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Abstract 
An extremely important aspect of the proper design of an experiment is specification of 
the sample size, sample rate, and duration of test.  When sampling real signal data from 
the wide variety of transducers currently available, the presence of noise, generated from 
many sources, usually makes it necessary to sample the associated input signal numerous 
times in order to determine accurate statistical information; typically mean and standard 
deviation.  From these statistics, and the associated sample size, it is possible to arrive at 
a reasonable estimate of the confidence interval for the sampled signal mean.  
Furthermore, in some applications, for example in acquiring statistical information about 
turbulence intensity, the focus may also be on the standard deviation itself.   
 
This paper provides a simple intuitive, but quantitative, procedure that students can 
follow in the undergraduate engineering laboratory to ascertain reasonable estimates of 
the required sampling information.  The procedure has the advantage of not requiring 
complex background in sampling theory.  In particular, it does not require detailed 
theoretical understanding of auto-correlation or cross-correlation statistical concepts that 
the typical undergraduate student has not yet acquired, which makes it readily applicable 
to the introductory undergraduate engineering laboratory.  The technique is illustrated 
using simulations of time-series data generated by LabVIEW, as well as from real 
sampled signals.  The paper also addresses the confidence interval for the standard 
deviation, which is frequently not given specific attention in the undergraduate laboratory 
experience. 
 
Introduction 
One of the most important instruction issues encountered in the introductory engineering 
laboratory is that of introducing students to modern instrumentation and measurement 
techniques.  The wide variety of electronic sensors currently used in industry, and the 
large number of industrial research, product development and testing applications that 
engineering students may encounter as they start their careers, requires that the students 
have a good working knowledge of such techniques. For the most part these applications 
will involve some form of automated (computerized) data collection and data reduction.  
Hence, it is a necessity that students gain laboratory experience with a wide variety of 
computerized data acquisition principles, which include Analog to Digital (A/D) 
conversion, and statistical sampling procedures.   
 
The need to employ statistical sampling is not new, but is even more important in modern 
measurement applications that may involve real-time process assessment and evaluation 
of numerous time-varying signals of various types for quality control purposes.   
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Computerized data acquisition principles have long been an important component of the 
introductory Measurements and Instrumentation (ME 535) Laboratory class in the 
Department of Mechanical and Nuclear Engineering at Kansas State University.   One of 
the difficulties encountered when dealing with modern sampling procedures in particular, 
is that our students have limited background in statistics and the practical application of 
statistical principles.  Even with a background in prerequisite statistics course work, 
without supplementary instruction, the students still have rather limited practical 
understanding of how to apply these basic principles to laboratory measurements that 
involve real time-varying signals.  Courses involving the detailed statistical treatment of 
time-dependent random signals are not part of the MNE curriculum since they generally 
have prerequisite requirements beyond the reach of our typical undergraduate students.  
In addition, while available course textbooks (e.g., [1], [2]) usually provide a good 
discussion of the statistical treatment of random errors, they do not generally address the 
practical issue of how to actually perform independent sampling of time-series data. 
 
The Sampling Problem 
It is typically assumed that the samples of measured variables used in statistical analysis 
(for random uncertainty estimates) are all independent; however, this may not be the case 
when dealing with real time-series data.  When dealing with real time series data, there is 
a definite need to address the possible dependence of sampled data, in order to arrive at 
good estimates of the statistical characteristics of the signals.  Consider the real time-
series signal, X(t), sampled at a frequency of 1 kHz from a real velocity signal obtained 
using a hot-film high frequency probe as shown in Figure 1.  Such probes continue to be 
widely used for determining turbulence statistics in a wide variety of flow situations.   
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 (a) Actual Velocity Signal   (b) Close-up of Sampling 

Figure 1: Time Series of Actual Velocity Signal 

The basic measurement problem is to determine an appropriate sampling time interval, ∆t 
(or sampling frequency, fS = 1/ ∆t), along with the total duration of the test, T.  The total 
number of samples is then N = T/∆t if N is large.  Furthermore, if the samples are all 

independent, the mean may be estimated from 
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signals sampled at high frequency, the signal value at some time t is highly related (or 
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correlated) to its value at a small time t + ∆t later, as suggested from Figure 1 (b).  In 
fact, in an extreme case where the sampling frequency is sufficiently large, effectively all 
of the samples together could actually constitute but a single instantaneous measurement. 
If the samples are somewhat correlated, the mean may be estimated from the same 
relationships given above for X  and SX, except that the actual sample size is replaced by 
the “effective” sample size, Neff  = T/Tu where Tu is a measure of the time between 
uncorrelated samples.  There are different ways available to estimate Tu ; in particular, if 
measurements of N, the actual sample size are compared to Neff , from the relationships 
above Tu/∆t = N/Neff . The main focus of this paper is to develop a tool which will 
demonstrate how to “experimentally” determine Tu , and also verify the behavior of this 
procedure with sampled signal data obtained from a LabVIEW simulation.  The goal is to 
provide the students with an intuitive method of determining the appropriate sampling 
interval Tu (and the associated sampling frequency, fS = 1/Tu ) that can be readily used in 
an introductory instrumentation and measurements laboratory.  The same approach can 
also be applied to real signals, to the extent that meaningful values of the required sample 
statistics can be obtained experimentally in the undergraduate laboratory. 
 
