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Abstract 

 
The trial-and-error and graphical methods for computing the internal rate of return (IRR) 
are traditionally taught in engineering economics and financial management courses.  
While developing an understanding for direct computation of the IRR may enhance the 
learning process, little attention is devoted to direct solution.  This paper explores the 
direct solution of the IRR using the roots of polynomials.  Direct computation is feasible 
in three cases: two cash flows during an N-year study period, three cash flows during a 
two-year period, and four cash flows during a three-year period with equal revenues in 
years 1-3.  As the degree of the polynomial increases, directly computing the IRR 
becomes laborious.  Sharing these points with engineering economics and management 
students may improve the understanding of both the IRR’s definition and its 
computational methods. 
 
Introduction 
 
The rate of return is a percentage figure that indicates the relative yield of different uses 
of capital.  Rate of return methods are used to compare investment alternatives.  Since 
the rate of return is an interest rate, the interpretation is straightforward.  The internal 
rate of return (IRR) is one of several that are either commonly used or have been 
proposed in the literature; the others include the minimum attractive rate of return 
(MARR) and the external rate of return (ERR),15 the accounting rate of return (ARR),14 
the overall rate of return,3,4 the modified internal rate of return (MIRR),9 the effective 
rate of return,2 and the adjusted modified internal rate of return (ADJMIRR).13  Some of 
the less frequently used rates of return have similar bases.8  The MARR is often used as a 
benchmark to which another rate of return is compared.15 

One definition of the IRR is “the rate that yields a present worth of zero by 
assuming that all cash flows are reinvested at the IRR11.”  Another definition is “the 
interest rate earned on the unrecovered project balance of investment such that, when the 
project terminates, the unrecovered project balance will be zero10.”  The two definitions 
are equivalent in that the IRR equates the present worth of project’s cash expenses with 
its cash receipts.  For a balance between expenses and income to occur, all income is 
presumed to be reinvested at an interest rate equivalent to the IRR.  That is, all returns on 
funds remain internally invested in the project, such that there is no unrecovered balance 
at the project’s termination.  The IRR is the interest rate at which: 
 

  EW (receipts) = EW (expenses),    (1) 
 P
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where EW is the equivalent worth of a project as represented by either the present worth, 
annual worth, or future worth.  The IRR is usually discussed in terms of the present 
worth, so the remainder of the paper uses this perspective.  The IRR can then be 
expressed as: 
 

 ΣN
k=1 Rk(P/F, IRR, k) = ΣN

k=1 Ek(P/F, IRR, k)    (2) 
 
where Rk represents the receipts in year k, k is the year of cash flow R or E, with 0 ≤ k ≤ 
N, N is the service life of the project (or the length of the study period), and Ek represents 
the absolute value of the expenses in year k.  The (P/F, IRR, k) expression is the discount 
factor, at the IRR, for the present or year zero equivalent of a future, year k value.  
Equation (2) can be rewritten as a difference, with the discount factors developed, as 
follows: 
 

  ΣN
k=1 Rk(1 + IRR)-k - ΣN

k=1 Ek(1 + IRR)-k = 0    (3) 
 
In both equations (2) and (3), the IRR is the unknown value for which the analyst has to 
solve. 
 
