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ABSTRACT

Students find certain concepts in fiber optic communication theory difficult to grasp. A classic
example is electromagnetic mode theory in cylindrical coordinates. The solutions of the differential
equation which describe the modes of the fiber are Bessel functions, with which most students are
unfamiliar, and the vectorial nature of the analysis only complicates the situation. A second difficult
concept is dispersion. The fact that different frequencies of light travel at different speeds in the
fiber is not confusing. Itis in the implications where the difficulty arises. Specifically, the concept

of group velocity is physically counterintuitive, and an analysis of the pulse spreading that results
because of dispersion often includes a rigorous Fourier analysis. This paper describes how computer
simulation and animation can provide a visual means of simplifying these concepts so that they are
easier to understand.

INTRODUCTION

Computer animation has become popular in academia because the common student is visually
oriented. Furthermore, some concepts are simply easier to understand visually. Modern computing
tools provide the visual means to educate students more efficiently in concepts that are traditionally
difficult to teach at a blackboard using mathematical derivation. In engineering, ideas also may be
simple mathematically but physically counterintuitive. Computer simulation can enable a student
to jump over the hurdle that an abstract physical concept presents. High levels of abstraction are
especially prevalent in electromagnetic field theory and Fourier analysis, two disciplines which are
fundamental in fiber optic communication theory. We use animation and simulation in MATLAB

to help students grasp some of the more complex topics in these disciplines.

MATLAB is a matrix driven language which integrates numerics and graphics in a single package.

It provides a computing environment which is relatively easy for the students to understand. This

can be true even for students that have not been formally educated in higher-level programming
languages. MATLAB programs are written using mathematical expressions similar to those that

most engineering students are familiar with. Furthermore, it provides a comprehensive graphical
environment, which includes color, surface plots in three-dimensions, etc., that enables an

engineering educator to create relevant animations that provide the student with greater insight into
the underlying physical processes.

Three MATLAB animations have been used in the fiber optic communications course at the Naval
Academy, a senior elective in the electrical engineering department. In the first of these, the
temporal and spatial behavior of various electromagnetic modes of the fiber may be observed. The
second simulation illustrates why the group velocity of a pulse differs from the phase velocity of the
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optical carrier in a dispersive media. In the last animation, students observe how the energy in an

optical pulse spreads because of group velocity dispersion. The last two animations help students
understand the complex relationship between the amplitude and phase of the frequency components
which are integral to pulse formation and degradation in the fiber.

ANIMATION OF MODES IN AN OPTICAL FIBER WAVEGUIDE

An optical fiber guides light because of total internal reflection; energy in the optical wave is
reflected at the interface between the core and the cladding of the fiber and remains in the core. The
energy propagates down the fiber core in modes; animation helps students understand what modes
are and how they behave in time andc® The differential wave equation which describes the
propagation of the light in the core of the fibér is

J°E

O(OE) -OxOxE kzdt =0.

The solutions of the electric field are written in cylindrical coordinates ¢, andz. We use
MATLAB to analyze these solutions. The spatial frequency of the optical wave n/c =
2/, wherew is the angular frequency of the waees 3x1@# m/sec is the speed of light in the
vacuumpn is the index of refraction in the fiber core arglis the wavelength of the light.

The modes that are simulated are derived from the real part of the complex compoBents of
E,(r,@z,t)=1 (Kr)ej"‘/’e—i& da
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wherepg is the magnetic permeability a] (the zcomponent of the magnetic field vector) is
similar in form toE,. J,, is a Bessel function of the first kind of order The role, k andp play

are especially troublesome for students. Computer animation allows a student to directly observe
the impact of these parameteWghilev is the order of the Bessel function, it is also an integer that
represents the frequency of sinusoidal oscillation azimuthafigiound the fiber core. The Bessel
functions themselves are oscillatory with frequercgnd look like damped sinusoidal waves
radiating outward im from the center of the fibe is the frequency of oscillation of the wave as

it propagates down the fiber longitudinallyaink andp are related t& by k* = k? + B2
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Ultimately, k and take on only discrete values, as determined by applying the electromagnetic
boundary conditions to the field components at the interface between the fiber core and cladding.
The resultant solutions for every integer value afe the modes of the fiber. Unfortunately, many
textbooks do not relate the math that desciibEswhat an observer sees at the output of the fiber.
Hence, students quickly lose sight of the physical meaning of the math. Since each mode may be
viewed as a different intensity distributid{q at the fiber output, graphics and animation provide
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a visual path to the meaning of modes. Simply put, each mode looks different at the end of the fiber.
Asv andk vary, changes in the field distributiongrandr can be graphically represented in a three-
dimensional surface plot, afidcan be described through the animation.

