
Singularity Functions Revisited: Clarifications and Extensions 

for the Deflection of Beams of Non-Uniform Flexural Rigidity 

under Arbitrary Loading 

S. Boedo

Department of Mechanical Engineering 

Rochester Institute of Technology 

Rochester, NY 14623 

email: sxbeme@rit.edu 

Abstract 

The engineering design process involves understanding of the applicability of 

structural elements associated with a particular application. Beam structural elements are 

the prototypical example, and it is not surprising that beam stresses and deflections are 

essential course topics in all undergraduate mechanical and civil engineering degree 

programs.  Singularity functions are a well-known economical and practical solution 

method for beams subjected to multiple loads and supports.  However, the method as 

presented in most contemporary textbooks is often unclear to the student and instructor 

alike in the handling of function discontinuities and integration constants.  The method 

also appears to be limited to a small set of concentrated actions and polynomial 

functional forms, where more complicated loading conditions must be achieved through 

superposition. 

These perceived limitations of the singularity function method were addressed in 

a recently published paper, where in particular, singularity functions representing general 

functional forms were re-introduced to construct shear-moment diagrams. The work 

herein is to extend this paper and show how these general functional forms can be used to 

determine the deflection of beams of non-uniform flexural rigidity subjected to arbitrary 

loads. 

The solution methods presented here are at a level of mathematical rigor expected 

in a second-year undergraduate introductory strength of materials course or a subsequent 

undergraduate machine design course. 



                                                                                                   

1.  Introduction 

 

The creative process in engineering design is inevitably constrained by external 

forces which induce stresses and deflections in the structure. Exoskeleton skyscrapers are 

a contemporary example, where the objective is to maximize usable space by the 

elimination of load bearing interior columns. Traditional exoskeleton buildings, such as 

the John Hancock Center [1] and the Alcoa Building [2] are comprised of an interior core 

region which takes the majority of the tower’s load while a rectilinear exterior beam 

structure acts as a stabilizing feature. The One Thousand Museum [3] dispenses of the 

interior core altogether, whereupon the entire load is carried by an exoskeleton structure 

comprised of undulating, curved beam columns.  These columns also contribute as key 

aesthetic design elements of the interior space. Examples in the arts include kinetic 

sculptures [4], which are comprised of a variety of structural support elements. 

 

In these examples, beam structural elements are often a critical design component, 

and it is not surprising that beam stresses and deflections are fundamental course topics in 

all undergraduate mechanical and civil engineering degree programs. In the Mechanical 

Engineering Department at RIT, students are introduced to beam bending and deflection 

in a second-year strength of materials course (MECE 203).  The approach is a traditional 

one, starting with pure beam bending, followed with transverse loading leading to the 

construction of shear-moment diagrams.  Torsion of beams of circular cross-section is 

also covered.  The discussion concludes with the derivation of beam deflection using 

Euler-Bernoulli beam theory assuming uniform flexural rigidity. Laboratory experiments 

support the theoretical foundation as well. 

 

When a beam is subjected to a large number of external loads and moments, 

either in concentrated or distributed form, the process of constructing shear force and 

bending moment diagrams from repeated sectioning of the beam (as taught in MECE 

203) can be a very tedious and time consuming process.  Subsequent determination of 

beam deflection adds another layer of complexity to incorporate additional slope and 

displacements boundary conditions at singular points on the beam where the functional 

form of the bending moment is not directly integrable. Complicating the situation are 

beams which are comprised of different materials or beams which have non-uniform 

cross-sectional geometry. 

 

Singularity functions for shear-moment diagrams and beam deflections greatly 

expedite the computational process by eliminating the need to invoke continuity 

boundary conditions at the singular points. At RIT, singularity functions are introduced in 

a follow-up upper-division undergraduate elective course (MECE 350), where the 

method is used to determine stress and deflection of straight and curved beams of non-

uniform flexural rigidity.  The method is also coupled with Castigliano’s theorem and 

failure theories associated with static and dynamic loading.  Singularity functions are 

reinforced at the graduate level in a mechanics of solids course (MECE 785) for the 

solution of statically indeterminate beams and determination of structural influence 

coefficients, and as introductory material for instruction in finite elements (MECE 605). 