Random Signal Generation 
The first step in the development of the tool described above is to generate simulated 
random signals with known amplitude and frequency characteristics to represent “real” 
signals.  LabVIEW software is particularly suited to this task.  It is an “icon” based 
commercially available software package that is widely used for data acquisition both in 
industry and in research.  It contains numerous VI (or virtual instrument) programs which 
are assembled in a graphical interface to perform all required operations associated with 
signal measurement and processing of results.  In addition, LabVIEW also contains 
numerous built-in VI’s for generation of random numbers with known statistical 
characteristics, and it also contains a variety of different random signal generation VI’s 
with known amplitude and frequency content.  In particular, it contains a source of 
Gaussian distributed “white noise” waveform.  According to the documentation 
contained within LabVIEW Version 7, which is currently being used in our Department, 
the noise generation is based on a triple-seeded Very-Long-Cycle pseudorandom random 
number generation algorithm that produces approximately 290 random numbers before the 
pattern repeats.  The result is a pseudorandom Gaussian noise waveform pattern 
containing some 2,147,483,647 (231 - 1) elements with a “white noise” uniform frequency 
spectrum1, which provides an extremely large population for sampling purposes.  
Furthermore, the students that take our introductory Instruments and Measurements 
Laboratory utilize this software extensively throughout the course for data acquisition, 
after they receive basic instruction on its use.   
 
Figure 2 shows the basic block diagram of the subVI used for generation of a modified 
signal called “band-limited white noise,” which has uniform frequency spectrum over a 
limited (and known) frequency bandwidth.  The band-limited white noise is generated by 
passing the white noise through a simple 1st order Butterworth low-pass filtering process.   

                                                 
1 White noise is an idealistic noise time-series signal that has uniform frequency content (so-called spectral 
intensity) over a very large frequency bandwidth. 

Proceedings of the 2004 American Society for Engineering Education 
Midwest Section Conference 



Section 1 Section 2 Section 3 Section 4 Section 5Section 1 Section 2 Section 3 Section 4 Section 5  

 
Figure 2: LabVIEW SubVI for Generating Band-Limited Gaussian White Noise 

 
There are five main sections in the block diagram shown in Figure 2, arranged in a left-
to-right calculation sequence.  Section 1 of the input block specifies the main statistical 
characteristics of the generated noise, which includes the mean and standard deviation of 
the pure Gaussian white noise, the cut-off frequency (or bandwidth in Hz) of the filtered 
or band-limited Gaussian noise, the number of samples generated, and the specified 
sample rate in Hz.  A “seed” number is used to initiate pseudorandom number generation 
process, and is used to either initiate the same random time-series signal, or a random 
sequence of signals.  Section 2 is the LabVIEW SubVI that generates the pure Gaussian 
white noise signal.  Section 3 passes this noise through a 1st order Butterworth Low-Pass 
filter, resulting in the desired band-limited Gaussian white noise.  Section 4 performs 
statistical analysis on the time-series data, which includes generation of a histogram as 
well as determining mean and standard deviation of the sampled signal.  Lastly, section 5 
outputs the results in both numerical and graphical format.  This band-limited white noise 
signal was used for all of the simulations presented in this paper.   
 
The upper level VI, shown in Figure 3, uses the SubVI described above to generate 
multiple sets of independent sampled signals.  A large number of independent sampled 
signals can be generated, which allows for determination of not only statistics of the 
individual time-series signals, but also statistics of the means of the signals of particular 
interest to the present paper.  This SubVI is arranged in four sections in a left-to-right 
sequence as shown.  Section 1 provides the necessary inputs that specify the number of 
sampling experiments (i.e., the number of independent time-series segments) to be 
performed, and the statistics of the noise that feed into the lower level SubVI described 
earlier.  Section 2 is a “FOR-Loop” calculation sequence in which the time-series 
generation and statistical characteristics of each independent time-series experiment is 
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repeated the specified number of times.  Section 3 then performs statistics on the statistics 
of the independent “experiments,” and Section 4 outputs these characteristics in both 
graphical and numerical format.  The output statistics include the mean and standard 
deviation of the means, and a histogram of the means.   