To introduce the concept of modes to the students, we begin with the fundamental mode of the fiber
since it is the simplest. The field amplitude is plotted vexsuscosp andy =rsingin Figure 1(a),

where the radius of the fiberaswe are plotting the fundamental mode in the cross-section of the
fiber. The strength of the field is highest in the middle of the fiber; an observer would see a single
bright spot at the end of the fiber. There is no azimuthal variation,=s®, and the field is
approximated by thdy(kr) function? which is maximum at = 0. This plot is made with the
standard three-dimensional surface plotting functions of MATLAB.

We then consider a mode withe 1 in Figure 1(b). The azimuthal variation in the field is #8{e

so there is one period rotationally about the fibeg &aries between 0 andt2 In addition, the

radial variation is),(kr), which is zero at the center of the fiber. The intensity distribution appears

as two bright lobes. (The students also observe this mode experimentally in the lab associated with
the course.) The lobe with negative field amplitudes indicates that the polarization is in the opposite
direction for/2 < @ < 3172. Since the azimuthal variation tends to be the most difficult to grasp,
another mode witk = 2is shown in Figure 1(c), where there are four lobes in a singular ring about
the center of the fiber.

Figure 1(d) illustrates what happens to the mode in Figure lic)rmseases. Specifically, there

are more cycles in the radial direction. In the intensity distribution, an observer sees two rings, with
four bright lobes in each. Furthermore, the Bessel functions are dampedcasases, so the
amplitude in the outer ring is less than the amplitude in the inner ring. In intensity, the four lobes
in the outer ring are less bright than the four lobes in the inner ring.

When we include animation, we see hdwnpacts each mode. Visually, the modes oscillate about
the origin of theE-axis at a frequency that corresponds to the valup. ofPhysically, this
corresponds to fixing time at a specific instant and watching the field vary as therppalong

the length of the fiber is varied. Since the longitudinal variation in the fielt’ts the oscillatory
behavior speeds up Béncreases. Higher order modes, such as the one in Figure 1(d), have smaller
values off3 than the lower order modes, so they oscillate less rapidly.

To create the animation, the movie functions of MATLAB are used in combination with the surface
plotting functions. MATLAB stores successive frames of the animation and plays them back as a
movie. The MATLAB file which creates the animation of Figure 1(d) is included in Appendix A.
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DISPERSIVE EFFECTS IN PULSE PROPAGATION

We also use animation to demonstrate how dispersion affects pulse propagation in the fiber.
Dispersion is a fundamental property of the glass from which a fiber is formed. A fiber is dispersive
because the index of refractiarand the propagation constgh{which is proportional tm) are
different at each optical frequency. The phase velocity of a wave with frecuésigy=c/n= w/j3,

so the velocity also varies with frequency in a dispersive material. Since any data pulse is formed
through the superposition of energy at different frequencies, digital pulses carried on an optical wave
eventually break apart after propagating a sufficient distance.

To simulate dispersive effects in a pulse, we analyze the Taylor expangion of

b(w) = by, + b(w- w,) + by(w- wp)?/2+...,
which describes how the propagation constant (and the index) varies about the optical freguency
The coefficientg,, = (d"B/dw ™) are defined atby,. [, is the parameter that was described through
the animation of fiber modes in Figure 1, and the meaning of the Bgransi3, are best described

through simulation as well, is related to the group velocity of the pulse in the fiber, arf] is
the dispersion coefficient that defines how rapidly a pulse spreads because of dispersion.

To teach the concept of group velocity, we simulate the behavior of two waves with different
frequencies,as seen in Figure 2(a). The superposition of the waves

E'+E" =cos(w't—L'z)+cosw"t—"2)

=2cos(w —fz)cosAat —ABz),

is depicted in Figure 2(b) at timie= 0. The frequencw is the average ab’ andw’. If the
frequencies of the two waves are similar, the difference (or beat) fregensysmall, and the
superposition consists of a higher frequency carrier waveste$z) that is modulated by a low
frequency pulse envelope cAsft - AB z). The peak of the pulse envelope results where the two
waves constructively interfere. In Figure 2 this ig at0, as indicated by the