                                                                                                   

A sampling of contemporary textbooks [5-9] introduce and discuss the subject of 

singularity functions in a manner that can be confusing to both instructor and student.  In 

addition to inconsistent sign conventions and inconsistent treatment of singular points 

among different textbooks, the essential perceived limitation is that the method can only 

be used for external loading represented by a limited predefined set of polynomial-based 

functional forms.  In a recent paper by Boedo [10], clarification on the use of polynomial-

based singularity functions and extension of the method to represent arbitrarily-defined 

external loads was presented.   

 

The work herein is to extend this paper and show how these general functional 

forms can be used to determine the deflection of arbitrarily loaded beams of non-uniform 

flexural rigidity. The level of mathematical rigor employed in this paper is intentionally 

aimed at a level typically taught in an introductory-level calculus course and typically 

encountered by a first- or second-year mechanical engineering student. 

 

2.  Shear-moment distributions and beam deflections 

 

Much of what follows in this section is taken from Boedo [10] and is presented 

here for completeness. Figure 1 shows a beam subjected to an external load distribution 

q(x).  The origin of the x,y coordinate frame is attached to the left-most end of the beam, 

and the y-axis points upward. The load distribution q(x) includes external actions at the 

supports (concentrated reaction forces and moments) and is constructed using a 

combination of singularity functions shown graphically in Figure 2. In functional form, 

this set of singularity functions representing q(x) are given by 

 

f–2(x)  =   <x – a >–2                 (1)  

 

  f–1(x)   =  <x – a >–1               (2) 

 

f0(x) = <x – a>0    =  0  x < a 

           =  1  x > a              (3) 

 

 fn(x) = <x – a>n =    0    x ≤ a 

    =   (x – a)n  x ≥ a  n = 1, 2, …         (4) 

         

fs(x) = <x – a>0  f(x)      =    0      x < a 

                 f(x)   x > a            (5)  

 

 



                                                                                                   

 
                                   Figure 1. Sign conventions for beam bending 

 

 
 

                  Figure 2. Singularity functions 
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where f(x) is a smooth function (i.e. continuous, finite, and possessing all derivatives) for 

x > a.  In the foregoing, n ≥ 1 is an integer, and a is an arbitrary real number. Open circles 

denote the singular points of the function. 

Impulse singularity functions f-2(x) and f-1(x) are defined mathematically as a 

limit process applied to double- and single-pulse distributed loading, respectively [10]. 

The singularity function f0(x), also referred to as the step or Heaviside function, is strictly 

discontinuous at x = a and defined only in the sense of one-sided limits as x → a. 

Polynomial-based singularity functions fn(x) are all continuous for n ≥ 1, but their nth-

order derivatives are discontinuous at the singular point x = a.  

Contemporary textbook publications do not address the general-form singularity 

function fs(x) shown in equation (5), and this function was reintroduced from previous 

publications by Boedo [10] as a powerful extension to the singularity function method. 

Neither the continuity of the function fs(x) nor its derivatives are required at the (singular) 

point x = a.  

The integral properties of the singularity functions are given by [10] 

∫ <x – a >–2 dx   =  <x – a >-1   +  K   (6) 

∫ <x – a >–1 dx   =  <x – a >0   +  K   (7) 

∫fn(x) dx  =  <x – a>n+1 / (n+1)   +   K   n = 0, 1, 2, …    (8) 

∫fs(x) dx  =   <x – a>0  [g(x)  −  g(a)]   +   K       (9)  

where g(x) is the anti-derivative of f(x) defined by dg/dx =  f(x). 

Concentrated external load of magnitude P0 and concentrated external moment of 

magnitude M0 applied at an arbitrary point x = a on the beam are represented by first- and 

second-order impulse singularity functions q(x) = P0 <x – a>–1 and q(x) = M0 <x – a>–2, 

respectively.  The sign convention for q(x) represented by point and distributed loads is 

positive in the direction of the +y-axis. The positive sense of q(x) represented by the 

concentrated external moment M0 is a rotation about the –z axis. 