Section 1 Section 2 Section 3 Section 4Section 1 Section 2 Section 3 Section 4  

 
Figure 3: Block Diagram for Generation of Multiple Signal Sample Statistics 

 
Figure 4: Front Panel of Multiple Signal Sampling VI 
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Hundreds of independent samples of the mean and standard deviation of the individual 
time-series signals can easily be acquired, sufficient to yield well-defined histograms of 
the signal means and standard deviations. 
 
Verification of Generated Time Series Statistics 
Several tests were conducted to verify that the time-series signals had the desired 
amplitude and frequency characteristics.  For the tests presented in this paper, the 
inputted pure Gaussian white noise had a specified mean of zero and a standard deviation 
of 1.  The bandwidth of the filtered noise was chosen to be 1 Hz, and the sample rate was 
50 Hz.  This provided an “over sampled” signal to give emphasis to the difference 
between the actual number of samples and the “effective” sample size. 
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(a) Histogram of Amplitude         (b) Autocorrelation 

Figure 5: Band-Limited Gaussian White Noise 
Figure 5 shows some basic statistical characteristics of the generated band-limited 
Gaussian white noise signal.  In figure 5(a), a typical histogram of the noise amplitude 
distribution is given, and it is seen to have the expected Gaussian form with a standard 
deviation of approximately SX = 0.2480 and a mean very close to zero.  Figure 5(b) 
shows a plot of the autocorrelation, RXX(τ), of the noise signal as a function of the time 
shift parameter, τ.  The autocorrelation provides a measure of the relatedness of adjacent 
signal values in the sampled signal.  If the random signal was completely uncorrelated 
with adjacent signal values of itself, RXX(τ) would drop immediately to 0 after time shift 
τ = 0.  Real random signals drop off more gradually.  For a stationary random process 
representing band-limited Gaussian white noise, the autocorrelation function is of 
exponential form and is given by [3] RXX(τ) = 2 exp( 2 )X fCσ π τ− , for τ < ∞, where 
RXX(0) corresponds to the variance of X.  This theoretical result is seen to compare very 
well with the sampling results shown in Figure 5(b), where it is clear that the signal is for 
all intents and purposes uncorrelated with itself after a time shift of just over 0.5 seconds. 
 
Examples of Time Series Sampling 
Now that individual samplings of the time series have been shown to behave with 
expected statistical characteristics, the multiple sampling characteristics can be 
investigated using the main LabVIEW VI shown in Figures 4 and 5 above.  The purpose 
here is to investigate the effective sample size [4], and to illustrate a simple method of 
estimating the effective number of samples for a given sampling scheme.  The 
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relationship between actual sample size, N , and effective sample size, Neff , can be 
estimated from the mean statistics of multiple samples.  First, if all samplings of a 
random signal of duration T at the sample frequency, fS , were independent, then the 

standard deviation of the mean for multiple samples would be X
X N

σσ = .  However, if 

the samples are not all independent then the true standard deviation of the mean can be 

related to the effective number of samples as X
X

effN
σσ = .  Hence, N can be related 

directly to Neff according to the ratio 
2

X
eff

X

N σ
σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  Thus, the actual and effective sample 

sizes can be related from simple estimates of Xσ  and Xσ .  Figure 6(a) shows a 
histogram for mean signal, X , resulting from 300 simulated independent sampling 
experiments of duration T = N/ fS = 160 sec , where N = 8000 samples and fS = 50 Hz.  
This corresponds to the sampling experiment illustrated earlier in Figure 4. 
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(a) Histogram of Means       (b) Effective Sample Size Measurement 

Figure 6: Multiple Sampling Experimental Results 
From the resulting 300 sample statistics, the effective sample size can be estimated as 

2 20.242974 467.8
0.0112341

X
eff

X

N σ
σ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, which corresponds to the value indicated on the 

front panel diagram shown in Figure 4.  An alternative way to calculate an estimate of 
Neff would be to conduct several similar sets of 300 experiments involving the same 
sample rate, but with different total number of samples.  Figure 6(b) shows the result of 
several samplings made in this manner.  The slope of the approximately linear 
relationship illustrated in this Figure indicates that approximately 16.8 actual samples are 
necessary to produce a single effective sample.   
 
The results of the simulated sampling experiments above can be verified by theoretically 
calculating the relationship between actual and effective sample size using the 
autocorrelation coefficient given in Figure 5(b).  The effective time between uncorrelated 
(effectively independent) samples can be shown to be approximately twice the so-called 
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integral time scale [4], TX , where TX is defined such that the area under the 
autocorrelation function curve equals 2

X XT σ .  In other words, , where integration 

of the exponential relationship for R

2uT TX

XX(τ) yields 1 1 0.1592sec
2 2 (1 )X

C

T
f Hzπ π

= = =  for 

the current band limited noise signal.  Thus, the theoretical effective sample size for the 

current simulation results is 160sec 160sec 502.5
2 2(0.1592sec)eff

u x

TN
T T

= = = = , which is very 

close to the sampling result of 467.8 given above.  Put another way, this results in a 

theoretical relationship for the slope of the line in Figure 6(b) of 8000 15.92
502.5eff

N
N

= = , 

which agrees well with the slope estimated from the sampled data.   
 