The velocity of the carrier wave is the phase velogityw/3. The velocity of the pulse envelope
is the group velocityy, = AwAP. For a pulse composed of many frequency components,

Aw _dw . 1
m-—=—=v, =—
w03 dB R
wheref3; is the second term in the Taylor expansiofi.off w/f3 is different fromdw/d, the phase
velocity of the carrier wave is different from the group velocity of the pulse envelope. Since

nw/c, whenever the index varies with frequency, as it does in a dispersive mategialill be
different fromv,,

This is rather easy to describe mathematically to students. However, it is not obvious to a student
why one would physically expect a pulse to move at a different velocity than the carrier wave it is
riding on, regardless of the mathematical argument. To physically see what is happening, we
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animate the two waves shown in Figure 2(a), each at a different phase veloeity,19um/fsec
andv,” = 0.2um/fsec, respectively. The group velocity of the pulse envelope is observed directly
in the animation, but we can only show the final result here in Figure 3. Initidlly @tin Figure

2, the crests of the waves coincide at0; in Figure 3(a), the two waves have movedut®and
2.0um after 10 fsec, respectively, as indicated byctlaad the x. The phase velocity of the carrier
wave is close t@, = 0.195um/fsec, between,” andv,”, so the carrier moves 1.96n in 10 fsec.

In contrast, the pulse envelope in Figure 3(b) has shifted only slightly more finaysd it moves

a shorter distance in the same amount of time. Clearly, the pulse envelope moves at a slower
velocity than the carrier wave. The reason lies in the fact that the envelope results from constructive
interference between the two waves. As the two waves move at different velocities, the phase
position at which they constructively interfere moves at a velocity different from the individual phase
velocities. Hence, in the animation, the carrier wave appears to move through the pulse envelope
as time progresses. Real data pulses generally consist of more than two frequency components, but
the effect is precisely the same.

To create the animation in MATLAB, the handle graphics functions are used. This simulation is
markedly different from that used to animate the modes. For simple waveforms such as those shown
in Figures 2 and 3, MATLAB processing is fast enough to calculate and update the waveform on the
screen in real time. The program to simulate group velocity is included in Appendix B.

The final animation demonstrates group velocity dispersion in a pulse.¥héhp is linear with

respect to frequenay, so the group velocity, is the same for every frequency component of the
pulse. The phase velocity of the carrier may be different from the group velocity of the pulse, but
there is no distortion of the pulse as it propagates down the fiber. This is essentially what happens
in Figure 3. In contrast, group velocity dispersion results @gerD. As the pulse propagates, its
amplitude drops and its energy spreads. If digital information is transmitted on the pulse and too
much energy spreads into neighboring bit slots, the information may be distorted. [}Héendes

term in the Taylor expansion Bfwhich causes degradation in a communication system.

The animation is based on the equa5tion
Az, 1) —2—1 A0, w) exp%@wzz— J(A@ja)
T

where the final pulse envelop€zt) at arbitraryz is related to the spectruA{0,w) of the initial

pulse envelop&(0,t) atz= 0. Essentially, each spectral component of the pulse experiences a phase
shift of exp(jB,w’z/2) upon propagation. Students sometimes find this equation intimidating
because of the Fourier analysis. For many pulse shapes, though, the integral equation can be solved
only through numerical simulation, so it is easiest to convey the physical meaning to the student this
way. In fact students use discrete Fourier transforms in MATLAB to simulate this equation for a
variety of pulse shapes during the course.

In the animation, we use a pulse with a Gaussian shape, although other pulse shapes could be chosen.
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Figure 4 depicts a pulse at 0, and Figure 5 depicts the same pulse at the end of the animation.
During the simulation, the pulse energy gradually spreads as the envelope moves down the fiber.
A more realistic pulse would have thousands of cycles of the optical wave under the envelope, but
the physical process is most easily seen by using a smaller carrier frequency.

The simulation assists in teaching the following concepts: 1) As pulse width increases, the amplitude
drops, so energy is conserved. 2) The carrier moves through the pulse because the phase velocity and
group velocity are different, as before. 3) The pulse is chirped as it propagates, meaning that the
instantaneous frequency varies across the envelope. Lower frequency waves are in the front of the
pulse in Figure 5 and higher frequencies are at the back. In the simulation, the initial pulse is green.
As the pulse evolves, the color gradually changes to emphasize the chirp as the pulse propagates, so
that the final pulse is red-shifted on the rising edge and blue-shifted on the trailing edge. 4) The sign
of 3, can be reversed so that higher frequencies move more quickly down the fiber; the colors are
reversed in the animation. 5) A pulse really does consist of more than one frequency component;
the multiple components emerge from the pulse as the energy disperses. 6) The concept of moving
reference frames can be introduced since, in effect, the student moves along the fiber with the pulse
envelope, watching what happens.