Figure 1 shows the sign conventions adopted for the shear force V(x) and bending 

moment M(x) defined on an arbitrary section cut.  Applying force and moment 

equilibrium to an infinitesimal beam element of width dx, the functions q(x), V(x), and 

M(x) are related by 

V(x) = ∫ q(x) dx + K1   (10) 

M(x) = ∫ V(x) dx + K2  (11)



If q(x) is constructed from singularity functions such that q(x) ≡ 0 for x < 0, it can 

be shown [10] that integration constants K1 and K2 are always zero. 

Assuming Euler-Bernoulli beam theory, the deflection of the beam is given by the 

second-order differential equation 

d2y / dx2 = M(x) / D(x)  (12) 

where flexural rigidity D(x) = E(x) I(x), defined by Young’s modulus E(x) and area 

moment of inertia I(x), is allowed to vary along the beam.   

3. Sample problems

Three examples are illustrated to clarify the use of singularity functions in the 

determination of beam deflections where distributed loading and distributed flexural 

modulus are present. In each case, the external load distribution q(x) ≡ 0 for x < 0, so that 

the integration constants K1 and K2 in obtaining M(x) are each zero. 

3.1 Example I:  Point-loaded beam with discontinuous flexural rigidity 

Figure 3 shows a simply-supported beam of length L subjected to a concentrated 

load P at the beam midspan.   The half-beam sections to the left and right of P have 

constant flexural moduli D0 and α D0, respectively, where scale factor α > 0. The 

distributed load q(x) is given by  

q(x)   =   – (P/2) < x > –1 + P < x  – (L/2) > –1  (13) 

Note that in this and succeeding examples, additional singularity functions for     

x ≥ L are not required to “turn off” the external load, as these additional functions do not 

contribute to the solution.  Integrating twice gives M(x), whereupon substitution of M(x) 

into equation (12) results in  

d2y /dx2  =  − P <x>1 /[ 2D(x) ]  + P <x – (L/2)>1 /[ 2D(x) ]  (14) 

with boundary conditions y(x = 0) = y(x = L) = 0. The flexural modulus D(x) itself is 

represented by step singularity functions as 

D(x) = D0 [ <x>0  + (α – 1) <x – (L/2)>0 ]   (15) 

Equation (14) with D(x) defined in equation (15) can be rewritten as 

d2y /dx2  =  − [P /(2D0)] <x>0 x 

− [P (1– α)/(2D0 α)] <x – (L/2) >0 x

+ [P / (D0 α)] <x – (L/2) >1 (16)



Figure 3. Point loaded beam with discontinuous flexural rigidity (Example I) 

Integration yields 

dy /dx  =  − [P /(2D0)] <x>0 (x2/2  −  0) 

− [P (1– α) /(2D0 α)] <x – (L/2) >0 (x2/2 – L2/8)

+ [P /(D0 α)] <x – (L/2) >2 /2 +  C1  (17) 

where equation (9) is applied to the integral of general-form singularity functions <x>0 x 

and <x – (L/2) >0 x. Integrating again yields the beam deflection 

y(x)  =     − [P /(12D0)] <x>0 x3 

− [P (1– α) /(48D0 α)] <x – (L/2) >0 (4x3 – 3L2x + L3)

+ [P /(6D0 α)] <x – (L/2) >3  +  C1x + C2  (18) 

Boundary conditions y(x = 0) = y(x = L) = 0 yield 

C1 = PL2 (1 + 2α) / ( 48D0 α )  (19) 

C2 = 0   (20) 

For α = 1, the beam has uniform flexural rigidity D0 throughout its span, and the 

deflection solution simplifies to  

y(x)  =   − (P /D0)[ <x>0 x3/12 −  <x – (L/2) >3/6  −  L2x / 16 ]  (21) 

Figure 4 shows beam deflections for a family of scale factors α ≥ 1.  Of particular 

interest is that the deflection approaches an asymptotic solution as α becomes large. As   