Problem Statement 
 
Two methods for finding the IRR are typically offered in engineering economics 
textbooks: trial-and-error and graphical.  In the trial-and-error method, an estimate of the 
IRR is substituted into equation (3).  If the result is positive, the interest rate is increased; 
if the result is negative, the rate is decreased.  The process continues until a solution is 
found.  In the graphical method, the value of equation (3) is plotted versus the interest 
rate.  Each point at which the curve crosses the x-axis is i’.  Each point of intersection is 
then determined by selecting two interest rates, one on each side of the abscissa, and 
connecting them with a straight line.  Linear interpolation is used to find i’.  If only one 
i’ is greater than zero, then i’ is the IRR.  If more than one i’ is greater than zero, then 
another project evaluation method is recommended. 
 Both the trial-and-error and graphical methods are recognized as being tedious 
and inefficient.10  Financial calculators, spreadsheet packages with IRR functions, and 
financial analysis software are substitutes for laborious manual calculations.  The user 
need enter only the cash flows and, if necessary, the time period of analysis.  
Nonetheless, engineering economics students are taught the trial-and-error and graphical 
methods as a means of developing an understanding of the concept of the IRR.  Further, 
calculators and computers with the desired functions are not always readily available to 
the analyst, so it is useful to know how to manually compute the IRR.       
 This paper examines direct solution methods for finding the IRR.  The need for 
such methods is evident in recognition of the monotony of trial-and-error and graphical 
approaches.  Further, the students in the author’s engineering economics course have 
been, at least initially, confused and dismayed at the lack of a direct solution method for 
the IRR.  The usefulness of direct solution through calculation of the roots of 
polynomials is examined.  It is determined that, for general cash flows, the quadratic 
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equation -- a second degree polynomial -- and, for constant revenues, the cubic equation 
-- a third degree polynomial -- are the highest-degree polynomials for which direct 
solution is practical. 
 
Two Cash Flows 
 
Park10 discusses direct solution methods for the IRR for two cases: a transaction 
consisting of two cash flows -- an investment and a single, future payment -- and a 
project with a service life of two years with up to three cash flows.  In the first case, the 
investment occurs in year zero and the future payment occurs in year N.  The setup for 
this case, using equation (3), is as follows: 
 

RN/(1 + i’)N - E0 = 0, 
 
where i’ is a root of the expression.  Solving this equation for (1 + i’)N produces the 
following: 
 

(1 + i’)N = RN/E0 

 

Finding the natural logarithm of both sides of this equation produces: 
 

N[ln(1 + i’)] = ln(RN/E0), so 
ln(1 + i’) = [ln(RN/E0)]/N 

 
Finally, taking the exponential of both sides of the latter expression yields: 
 

1 + i’ = exp{[ln(RN/E0)]/N}, so 
        i’ = exp{[ln(RN/E0)]/N} – 1    (4) 

 
The IRR is equal to i’ if i’ is greater than 0, as follows: 
 

       i’ > 0 if exp{[ln(RN/E0)]/N} > 1    (5) 
 
Three Cash Flow, Two-Year Study Period 
 
Park10 also discusses a direct solution method for a second case, in which three cash 
flows occur, one at time zero, then at the end of years 1 and 2, respectively.   The 
following discussion is an expanded examination of this case.  Since the concern of rate 
of return methods is with investment alternatives, an investment E0 occurs in year zero.  
It is presumed that the future cash flows are known.  Either an expense E1 or income of 
R1 occurs at the end of year 1.  Similarly, either an expense E2 or income R2 occurs at the 
end of year 2.  The three possible scenarios are: (E0, R1, R2), (E0, E1, R2), and (E0, R1, E2).  
The equation (3) setups for these cash flows are as follows: 
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R2(1 + i’)-2+ R1(1 + i’)-1 - E0 = 0, 
R2(1 + i’)-2 - E1(1 + i’)-1 - E0 = 0, and 

-E2(1 + i’)-2 + R1(1 + i’)-1 - E0 = 0. 
 
Multiplying each term by (1 + i’)2 and shifting all terms to the right side of the equal sign 
yields: 
 

          E0(1 + i’)2  - R1(1 + i’) - R2 = 0,    (6) 
          E0(1 + i’)2  + E1(1 + i’) - R2 = 0, and   (7) 
         E0(1 + i’)2  - R1(1 + i’) + E2 = 0.    (8) 

 
Equations (6)-(8) have the quadratic form ax2 + bx + c = 0, where a is (the absolute value 
of) E0, b is -R1 in equations (6) and (8) and E1 in equation (7), c is -R2 in equations (6) 
and (7) and E2 in equation (8), and x is (1 + i’).  The roots of a quadratic equation are x = 
[-b + (b2 – 4ac)0.5]/ 2a, so for equation (6): 
 

(1 + i’) = [R1 + (R1
2 + 4E0R2)

0.5]/ 2E0, so 
      i’ = {[R1 + (R1

2 + 4E0R2)
0.5]/ 2E0} – 1.   (9) 

 
For equation (7), 
  

  (1 + i’) = [-E1 + (E1
2 + 4E0R2)