The handle graphics features of MATLAB were used again in this animation and colormaps were
manipulated to simulate chirp. The program is included in Appendix C. MATLAB does not
normally include a function which automatically scales the colormap in a two-dimensional line plot.
The coloring is achieved using a MATLAB m-file called plotcol.m available on the MATLAB help
screens on the World-Wide-Weéb.

CONCLUSION

Three simulations have been described which assist in teaching fiber optic communication theory
to undergraduate electrical engineering students. Thus far, students have been very receptive. Other
simulations are planned which will simulate the effects of loss, amplification, noise and filtering that
have become important in high-performance fiber communication systems.
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APPENDIX A

%Matlab m-file used to simulate the LP22 mode of an optical fiber.
%The animation approximates the field in the fiber core. An exact
%analysis requires the use of Bessel functions of the second kind,

%K _nu, and matched boundary conditions at the core cladding interface.
%The movie command runs the frames. The speed at which the frames
%run may be controlled here.

%Written by B. Jenkins; 9/97

nu=2; %Define the order of the Bessel function
a=4; %Fiber radius
pts=50; %Number of discretization points

r=[0:a/pts:a]'’; %Define cylindrical coordinate system
phi=[0:2*pi/pts:2*pi];
x=r*cos(phi);
y=r*sin(phi);
z=(bessel(1,1.75*r))*cos(nu*phi);
surf(x,y,z,abs(z)); %Plot the initial waveform in 3D
axis([-a a -a a -2*max(max(z)) 2*max(max(z))])
lim=axis;
view(-10,30)
pcolor(z); %Scale color using field amplitude
colormap(hot)  %Define the colormap
LP22m=moviein(20); %Allocate memory for movie frames
%Store successive frames
for j=1:20

surf(x,y,sin(2*pi*j/20)*z,abs(z));

axis(lim);

view(-10,30);

LP22m(:,j) = getframe;
end
%Run the movie one time
%movie(LP22m,1)

APPENDIX B

%Matlab m-file used to simulate group velocity in an optical fiber.
%The program gives a choice of using a dispersive or a non-dispersive
%material. Time is updated in the upper right corner as the
%simulation progresses.
%Written by B. Jenkins; 8/97
clear
clf
medium=input('ls this a dispersive(d) or non-dispersive(n) media?','s")
kb=12; %Define spatial and radial frequencies k and w for blue
kr=10.5; %and red waves...units are 1/um and 1/fs respectively
if medium=="d'

wb=(kb/5)*.95; %Multiply wb by .95 to demonstrate group velocity
end
if medium=="n'

wb=(kb/5);

/'S6t'c abed



end
wr=Kkr/5;
zinit=-4; %Define initial/final positions and step in um
zstep=.02;
zfinal=4;
z=zinit:zstep:zfinal;
t=0; %lnitial time
bwave=cos(wb*t-kb*z); %Define blue and red waves
rwave=cos(wr*t-kr*z);
gwave=bwave+rwave; %Green wave = blue + red
beat=abs(2*cos((wb-wr)*t/2-(kb-kr)*z/2)); %The envelope of the green wave
subplot(2,1,1);  %Start first plot
b=plot(z,bwave,'EraseMode’,'xor"); %PIlot blue wave
axis([zinit zfinal -3 3]);
xlabel('Position \itz\rm (\mum));
ylabel(\itb\rm, \itr\rm");
title(\itb\rm = cos(\omega_1\itt - \itk_{\rm1}\itz\rm) \itr\rm = cos(\omega_2\itt - \itk_{\rm2}itz\rm));
%set(gca,'Color',[0 0 0]);
hold on; %Hold axes
r=plot(z,rwave,'r',/EraseMode’,'xor"); %PIlot red wave
%legend here if desired
time=text(2,2,[\itt =\rm ",num2str(t)," fs']); %Give time and velocities
text(-3.5,2.5,["\itv_b = \rm',num2str(wb/kb)," \mum/fs'));
text(-3.5,1.75,[\itv_r =\rm',num2str(wr/kr)," \mum/fs");
hold off;, %Prepare for next plot
subplot(2,1,2); %Start second plot
g=plot(z,gwave,'q','EraseMode’,'xor"); %Plot green wave
axis([zinit zfinal -3 3]);
xlabel('Position \itz\rm (\mum));
ylabel(\itg\rm = \itb\rm + \itr\rm");
%set(gca,'Color',[0 0 Q));
hold on;
envg=plot(z,beat,'g:",'EraseMode','xor"); %Plot envelope of green
hold off;
'Press a key to continue'
pause;
%Now update plots for advancing time
for j=1:400,
t=j*.025;
bwave=cos(wb*t-kb*z);
rwave=cos(wr*t-kr*z);
gwave=bwave-+rwave;
beat=abs(2*cos((wb-wr)*t/2-(kb-kr)*z/2));
set(b,"YData',bwave);
set(r,'YData',rwave);
set(g,"YData',gwave);
set(envg,'YData',beat);
if rem(j,40)==0;
set(time,'String’,[\itt =\rm ",;num2str(t),’ fs');
end; drawnow; end;
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APPENDIX C

