from Imagination Technologies. This section describes the RVfpga system, 

the required and optional tools, and the twenty labs. 

 

2.1 RVfpga System 

The RVfpga system is an extended version of the open-source VeeRwolf SoC [13]. VeeRwolf 

(originally called SweRVolf) is based on the open-source VeeR EH1 core [2]. The source code 

for the RVfpga system is already provided with the course; however, we provide the links for the 

original repositories of the core and original SoC (VeeRwolf) in Table 1 for reference. The core 

and SoC are provided by CHIPS Alliance, an organization that develops and shares open-source 

hardware designs.  

 

Table 1. Open-Source RISC-V Core and SoC 

Core or SoC Website 

VeeR EH1 Core https://github.com/chipsalliance/Cores-VeeR-EH1 

VeeRwolf (SweRVolf) SoC https://github.com/chipsalliance/Cores-SweRVolf  

 

The VeeR EH1 core has a 2-way, 9-stage, in-order pipeline, as shown in Figure 1 [14]. It 

supports the RV32IMC RISC-V architecture; that is, the RV32I base instruction set with the 

multiply/divide (M) and compressed (C) extensions. The pipeline has two Fetch stages, Align 

and Decode stages, three Execute stages (integer execution, load/store path, or multiply path), 

and Commit and Writeback stages. The core also includes an out-of-pipeline divider that can 

take up to 34 cycles.  

These stages are implemented using multiple hardware units within the core, including the 

instruction fetch unit (IFU) for the Fetch and Align stages, the Decode unit (DEC) for the 

Decode stage, the Execute Unit (EXU) for the integer execution stages (EX1-3) and multiply 

execution stages (M1-M3), and the Load Store Unit (LSU) for the load/store path (DC1-3), as 

shown in Figure 2. The core is expanded to become the VeeR EH1 core complex by including 

on-chip memories and peripheral interfaces, including closely-coupled memories for data and 

instructions (DCCM and ICCM), and AXI or AHB-Lite bus interfaces. 

 

https://github.com/chipsalliance/Cores-VeeR-EH1
https://github.com/chipsalliance/Cores-SweRVolf


 
Figure 1. VeeR EH1 pipelined core (figure from [2]) 

 
Figure 2. VeeR EH1 core complex (figure from [2]) 

The RVfpga SoC then connects the VeeR EH1 core complex to peripherals, memories, and 

interfaces, including GPIO (general-purpose I/O), 8-digit 7-Segment Displays (included in the 

System Controller), SPI, and UART interfaces as well as a boot ROM and a PTC 

(PWM/Timer/Counter), as shown in Figure 3. Table 2 shows the RVfpga memory map, which 

uses addresses from 0x80000000 - 0x80002FFF. As mentioned, the RVfpga SoC is an extended 

version of the VeeRwolf SoC; the interfaces in red in Figure 3 and that are starred (*) in Table 2 

indicate interfaces that were added to the VeeRwolf SoC to create the RVfpga SoC. Although it 



is not explicitly shown in the figure, the 8-digit 7-Segment Displays were also added to 

VeeRwolf inside its System Controller (System-Ctrl) module. 

 
Figure 3. RVfpga SoC 

Table 2. RVfpga Memory Map 

System Address 

Boot ROM 0x80000000 - 0x80000FFF 

System Controller 0x80001000 - 0x8000103F 

SPI1 0x80001040 - 0x8000107F 

SPI2* 0x80001100 - 0x8000113F 

PTC* 0x80001200 - 0x8000123F 

GPIO* 0x80001400 - 0x8000143F 

UART 0x80002000 - 0x80002FFF 

 

2.2 RVfpga Software, Tools, and Optional Hardware 

The RVfpga course is supported in Linux, Windows, and macOS. All software required to use 

this course is free, as listed in Table 3. PlatformIO is a development environment that is an 

extension of Visual Studio Code (VSCode); it is the main tool that must be installed. Many of the 

remaining tools listed in Table 3 are installed automatically during the RVfpga setup process, 

particularly when installing PlatformIO, which is described in detail in the course. We provide 

links to all tools for the user’s convenience, although separate downloads are not needed for 

many of the tools beyond PlatformIO. The RISC-V toolchain includes compilers and debuggers 

and it is downloaded within the context of PlatformIO.  