α → ∞, the right-most beam section becomes a rigid body, while the left-most beam 

section bends in a manner to maintain moment continuity at the midspan.  To find the 

deflection for α in the range 0 < α ≤ 1, the deflection shape for 1/α from Figure 4 is 

reflected about the midspan, and its corresponding deflection magnitude is scaled by a 

factor of 1/α. 
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Figure 4. Beam deflections for point loaded beam with discontinuous 

flexural rigidity (Example I) 

3.2 Example II:  Cantilever beam with general distributed loading 

Figure 5 shows a cantilever beam of length L and uniform flexural rigidity D0 

subjected to a distributed load of exponential form.  The external load distribution q(x) 

for this example is given by 

q(x) = R0 <x>–1  + M0<x>–2 + q0 <x − a>0 e(a – x)/L   (22) 

where reaction force and moment at the support are given by 

R0 = q0 L(ea/L −1 – 1)   (23) 

M0 = q0 L(a + L) −  2q0 L
2 ea/L −1  (24) 

The utility of the general-form singularity function is evident here to represent 

and integrate the exponential term <x − a>0 e(a – x)/L.  Since q(x) ≡ 0 for x < 0, the 

constants of integration can be dropped in finding V(x) and M(x). 

Solving in the same manner as Example I with boundary conditions y(x = 0) = 

dy/dx(x = 0) = 0 results in the beam deflection 

D0 y(x)   =     R0 <x>3/6  +  M0<x>2/2   +   q0L<x – a>3/6 

– q0 L
2  <x – a>2/2

+ q0 L
3  <x – a>1

– q0 L
4  <x − a>0 [ 1 – e(a – x)/L ] (25)



Figure 5. Cantilever beam with distributed load of exponential form 

(Example II) 

The beam deflection δ at the free end (x = L) is evaluated from equation (25) and 

is given by 

δ  =  [ q0 L
4 /(6D0)] [ e

a/L −1  –  (a/L)3 ]  (26) 

Figure 6 shows beam deflections for a family of parameters a/L.  Apart from the 

special case a/L = 0, employing conventional section-cuts to determine either the moment 

distribution or the deflection curve itself is a very impractical method of solution. 

Figure 6. Beam deflections for cantilever beam with distributed load of 

exponential form (Example II)  
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3.3 Example III:  Point Loaded Beam of Non-Uniform Diameter 

Figure 7 shows a simply supported beam of solid circular cross-section and 

constant Young’s modulus E0 subjected to a concentrated load P at the beam midspan. 

The beam has a non-uniform diameter given by 

d(x) = d0 (1 + A sin πx/L)   (27) 

The beam deflection in this example is given by solution of the differential equation 

d2y / dx2 = − 32P<x>1 / [E0πd0
4 (1 + Asin πx/L)4  ] 

+ 64P<x – (L/2)>1 / [E0πd0
4 (1 + Asin πx/L)4 ]  (28) 

with boundary conditions y(x = 0) = 0,  dy/dx (x = L/2) = 0. 

Further integration in closed-form is not possible here, so use of numerical 

integration will be employed.  Defining ξ = x / L, Y =  E0 d0
4 y / (PL3), equation (28) in 

non-dimensional form reads 

d2Y / dξ 2 = − 32<ξ >1 / [π (1 + Asin πξ)4  ] 

+ 64<ξ – 1/2)>1 / [π (1 + Asin πξ)4 ]  (29) 

which can be rewritten as 

d2 Y / dξ 2 = − (32/ π ) < ξ  >0 f1(ξ)  + (64/ π ) < ξ – 1/2 >0 f2(ξ)  (30) 

where 

f1(ξ) = ξ / (1 + A sin πξ)4  (31) 

f2(ξ) = (ξ – 1/2) / (1 + A sin πξ)4  (32) 

Formal integration of equation (30) gives 

dY / dξ  = − (32/π) < ξ  >0 [ g1(ξ)  –  g1(0) ] 

+ (64/π) < ξ – 1/2 >0 [ g2(ξ)  –  g2(1/2) ]   + C1  (33) 

where 

g1(ξ) =  ∫
𝜉

0
 [ s / (1 + A sin πs)4 ] ds   (34) 

g2(ξ) =  ∫
𝜉

0
 [(s – 1/2) / (1 + A sin πs)4 ] ds  (35)