%Matlab m-file used to simulate pulse dispersion in an optical fiber.
%The file creates a Gaussian pulse in a stationary reference frame
%with a scaled optical frequency and plots the new pulse as position
%z in the fiber changes. The pulse is chirped and the colormap
%is successively adapted to simulate chirping of the pulse. Program
%requires Matlab function file plotcol.m as well to allow coloring
%of a parametric surface line.
%Written by B. Jenkins; 10/97
clear
clf
t=-512:1:511; %Define time scale
T0=40; %Pulse width
B0=.2; %Assume a phase velocity for the carrier
B2=38; %Dispersion coefficient in ps~2/km
z=0; %Initial Position
f=.020; %Optical Frequency
%Define the complex pulse (magnitude and phase)
T1=sqrt(TO 2-j*B2*z);
twopift=2*pi*f*t;
phase=twopift+B0*z;
A=(TO/T1)*exp(-0.5*(t/T1)."2-j*phase);
n=4096; %Define the size of the colormap
x=jet(n); %Choose a colormap
%The next line is used to scale the intensity of the colormap at
%different time points so that the pulses fades to black on the
%edges where the wave amplitude decreases to zero.
absA=(abs(A(1:16:1024)).7(1/10))'/max(abs(A).”(1/10));
%Choose the initial size of the colormap
colormap(diag(absA,0)*x(n/2-32:1:n/2+31,:));
p=plotcol(t,real(A),zeros(size(t)),-t);
axis([-500 500 -1 1))
set(gca,'Color',[0 0 0]);
xlabel('t (ps)")
ylabel('A(z,t)")
pause
%Begin the animation
fori=1:127,
z=i*1.5;
T1=sqrt(TO"2-j*B2*z);
phase=twopift+B0*z;
A=(TO/T1)*exp(-0.5*(t/T1)."2-j*phase);
absA=(abs(A(1:16:1024)).7(1/10))' /max(abs(A).~(1/10));
set(p,"YData',[real(A);real(A)]);

drawnow;
%Update the colormap every so often
if rem(i,4)==0;

colormap(diag(absA,0)*x(n/2-32-(i/4)*64:2*(i/4)+1:n/2+31+(i/4)*62,:));
end; end;
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Figure 1: (a) Fundamental mode. (b) Mode with 1. (¢) Mode withv = 2. (d) Mode withv = 2
and largek.
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(a) E' = cos(m't- B'2) E" = cos(n™t- I

EI' \ E“I

EI' + I|:'_I'II

Position z

Figure 2: (a) Two wavels’ andE” with different frequencies &t 0. (b) Superpositio’ + E”
att=0.
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(a) E' = cos(m't - B'z) E' = cos(mt- B''z)
vp’ =0.19 |,Lm4"fs ' ' ' '
2 B lprp” = |:|2 |J..m."lf5 t = 1':' fS 7

Erl Err

Er + Err

Position z (pum)

Figure 3: (a) Two wavels’ andE” with different frequencies &t 10 fsec. (b) Superpositidt
+ E” att = 10 fsec.
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Figure 4.
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Initial pulseA(0,t) before dispersion.

13

100

200

300

400

a00

€1'c61°S abed



Alz 1)

500 400 -300 -200 100 O 100 200 300 400 500
t ips)

Figure 5: Final pulsé(zt) after dispersion. Pulse is chirped with lower frequencies shifted
toward the front and higher frequencies shifted toward the back.
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