0.5]/ 2E0, so 
       i’ = {[-E1 + (E1

2 + 4E0R2)
0.5]/ 2E0} – 1.   (10) 

 
For equation (8), 
 

  (1 + i’) = [R1 + (R1
2 - 4E0E2)

0.5]/ 2E0, so 
       i’ = {[R1 + (R1

2 - 4E0E2)
0.5]/ 2E0} – 1   (11) 

 
In both equations (9) and (10), the term under the radical, either (R1

2 + 4E0R2) or (E1
2 + 

4E0R2), is always positive.  Further, in equation (9), (R1
2 + 4E0R2) is greater than R1, and, 

in equation (10), (E1
2 + 4E0R2) is greater than |E1|.  Hence, in both quadratic equations, 

there are two roots, with one positive and one negative.  There is no need to be concerned 
with the negative root, which is obtained when the minus sign is the first arithmetic 
operator.  For the positive root, a further condition is required for the value of i’ to be 
positive.  In equation (9), the condition is: 
 

i’ > 0 if [R1 + (R1
2 + 4E0R2)

0.5] > 2E0    (12) 
 
In equation (10), the condition is: 
 

i’ > 0 if [-E1 + (E1
2 + 4E0R2)

0.5] > 2E0   (13) 
 
If these conditions are satisfied, then i’ is the IRR. 
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Three Cash Flow, Two-Year Study Period, Two Positive Roots 
 
A complication is presented in equation (11) in that the term under the radical can be 
negative if 4E0E2 is greater than R1

2.  Hence, a requirement is that this not happen; i.e., 
R1

2 ≥ 4E0E2.  Given that this condition is satisfied, then the term under the radical is 
always less than R1.  Both roots of the quadratic, therefore, will be positive.  Then, for 
the value of i’ to be positive, the following conditions must be met: 
 

i’ > 0 if [R1 + (R1
2 - 4E0E2)

0.5] > 2E0 and R1
2 ≥ 4E0E2  (14) 

   
There can be two values of i’ which are both positive and which meet the required 
conditions.  If only one of the i’ values is greater than zero, then i’ is the IRR.  If both 
values of i’ are greater than zero, then, without any knowledge of external reinvestment 
rates, it is not necessarily clear which i’ to use as the IRR.  The two positive roots 
problem is inherent in the fact that the sign of the cash flows changes more than once 
during the study period.  Further investigation reveals that, in assessing any investment 
alternative with a multiyear service life in which the sign of the cash flows changes two 
or more times, by Descartes’ Rule of Signs,6 the number of positive roots either equals 
the number of sign changes, or is less than the number of sign changes by an even 
integer.  When there is more than one positive root, it is a challenge to determine which, 
if any, of the positive i’ values are the IRR. 

An extensive amount of research has been conducted on the “multiple IRR” 
problem.  Arrow and Levhari1 argue that the life of a project can be selected to ensure 
that its present worth continuously declines as a function of i’.  If this condition exists, 
then a positive i’ root will be unique.  This approach presumes that the project life is a 
variable, and that it can be chosen before the project is undertaken.  Robinson and 
Cook12 offer the perspective of “incentive consistency,” in which a project is terminated 
at the point at which its present worth begins to decrease.  To apply these techniques to 
the somewhat trivial three cash flow case, the sequence expressed in equation (8) might 
be terminated at the end of year two to avoid the third year’s expenses.   

Given two positive i’ values, to evaluate the ending balance of a project, Park10  
describes a net investment test.  In it, the analyst tracks the investment and its return, 
using each i’, until the end of the project.  If the ending balance is less than or equal to 
zero, then i’ is not the IRR.  The method is readily applied to a three cash flow – two year 
study period problem.  As the number of cash flows and the length of the study period 
increase, the test becomes labor intensive. 