 Figure 7. Point loaded beam of non-uniform diameter (Example III) 

Employing the boundary condition dY/dξ (ξ = 1/2) = 0 along with the observation 

that g1(0) = 0 yields C1 = (32/π) g1(1/2), so that equation (33) becomes 

dY/dξ  =    − (32/π) < ξ  >0 g1(ξ) 

+ (64/π) < ξ – 1/2 >0 [ g2(ξ)  –  g2(1/2) ]   + (32/π) g1(1/2)   (36) 

Formal integration of equation (36) gives 

Y(ξ)  =   − (32/π) < ξ  >0 h1(ξ)  −  (64/π) g2(1/2) < ξ – 1/2 >1 

+ (64/π) < ξ – 1/2 >0 [ h2(ξ)  –  h2(1/2) ]   + (32/π) g1(1/2) ξ  (37) 

where 

h1(ξ) =  ∫
𝜉

0
 g1(s) ds  (38) 

h2(ξ) =  ∫
𝜉

0
 g2(s) ds  (39) 

by taking into consideration that h1(0) = 0 and by setting integration constant C2 = 0 from 

boundary condition Y(ξ = 0) = 0. 

Numerical evaluation of the functions g1, g2, h1, and h2 can be facilitated using the 

fundamental theorem of calculus.  Given f(ξ) representing one of these functions, if the 

antiderivative function F(ξ) is defined as 

𝑎F(ξ) =  ∫
𝜉 f(s) ds  (40) 

then F(ξ) can be found from solution of the first-order initial value problem 

dF / dξ = f(ξ)  (41) 

P
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y

d(x)



with 

F(ξ = a)  =  0  (42) 

which can be solved numerically using well-known extrapolation formulae (Euler, 

Runge-Kutta, etc.)  

Figure 8 shows beam deflections for a family of shape factors A.  Positive and 

negative values of A represent beam barreling and beam tapering, respectively. The g and 

h functions were evaluated by solving equations (41-42) using Euler’s method with 

10000 uniformly spaced steps from ξ = 0 to ξ = 1. Essentially identical answers were 

obtained with 5000 uniformly spaced steps. Alternative variable step integral methods, 

such as those found in Matlab, could also be applied here. Apart from the special case    

A = 0, the general-form singularity functions allow for relative ease of solution which 

relieves the student of contemplating more sophisticated and unnecessary analysis 

approaches, such as finite elements.  

Figure 8. Beam deflections for point loaded beam of 

non-uniform diameter (Example III)  

4. Discussion and Conclusions

This paper has extended previously published work to provide clarification and to 

offer extension on the use of singularity functions in the determination of beam 

deflections. Examples have been constructed to provide the student a systematic approach 

to the solution. The key feature of this paper not emphasized in current textbooks is the 



ability to apply the method to essentially any specified distributed load function and 

generally non-uniform flexural rigidity.  

Alternatively, bending-induced beam deflection δ at an arbitrary location (x = a) 

on the beam can be determined from Castigliano’s theorem by applying a dummy load Q 

at the beam location of interest and computing the definite integral   

δ ≡ y(x = a)   =   ∫
𝐿

0
 [M(x) (∂M/∂Q) / D(x) ]|Q =0 dx  (43) 

where displacement δ is positive in the direction of the dummy load.  The midspan 

deflection for Examples I and III and the end beam deflection for Example II as given by 

equation (26) were checked in this manner. Castigliano’s method has been the traditional 

solution recourse to solve for beams of non-uniform flexural rigidity. However, it appears 

that one can readily determine the entire shape y(x) using the integral property of the 

general-form singularity function with little additional computational effort. 

Future work at RIT will incorporate the general-form singularity method into the 

mechanical engineering course curriculum. As the three examples have attempted to 

show, the efficacy of general-form singularity functions in a pedagogical sense is self-

evident.  It is impractical to expect students to solve such problems in a traditional sense 

using section cuts and additional continuity boundary conditions. 
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