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Standing and Traveling Waves on Transmission Lines: Getting it Right  
 

Introduction 

 

In the recent engineering education literature there have been numerous papers dealing with 

strategies for teaching electrical transmission lines.  These papers approach the assistance in 

teaching from two points of view.  The first is the use of simple low-cost experiments to 

demonstrate the concepts 
1-3

 and the second approach employs computer animation 
4, 5

.  Another 

recent paper discusses the concept of teaching transmission lines early in the electromagnetics 

sequence 
6
. 

 

Seeking clarification to the problem of sinusoidally driven, arbitrarily terminated, lossless 

transmission lines one of the authors asked the question, “How does the voltage on the line 

behave?”  In order to answer this question some MATLAB
TM

 scripts were written to animate the 

voltage on the line. In examining these animations more questions arose about the concept of 

standing waves.  In the examination of the animations the authors were confounded because for 

arbitrary termination impedance the resulting waveform did not “stand” as is the case for the 

commonly discussed short-circuit and open-circuit terminations.  Consultation of a number of 

electromagnetics textbooks found that the term “standing wave” is often used to describe the 

interference pattern created by a combination of forward and backward traveling waves of the 

same wavelength (or frequency).  As we shall show this definition is incomplete and leads to a 

semantic error in a number of contemporary textbooks. 

 

Standing or Stationary Waves 

 

After the search of electromagnetics textbooks it was decided to look on the web for information 

which is contained on physics websites. Standing waves are created by the addition of two 

oppositely traveling waves of equal wavelength and amplitude.   There seems to be an agreement 

that the terms standing waves and stationary waves are synonymous and that such waves are 

characterized by nodes (points of zero response) and antinodes (points of maximum response) 

and that there is no energy transport in the direction of propagation 
7
. 

 

A final resolution to the definition problem came with a search of Lord Rayleigh’s 1891 edition 

of The Theory of Sound 
8
 wherein the above stated definition was confirmed. The Rayleigh 

definition essentially states that sinusoidal waves are stationary (standing) if they are of the form 

)α-zβcos()ε-tωcos(P)t,z(w =         (1) 

or after employing the appropriate trigonometric identity 

)]αε-zβ-tωcos()α-ε-zβtω[cos(
2

P
)t,z(w +++=     (2) 

We see that expression (2) is the sum of forward and backward traveling waves each of 

amplitude P/2.  A similar result may be found in the handbook of Korn and Korn 
9
. 
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Some Transmission Line Theory 

 

Consider the lossless transmission line illustrated in Figure 1 with source impedance Zg and 

terminal impedance ZL.   

 

 

 

 

 

 

 

 

 

 

 

            Figure 1. Lossless Transmission Driven by a Sinusoidal Source. 

 

The steady-state sinusoidal voltage and current on the line are governed by the phasor form of 

the telegrapher’s equations or 

 I'Lj
dz

dV
ψ/?           (3) 

and 

V'Cj
dz

dI
ψ/?          (4) 

where L’ and C’ are the respective per unit length inductance and capacitance and V(z) and I(z) 

are the phasor voltage and current as functions of location.  The characteristic impedance of the 

line is Z0 = 'C/'L  and the propagation velocity 'C'L/1u p ? . 

 

The solution for the phasor voltage on the line after application of the terminal boundary 

condition is 

]ee[V)z(V
zjzj

0
δδ Ι−? /−         (5) 

where 'C'Lψδ ? and Ι  is the complex reflection coefficient defined by 

σΙΙ 2j

0L

0L e
ZZ

ZZ
?

−

/
?         (6) 

In some of the engineering education literature the interference pattern given by calculation of 

the magnitude of (5) for any nonzero value of Ι  is termed a standing wave.  As will now be 

shown this solution of expression (5) does not, in general, result in a standing wave.  Using the 

polar form forΙ , V(z) may be written as 

]ee[eV)z(V
)z(j)z(jj

0
σδσδσ Ι −−/− −?       (7) 

For any general termination expression (5) may be rewritten as 

 }e)1(]ee[{eV)z(V
)z(j)z(j)z(jj

0
σδσδσδσ ΙΙ −/−−/− /−−?    (8) 

In general −
0V  is complex and can be written as ηj

0 eV
− so V(z) is 

L’, C’, up, Z0 

Vg 
V(z) 

VL 

z = -L z = 0 

Zg 

Vin ZL 
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 }e)1(]ee[{eV)z(V
)z(j)z(j)z(j)(j

0
σδσδσδση ΙΙ −/−−/−− /−−?    (9) 

and the resulting time domain solution is 

 } ϒ)ztcos()1()tcos()zcos(2V)t,z(v 0 ηδψΙσηψσδΙ −//−−−−? −  (10) 

The first term is a standing wave as defined by Rayleigh in expression (1) and the second term a 

forward traveling wave and clearly the general solution to this problem is not simply a standing 

wave as purported in some of the textbook literature but rather a superposition of both a standing 

wave and a forward traveling wave.  It appears that this semantic error has been in the textbook 

literature for at least half a century or perhaps much longer.   