To avoid the ambiguity of multiple i’ values, it is best to use an alternative 
project evaluation procedure, such as an equivalent worth method or the external rate of 
return.  Both Arrow and Levhari1 and Robinson and Cook12 use the present worth 
method in interim evaluations before selecting an IRR.  The external rate of return is 
particularly useful when an interest rate is desired as a measure, but when i’ is potentially 
greater than the maximum available external investment rate.5     
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Four Cash Flow, Three-Year Study Period 
 

The preceding discussion has established two limitations on the types of problems 
considered in this paper.  First, each project is an investment alternative.  Second, it is 
presumed that the future cash flows are known.  To continue the analysis, a third 
limitation is required: the investment is “simple” in that there is only one change of sign 
in the cash flows – an investment, possibly followed by expenses during the first few 
years of the project, is followed by some income, with no further expenses.   
 Given these conditions, the development of direct-solution methods for the IRR 
can continue.  First, it will be helpful to rewrite equation (3) as a polynomial, in a form 
similar to equations (6)-(8):   
 

E0(1 + i’)N + E1(1 + i’)N-1 +…+ Ek(1 + i’)N-k + Rk+1(1 + i’)N-k-1 + Rk+2(1 + i’)N-k-2 +…+ RN-1(1 + i’) + RN  = 0
 (15) 

 
Two cases have been discussed: two terms, E0(1 + i’)N and RN, and three terms, with N = 
2 and k = 0 or 1.  An additional, “nonsimple” investment case was considered in the 
discussion of the quadratic expression.  The next case to consider is a year zero 
investment followed by receipts in years 1, 2 and 3.  Equation (16) expresses this case: 
 

        E0(1 + i’)3 - R1(1 + i’)2 - R2(1 + i’) - R3 = 0, or 
(1 + i’)3 – (R1/E0)(1 + i’)2 – (R2/E0)(1 + i’) – (R3/E0)          (16) 

 
Equation (16) has the form y3 + py2 + qy + r = 0, where (1 + i’) is y, -(R1/E0) is p, -
(R2/E0) is q, and -(R3/E0) is r.  The absolute value of E0 is used.  To facilitate a solution, a 
more convenient form is:7 
 

x3 + ax + b = 0, where     (17) 
y = x – (p/3) = x + (R2/3E0), 

a = (1/3)(3q – p2) = [-3(R2/E0) - (R1/E0)
2]/ 3, and 

b = (1/27)(2p3 – 9pq + 27r) = [-2(R1/E0)
3 - 9(R1/E0)(R2/E0) - 27(R3/E0)]/ 27 

 
The solutions to equation (17) are given by: 
 

x = A + B, -0.5(A + B) + 0.5(A – B)(-3)0.5, and –0.5(A + B) – 0.5(A – B)(-3)0.5, where 
A = [-0.5b + ((0.25b2 + (a3/27))0.5](1/3), and 

B = [-0.5b – ((0.25b2 + (a3/27))0.5](1/3) 
 
If A = B; that is, if 0.25b2 = -a3/27, then, there are three real roots; otherwise, two of the 
roots are imaginary, and the only real root is x = A + B: 
 
x      = {[(R1/3E0)

3 + (R1R2/6E0
2) + (R3/2E0)] + {[0.25[-2(R1/3E0)

3 – (R1R2/3E0
2) - (R3/E0)]

2 +  
(1/27)[-(R2/E0) - (1/3)(R1/E0)

2]3]0.5}(1/3) + {[(R1/3E0)
3 + (R1R2/6E0

2) + (R3/2E0)] – 
{[0.25[-2(R1/3E0)

3 – (R1R2/3E0
2) - (R3/E0)]

2 + (1/27)[-(R2/E0) - (1/3)(R1/E0)
2]3]0.5}(1/3)  

 
Finally, i’, which is y – 1 in the original cubic equation, can be found from x, since y = x – (p/3): 
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i’     = {[(R1/3E0)
3 + (R1R2/6E0

2) + (R3/2E0)] + {[0.25[-2(R1/3E0)
3 – (R1R2/3E0

2) - (R3/E0)]
2 +  

(1/27)[-(R2/E0) - (1/3)(R1/E0)
2]3]0.5}(1/3) + {[(R1/3E0)

3 + (R1R2/6E0
2) + (R3/2E0)] – 

{[0.25[-2(R1/3E0)
3 – (R1R2/3E0

2) - (R3/E0)]
2 + (1/27)[-(R2/E0) - (1/3)(R1/E0)