Once the effective sample size has been estimated, it can be used to estimate other 
statistical characteristics, such as those associated with the standard deviation.  In fluids, 
the standard deviation is related to turbulent intensity, which is an important measure of 
the amplitude of random fluctuations associated with commonly occurring turbulent 
flows.  The standard deviation of the standard deviation represents a measure of the 
uncertainty in this physical quantity.  An estimate of the standard deviation of the 
standard deviation (which is directly related to the uncertainty in the standard deviation) 

may be expressed from [5,6,7] as 
2X

X

effNσ
σσ = , where can be estimated from the 

slope of the line in Figure 6.  For the data shown in Figure 4, this relationship yields an 

estimate of 

effN

0.24297 0.00786
2 80002

16.75

X

X

effNσ
σσ = = =
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, which is reasonably close to the 

simulated value of 0.00564 determined from the 300 samplings of the standard deviation.   
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(a) Measured Autocorrelation (b) Effective Sample Size Measurement 

Figure 7: Estimate of Effective sample Size from Real Measurements 
This process of determining the effective sample size, described in the LabVIEW 
simulations above, can also be achieved with real data.  Furthermore, the linear fit 
approach allows some smoothing of the results when dealing with a more limited number 
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of experiments like would typically occur in practice using real, rather than simulated, 
experimental sampling results.  Figures 7(a) and 7(b) show the results of utilizing this 
technique for sampling hot-wire velocity measurements of airflow.  In this case the 
sample rate was only 1Hz and the test duration was 2.5 minutes.  The sample statistics in 
this case were obtained from only five independent test runs, corresponding to five 
independent experiments as defined in the earlier simulations.  Hence, it would be 
expected that the variation in the results would have a fairly large uncertainty.  None-the-
less, the basic principle still seems to give a reasonable, if somewhat nominally accurate, 
estimate of the effective sample size. 
 
Possible Classroom Implementation 
One laboratory exercise where a problem related to non-independence of sampled data 
has occurred involves the use of a vane anemometer for the measurement of airflow. The 
vanes of the flowmeter make and break the beam of an infrared emitter-detector pair and 
the resulting pulse train becomes the input to a frequency-to-voltage converter. The 
voltage signal generally has a low-frequency noise component that students attempt to 
eliminate through averaging.  The students are required to include an uncertainty analysis 
of their measurements and will develop a confidence interval for the true mean as a range 
about the measured mean. The range about the measured mean is the student-t value at 
the 95% confidence level times the standard deviation of the means, which is obtained by 
dividing the standard deviation of the sample by the square root of the number of 
measured values. Sometimes curious students will take multiple measurements at a given 
setting of flow to obtain an experimental set of sample means in an attempt to compare 
their variation with that predicted from a single set of data. These results are usually in 
very poor agreement because of the lack independence of the individual measured values 
in the sample resulting from sampling at too high of a rate. The procedure outlined in this 
paper will make it possible for the students to determine an appropriate sampling rate 
(and the associated sample size or test duration) needed to assure independence of 
individual measured values or to apply the concept of effective sample size so that 
predicted variations in sample means are correct.  
 
Summary and Conclusions 
This paper has presented a tool, based on the random waveform simulation capability of 
LabVIEW, for use in investigating time-series data sampling issues in the undergraduate 
engineering laboratory.  The procedure involved utilization of Gaussian white noise 
inputted to a simple low-pass filter, resulting in well-defined band-limited Gaussian white 
noise.  A simple VI block diagram for generating the time-series signals of known 
amplitude and frequency characteristics has been implemented and tested, along with a 
companion VI for generating large numbers of independent simulated sampling 
experiments.  From these multiple sampling tests, a simple procedure was demonstrated 
for estimating the effective sample size associated with realistic simulated signals that, 
like real time-series data, exhibit correlation or relatedness between adjacent sampled 
data.  It was also shown that realistic estimates of the sample statistics could be obtained 
from the effective sample size.  The sample size estimation procedure was also 
demonstrated using real velocity measurements in an airflow situation.  This approach 
represents a potentially very useful tool for enabling students to become intuitively 
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familiar from an experimental point of view with a number of important laboratory 
sampling issues, without the need for prerequisite courses which are difficult and 
impractical for them to acquire in the usual undergraduate mechanical and nuclear 
engineering curriculum.  Thus far the results appear to be very promising, and further 
testing of this approach, along with possible ways of implementing such an approach in 
the engineering laboratory classroom, are currently under investigation. 
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