If 1?Ι  then relation (10) becomes 

)tcos()zcos(V2)t,z(v 0 σηψσδ −−−? −       (11) 

which is a standing wave as defined by Rayleigh.
8  

 From relation (6) it is easy to see that the 

only way for 1?Ι  is for ZL to be zero, infinity or imaginary (reactive). 

If 0?Ι then the solution becomes  

)ztcos(V)t,z(v 0 ηδψ −/? −        (12) 

which is a forward traveling wave. An expression similar to (10) for the current on the line can 

be developed and then both can be evaluated at z = 0 and then the average power at the load may 

be evaluated and we can see that this power is transmitted to the load by only the forward 

traveling wave portions of the voltage and current expressions.   

 

There are several misnomers that persist as a result of this semantic problem.  The first is the 

term the standing wave diagram which is given by plotting the magnitude of either relation (5) or 

(9) as a function of z regardless of the value of Γ .  This might better be referred to as the 

amplitude diagram since it represents the voltage amplitude along the line.  The standing wave 

ratio is the other misnomer and is the ratio of the maximum to the minimum of the so called 

standing wave diagram. 

 

An Example 

 

Consider the lossless line with the following parameter values 

  Z0 = 300 Ω   L = 5200 m 

 Zg= 300 Ω   up = 2x10
8
 m/s 

 f = 10
5
 Hz   Vg = 1 ∟0°  V 

We shall examine what happens as we vary the load impedance ZL by considering three cases:  

1) ZL = ∞ (open circuit termination, 1Γ = ), 2) ZL = 300 Ω (the matched case, 0Γ = ) and 3) ZL 

= 500 Ω (the arbitrary unmatched case, 25.0Γ = ). 

 

Case 1 ZL = ∞ (Open Circuit Termination) 

The voltage on the line is shown in Figure 2 for 10 values of time over one temporal period.  In 

this case the voltage on the line is a standing wave with the associated nodes and antinodes. 
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 Figure 2.  Standing Waves on Transmission Line with Open Circuit Termination,  

Z0 = 300 Ω, ZL = ∞ Ω. 

. 

Case 2 ZL = 300 Ω  (Matched Termination) 

Figure 3 illustrates the line voltage for the case where the terminal impedance is matched to the 

characteristic impedance of the line (300 Ω).  This is a forward traveling wave with an amplitude 

of 0.5 volts 

. 
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Figure 3. Traveling Voltage Waves for a Terminal Impedance Matched to the Line,  

Z0 = ZL = 300 Ω.   

. 
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Case 3 ZL = 500 Ω (Arbitrary Unmatched Termination) 

Figure 4 illustrates the voltage on the line for a mismatched load impedance.  The traveling wave 

nature can be seen clearly superimposed over the standing wave.  There are no nodes in this case 

as opposed to those shown in Figure 2.  The solution is neither a pure standing wave nor a pure 

traveling wave but a combination of the two. 
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Figure 4. Forward Traveling and Standing Voltage Wave for an Unmatched Termination,  

Z0 = 300 Ω, ZL = 500 Ω. 

 

For the case of a short circuit termination or a reactive termination the magnitude of the 

reflection coefficient is unity and the voltage waveform on the line is similar to that of Figure 2. 

 

Conclusion 

 

The authors have shown that the only when a lossless transmission line is terminated by a load 

without energy dissipation can standing waves alone develop on the line.  In any other case the 

waves on the line are a combination of a standing and a forward traveling wave. 

 

In the process of exploring animation of the transmission line problem the first author became 

interested in how animation might clarify the teaching of other concepts described by partial 

differential equations.  As a result more than fifty scripts were developed to animate problems in 

heat conduction, beam and string vibration, groundwater transport, wave propagation and fluid 

dynamics. The interested reader can access all these MATLAB
TM

 scripts for animation at the 

website http://www.eng.uwyo.edu/classes/matlabanimate 
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