2]3]0.5}(1/3) +  
(R2/3E0) – 1                                  (18) 

 
While solvable, equation (18) is quite tedious.  Because there are 17 terms, the manual 
application of equation (18) would offer no greater efficiency than a trial-and-error or 
graphical method.  An alternative approach would be to enter the formula into a 
spreadsheet, enter the cash flow data, and allow the software to perform the 
computations.  This approach, though, would merely duplicate the IRR function that 
many spreadsheets and financial calculators already feature.  Spreadsheets typically use 
an iterative, trial-and-error method to find the IRR.  The user must input the cash flows 
in the proper sequence; in some cases, a starting value and a time period of analysis must 
be provided. 
 Another consideration is that the number of real roots of the polynomial varies as 
a function of the discriminant.  For equation (17), the discriminant D is determined as 
follows: 

 
D = -4a3 – 27b2,                (19) 

 
where a and b are as defined for the cubic equation.  For D < 0, there is only one real 
root, although, if a = b, there are three real roots, with two equal.  For D > 0, there are 
three distinct real roots.  Given that the expression for the roots of a polynomial equation 
gets longer as the degree of the equation increases, and that the conditions governing the 
number of real roots become increasingly complex, it is evident that direct solution for 
general cash flows is practical only for the two and three cash flow cases.  
 
Four Cash Flows, Three Year Study Period, Equal Revenues 
 
A special case exists when the revenues in years 1-3 are the same.   This scenario 
includes a year zero investment of E0, followed by a receipt of R in each of years 1, 2 and 
3.  Equation (20) expresses this case: 
 

        E0(1 + i’)3 - R(1 + i’)2 - R(1 + i’) - R = 0, or 
(1 + i’)3 – (R/E0)(1 + i’)2 – (R/E0)(1 + i’) – (R/E0)            (20) 

 
Equation (20) can be reexpressed in the form x3 + ax + b = 0, with a and b as defined for 
equation (17), as follows: 
 

x3 – [(1/3)(R/E0)
2 + (R/E0)]x – [(2/27)(R/E0)

3 + (1/3)(R/E0)
2 + (R/E0)] = 0      (21) 

 
The discriminant of equation (21), using equation (19) for D and the development of a 
and b that follows equation (17), is: 
 

D = -3(R/E0)
4 – 14(R/E0)

3 – 27(R/E0)
2  
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Within the constraints of this case – an investment at time zero and revenues in years 1-3 
– D will always be negative.  Thus, equation (21) has one real root, as follows: 
 
x      = {[(1/27)(R/E0)

3 + (1/6)(R/E0)
2 + 0.5(R/E0)] + {[0.25[-(2/27)(R/E0)

3 – (1/3)(R/E0)
2 - (R/E0)]

2 + 
(1/27)[-(R/E0) - (1/3)(R/E0)

2]3]0.5}(1/3) + {[(1/27)(R/E0)
3 + (1/6)(R/E0)

2 + 0.5(R/E0)] – 
{[0.25[-(2/27)(R/E0)

3 – (1/3)(R/E0)
2 - (R/E0)]

2 + (1/27)[-(R/E0) - (1/3)(R/E0)
2]3]0.5}(1/3)  

 
The equation for x can be simplified by completing the products and combining similar 
terms.  Then i’, which is y – 1 in the original cubic equation, can be found from x, since 
y = x – (p/3): 

 
i’      = {(R/E0)[(1/27)(R/E0)

2 + (1/6)(R/E0) + 0.5 + [(1/36)(R/E0)
2 + (7/54)(R/E0) + 0.25]0.5]}(1/3) + 

{(R/E0)[(1/27)(R/E0)
2 + (1/6)(R/E0) + 0.5 - [(1/36)(R/E0)

2 + (7/54)(R/E0) + 0.25]0.5]}(1/3) + 
(1/3)(R/E0) – 1                 (22) 

 
To ensure that i’ is positive, an approximate criterion is that the sum of the three receipts 
exceeds the investment.  Equation (22), with 13 terms, is less tedious than equation (18).  
The equation actually features seven different terms, because six of the terms are 
repetitive.  In the special case in which the revenues in years 1-3 are equal, therefore, the 
direct solution of the IRR is feasible.   