 



The remaining software tools listed in Table 3 are simulators [15]. The open-source Whisper 

instruction set simulator (ISS) was originally developed by Western Digital and is now available 

from CHIPS Alliance. Whisper ISS simulates RISC-V assembly code, independent of any 

hardware, so it offers functional simulation but not cycle-accurate simulation.  

 

Table 3. Software Tools 

Tool Website 

PlatformIO https://platformio.org/ & https://code.visualstudio.com/Download 

RISC-V Toolchain https://github.com/riscv/riscv-gnu-toolchain  

Whisper ISS https://github.com/chipsalliance/VeeR-ISS  

Verilator https://github.com/verilator/verilator 

GTKWave (used 

by RVfpga-Trace) 

http://gtkwave.sourceforge.net/  

RVfpga-ViDBo https://github.com/artecs-group/RVfpga-sim-addons  

RVfpga-Pipeline https://github.com/artecs-group/RVfpga-sim-addons 

 

Verilator is an open-source HDL (hardware description language) simulator that is used for 

compiling (or more precisely, “verilating” [16]) the RVfpga SoC, which then acts as the backend 

for several of the other simulation tools: RVfpga-Trace, RVfpga-ViDBo, and RVfpga-Pipeline. 

Because the backend simulates the RVfpga SoC’s actual source code, it is cycle-accurate. The 

frontend of each simulation tool is different. RVfpga-Trace makes use of the open-source 

GTKWave application to view signal traces throughout the SoC, allowing the user to dig into 

lower levels of the HDL hierarchy, which is especially useful when extending and debugging the 

system. We developed RVfpga-ViDBo, which allows users to simulate I/O programs on a 

Virtual Development Board [17] instead of having to purchase a costly FPGA board. The last 

tool, RVfpga-Pipeline, is an open-source tool for visualizing RVfpga’s 9-stage pipeline, which is 

especially useful when analyzing the internal VeeR EH1 microarchitecture in the last half of the 

labs. 

 

Table 4 lists optional hardware: the Nexys A7-100T FPGA development board and its 

supporting tools. This board includes the Artix7 FPGA, peripherals, and interfaces targeted by 

the RVfpga system, including 7-segment displays, switches, LEDs, off-chip memory, and an 

accelerometer [18]. Users may synthesize the HDL and target this board using the Vivado 

WebPACK software, which is free. In 2023, the hardware cost $262 (academic price) to $349, 

but the hardware is optional; so, users can use and complete the entire RVfpga course in 

simulation and without cost, without the need to purchase the board. The RVfpga-ViDBo 

simulator targets and visualizes the Nexys A7 board in simulation, so many of the benefits of the 

Nexys A7 board are also already realized when using RVfpga-ViDBo, which is free. 

 

Table 4. Optional Hardware and Tools 

Tool Website 

Nexys A7-100T 

FPGA Board 

https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-

for-ece-curriculum/  

Vivado 2019.2 

WebPACK 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/d

ownloadNav/vivado-design-tools/archive.html  

 

https://platformio.org/
https://code.visualstudio.com/Download
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/chipsalliance/VeeR-ISS
https://github.com/verilator/verilator
http://gtkwave.sourceforge.net/
https://github.com/artecs-group/RVfpga-sim-addons
https://github.com/artecs-group/RVfpga-sim-addons
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html


Figure 4 shows the methods for running the RVfpga SoC: in hardware (RVfpga-Nexys) – using 

Vivado or downloading the configuration file (bitfile) in PlatformIO; or in software – using the 

simulation tools already discussed, RVfpga-VIDBo, RVfpga-Trace, and RVfpga-Pipeline, which 

use the Verilator simulator as a backend.  

 
Figure 4. Map of RVfpga Tools 

2.3 RVfpga Labs 

The RVfpga course includes a Getting Started Guide, twenty labs, and supporting resources such 

as the Verilog/SystemVerilog source code for the entire RVfpga system and pre-generated 

bitfiles and simulation executables (for each of the 3 operating systems: Linux, Windows and 

MacOS) that contain the RVfpga SoC targeted for simulation or for use on the Nexys A7 board. 