 
Other Forms 

 
A direct-solution procedure is offered by Xepapadeas,16 who uses a transfer function 
model to find the IRR.  The method is based on the premise that future cash flows are 
often difficult to obtain.  For example, in equation (6), E0 may be known, but there may 
be no useful estimates of R1 and R2.  The model establishes a transfer function between 
the investment, or expenses, and the outputs or receipts.  The function is based on the 
notion that a relationship exists between future receipts and past expenses.  The function 
is presumed to be linear and is the ratio of two polynomials.  Xepapadeas16 proceeds to 
apply the model to several manufacturing industries.  Each application requires the 
estimation of a linear filter equation that enables the transfer function to link the input, or 
expenses, with the output, or receipts.  The equation can be developed empirically.  This 
mathematically rigorous procedure is appropriate when the future cash flows are not 
known.  A lack of knowledge of future cash flows probably represents reality.  In 
contrast, the current paper only considers situations in which the future cash flows are 
known.  Such is the condition in the problems encountered in introductory engineering 
economics courses.  Also, in many situations, the engineering economist may reasonably 
be able to estimate an investment’s future receipts.    
 
Summary and Conclusion 
 
This paper offers direct solution methods for the IRR for three cases:  two cash flows 
during an N-year study period, three cash flows during a two-year study period, and four 
cash flows during a three-year study period with equal revenues in years 1-3.  Table 1 
summarizes the methods.  The absolute values of the expenses are used in all of the 
equations.  The equation for the IRR is most useful in four cash flow cases:   (E0, RN ), 
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(E0, R1, R2), (E0, E1, R2), and (E0, R, R, R).  Lines 1-3 and 5 in Table 1 provide the 
solutions for these.  In the expense-receipt-expense case (E0, R1, E2), it is possible to 
obtain two positive roots from the equation in line 4.  If only one root is positive, then i’ 
is the IRR.  If two i’ values are positive, it is a challenge to determine which i’, if any, is 
the IRR.  The ambiguity can be avoided by using an alternative project evaluation 
method, such as an equivalent worth (EW) method or the ERR.  A direct solution 
procedure was developed for the (E0, R1, R2, R3) case.  The computation of 17 terms in 
the equation for i’ is considered to be impractical, however, given the availability of trial-
and-error methods, graphical methods, IRR spreadsheet functions, and financial 
calculators.  Nonetheless, when there are two cash flows during an N-year period, three 
cash flows during a two-year period, or four cash flows during a three-year period with 
equal revenues in years 1-3, the direct solution of the IRR is an option.  The equations 
listed in Table 1 can be used as both analytical and instructional tools.  Equation (18) for 
the four cash flows, three-year study period case can be used in the learning process to 
demonstrate the complexity of the problem, potentially enhance the understanding of the 
IRR, and encourage the usage of more efficient computational tools. 
 A suggested approach for incorporating the results of this paper into an 
engineering economics or financial management course is as follows: 
 

• Introduce the IRR and provide a definition, as in paragraph 2 under 
“Introduction.” 

• Present the equation for the IRR – equations (3) and (15) offer two forms. 
• Inform the students that the IRR is directly solvable in four cases.  Present the 

equations as listed in Table 1.  Alternatively, students could be assigned the 
task of developing the equations for the (E0, RN) and (E0, R1, R2) cases. 

• Apply one or more of the equations in Table 1 to example problems, such as 
those presented in the Appendix. 

• Present the 4-cash flows, 3-year period case, and present equation (18).  
Emphasize that the equation, while solvable, is tedious.  Accentuate the 
discussion with the third sentence following equation (19), which concludes 
“…it is evident that direct solution for general cash flows is practical only for 
the two and three cash flow cases.” 

• Describe and demonstrate both the trial-and-error and graphical methods for 
solving for the IRR, emphasizing cases with four or more cash flows and three 
or more year study periods.  Further, discuss the IRR function that is available 
in spreadsheet software.   