Table 5 lists the twenty RVfpga labs. The first ten labs (Labs 1-10) comprise the first subcourse 

that focuses on programming and peripherals, and the second half (Labs 11-20) focus on the 

core’s microarchitecture.  

Labs 1-4 show how to program RVfpga using C, RISC-V assembly, and a combination of C and 

assembly. Lab 5, which is optional, shows how to create a Vivado project to generate a bitfile 

targeted to the Artix7 FPGA and the peripherals on the Nexys A7-100T board. This is necessary 

when users wish to extend the RVfpga SoC and test it in hardware, which requires a newly 

generated bitfile. Again, Lab 5 is optional because all labs, including system extension, can be 

completed in simulation only. Labs 6-10 introduce memory-mapped I/O and discuss existing 

peripherals within the SoC as well as how to extend the system to add more peripherals. Both 

programming and interrupt-based approaches are used in these labs. Interrupts are used with 

support from Western Digital’s PSP (platform support package) and BSP (board support 

package), available at https://github.com/chipsalliance/riscv-fw-infrastructure; these are 

automatically installed within PlatformIO.  

https://github.com/chipsalliance/riscv-fw-infrastructure


Labs 11-20 delve into the microarchitecture, including configuration settings, performance 

counters, the pipeline core, hazards, superscalar execution, and the memory hierarchy, including 

the ICCM and DCCM (instruction and data closely-coupled memories), and instruction cache –

the underlying VeeR EH1 core does not include a data cache. Labs 11-20 also show how to 

modify the core and memory system, including exploring various core configurations and branch 

predictors and extending the core’s capabilities, such as adding new instructions (specifically, we 

include instructions from several extensions not supported in the baseline system, such as bit 

manipulation and floating-point instructions) and additional performance counters.  

Table 5. RVfpga Labs 

Lab # Title 

Part 1 

0 RVfpga Labs Overview 

1 C Programming 

2 RISC-V Assembly Language 

3 Function Calls 

4 Image Processing: Projects with C & Assembly 

5 Creating a Vivado Project (optional) 

6 Introduction to I/O 

7 7-Segment Displays 

8 Timers 

9 Interrupt-Driven I/O 

10 Serial Buses 

Part 2 

11 VeeR EH1 Configuration and Organization. Performance Monitoring 

12 Arithmetic/Logical Instructions: the add instruction 

13 Memory Instructions: the lw and sw instructions 

14 Structural Hazards 

15 Data Hazards 

16 Control Hazards. Branch Instructions: the beq Instruction. The Branch. 

17 Superscalar Execution 

18 Adding New Features (Instructions, Hardware Counters) to the Core 

19 Memory Hierarchy. The Instruction Cache. 

20 ICCM and DCCM 

 

In addition to the RVfpga course described in this paper, Imagination Technologies also provides 

a follow-on course called RVfpga-SoC that includes five labs the demonstrate how to (1) create 

the RVfpga SoC using Xilinx’s Vivado to piece together building blocks including the VeeR 

EH1 core, interconnect, and peripherals; (2) run programs on this newly created RVfpga SoC; 

(3) use FuseSoC, an open-source tool for building systems, as an alternate method for creating 

the RVfpga SoC from building blocks; (4) build, run, and use Zephyr, an open-source real-time 

operating system (RTOS), on the RVfpga SoC system; and (5) build and run a Tensorflow Lite 

project on the system. 

 

 



3. RVfpga MOOC 

The RVfpga MOOC that we are developing in EdX includes 10 chapters that cover Labs 1-4, 6-

9, and 11. The chapters include instructions, hands-on tutorials, videos (including 

demonstrations), exercises, and multiple-choice questions. The course begins with an overview 

of the course, the RVfpga system, and the tools (Chapter 1), including detailed instructions with 

videos that show how to install and use each of the tools listed in Table 3. After the introduction, 

the course covers nine RVfpga labs (1-4, 6-9 and 11), called chapters 2-10 in the EdX course. 