• List this paper as recommended (but not necessarily required) reading. 
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Table 1.  Direct Solution Methods for the IRR 
 
Number of 
Cash Flows 

Study 
Period 

Sequence of 
Cash Flows 

 
IRR 

 
Conditions 

 
2 

 
N 

 
E0, RN 

 
exp{[ln(RN/E0)]/N} – 1 

 
exp{[ln(RN/E0)]/N} > 1 

 
3 

 
2 

 
E0, R1, R2 

 
{[R1 + (R1

2 + 4E0R2)
0.5]/ 2E0} – 1 

 
[R1 + (R1

2 + 4E0R2)
0.5] > 2E0 

 
3 

 
2 

 
E0, E1, R2 

 
{[-E1 + (E1

2 + 4E0R2)
0.5]/ 2E0} – 1 

 
[-E1 + (E1

2 + 4E0R2)
0.5] > 2E0 

 
3 

 
2 

 
E0, R1, E2 

 
{[R1 + (R1

2 - 4E0E2)
0.5]/ 2E0} – 1 

 
If one i’ is positive, then i’ = IRR. 
If two roots are positive, then use 
EW or ERR method. 

 
R1

2 ≥ 4E0E2 and 
 
[R1 + (R1

2 - 4E0E2)
0.5] > 2E0  

 
4 

 
3 

 
E0, R, R, R 

 
see equation (a) below 

 
ensure that 3R > E0 

  
(a) IRR = {(R/E0)[(1/27)(R/E0)

2 + (1/6)(R/E0) + 0.5 + [(1/36)(R/E0)
2 + (7/54)(R/E0) + 0.25]0.5]}(1/3) + 

{(R/E0)[(1/27)(R/E0)
2 + (1/6)(R/E0) + 0.5 - [(1/36)(R/E0)

2 + (7/54)(R/E0) + 0.25]0.5]}(1/3) + (1/3)(R/E0) – 1 
  
 
Appendix: Example Applications of Direct Solution Methods to the IRR 
 
Two Cash Flows: Equation (4) 
Year 0: -$35,000, Year 8: $100,000   
IRR = exp{[ln(100,000/35,000)]/8} – 1 = exp(0.13122) – 1 = 0.1402 or 14.02% 
 
Three Cash Flows (E0, R1, R2): Equation (9) 
Year 0: -$7,000, Year 1: $4,000, Year 2: $4,500  
IRR = {[4,000 + [(4,000)2 + 4(7,000)(4,500)]0.5]/2(7,000)} – 1 

=  [(4,000 + 11,916.375)/14,000] – 1 
=  0.1369 or 13.69% 

 
Three Cash Flows (E0, E1, R2): Equation (10) 
Year 0: -$600, Year 1: $-200, Year 2: $1,200  
IRR   = {[-200 + [(200)2 + 4(600)(1,200)]0.5]/2(600)} – 1 

= [(-200 + 1,708.8007)/1,200] – 1 
=  0.2573 or 25.73% 

 
Four Cash Flows (E0, R, R, R): Equation (22) 
Year 0: -$3,000, Year 1: $1,400, Year 2: $1,400, Year 3: $1,400 
IRR = {(1,400/3,000)[(1/27)(1,400/3,000)2 + (1/6)(1,400/3,000) + 0.5 + [(1/36)(1,400/3,000)2 + 

(7/54)(1,400/3,000) + 0.25]0.5]}(1/3) +  {(1,400/3,000)[(1/27)(1,400/3,000)2 + (1/6)(1,400/3,000) 
+ 0.5 - [(1/36)(1,400/3,000)2 + (7/54)(1,400/3,000) + 0.25]0.5]}(1/3) + (1/3)(1,400/3,000) – 1 

= {(0.46667)[0.008066 + 0.077778 + 0.5 + (0.006049 + 0.060494 + 0.25)0.5}(1/3) + 
{(0.46667)[0.008066 + 0.077778 + 0.5 - (0.006049 + 0.060494 + 0.25)0.5}(1/3) + 0.15556 - 1  

=    [(0.466667)(0.585844 + 0.562622)](1/3) + [(0.466667)(0.585844 - 0.562622)](1/3)  - 0.844444 
=     0.812285 + 0.221293 – 0.844444 
=     0.1891 or 18.91% 
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