Each chapter includes at least two videos, one describing the principles and theoretical 

foundation of the topic covered in the chapter and one showing a demonstration of how to use 

and practice these principles. Each chapter also includes multiple choice questions and exercises 

for practicing and gain hands-on experience with the topics taught in the chapter. Like the full 

RVfpga course, the EdX course provides the entire source code (Verilog and SystemVerilog) for 

the RVfpga SoC. Course participants may use, modify, and simulate this source code throughout 

the course. Optionally, participants may also use the hardware, the Nexys A7 FPGA board, to 

test their modified RVfpga system and code. Because the course can be completed in simulation 

only (using the simulation tools listed in Table 3), the course may be completed without cost. 

4. RVfpga Workshop 

To increase accessibility to this RVfpga course, we have run ten international workshops since 

May 2022, four in the U.S., five in Europe, one in Israel, and two in Japan. These are “Train-the-

Teacher” events and have been attended by 258 people. With guidance from the authors, these 

hands-on workshops enabled users to quickly run and use the RISC-V system and its tools. 

These 1-day workshops distill the most important aspects of the RVfpga package, describing the 

RVfpga system, showing attendees how to use and write code for it, and using hands-on practice 

to explore the peripherals and other features highlighted in the labs, including interrupts, 

performance counters, and benchmarking. Within the first hour of the workshop, users are able 

to write, compile, and run RISC-V programs on a commercial RISC-V core and SoC running in 

both hardware and simulation. Responses from attendees include: 

“Excellent demonstration how real hardware and emulation matches, nice integration and IPC 

[instructions per cycle] and performance counter experiments.” 

“I enjoyed the practical knowledge about RVfpga. My first successful FPGA project!” 

“A clear, focused, comprehensive [workshop] linking hardware, software and RISC-V and 

relevant computer architecture within a workable toolflow and affordable hardware options.” 

In 2023, we are continuing to run workshops and promote RVfpga adoption worldwide with 

workshops in Taiwan in July, multiple locations across China starting in September, and 

Scandinavia in Q4. In addition to the workshops, the authors hosted a Webinar sponsored by 

DigiKey to introduce RVfpga where 750 attended live, and more than 1,000 additional viewers 

subsequently watched the presentation [19].  

5. Future Improvements 

We plan on expanding the RVfpga course by: 

• Targeting additional FPGA boards, especially lower-cost boards including those from 

vendors in addition to Xilinx, 



• Using a smaller core, for example, the VeeR EL2 core. This core will be more 

appropriate for undergraduate students due to its simpler microarchitecture (it is a single-

issue, 4-stage pipelined core). The smaller core and SoC that we will build around it will 

also fit on smaller, less expensive FPGAs. 

 

These new features increase course accessibility, especially for those hoping to use RVfpga in 

hardware, by reducing the cost of the target FPGA board. It also allows users to access a smaller 

SoC that could be targeted to lower-cost embedded system applications and research. 

 

6. Conclusions 

We have developed the RVfpga course to increase understanding, accessibility, and usability of 

the RISC-V computer architecture, RISC-V SoCs and cores, and the RISC-V ecosystem, 

including the toolchain and simulators. This course is most typically implemented as a two-

semester course but may also be used in a condensed 1-semester course or for self-study by 

industry professionals, academics, researchers, and others. The first half of the labs (1-10) is 

targeted toward a junior- or senior-level undergraduate course and the second half (Labs 11-20) 

is targeted to an upper-division or master’s level course. The RVfpga course has already been 

licensed and downloaded by more than 2,800 users since its release in December 2020 and will 

likely exceed 4,000 by the end of 2023. We also expect the international RVfpga Workshops to 

exceed 500 attendees by the end of 2023. In addition, we are nearing completion of an RVfpga 

EdX MOOC that will increase accessibility to an even larger audience. In the next year, we plan 

on expanding the RVfpga course to include a smaller commercial RISC-V core and SoC that can 

be targeted to smaller, less expensive FPGA boards to enable users to implement the designs in 

hardware, where higher-cost FPGA boards may be prohibitive, and to facilitate understanding of 

the core microarchitecture. 
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