
Statistical Programming Education Through Physics Research

Daniel Katz
Department of Physics, University of Massachusetts Lowell

Lowell, MA 01852, USA
daniel katz1@student.uml.edu

March 1, 2014

Abstract

General Relativity (GR) is currently our best guess at how gravity works and is one of the most successful physical
theories ever enunciated. However, aside from being completely incompatible with Quantum Field Theory (QFT),
which is also astonishingly accurate, GR forces us to accept some strange consequences when applied to the kinematics
of galaxies. GR can only accurately describe the rotation of spiral galaxies if there is a huge halo of invisible “dark
matter” around said galaxies. An open problem, to which there are many approaches in theoretical physics right now
is reconciling GR and QFT into a single consistent theory. In this paper we examine how one such candidate theory,
called Yang-Mills Gravity (YMG), handles the galactic rotation problem. Doing so requires a lot of number crunching
with big tables of astronomical data. Many of the individual parts of the calculation are essentially introductory
programming problems like linear regression or constrained optimization. A group of students from Gardner High
School (Gardner, MA) are learning to use the R programming language (and in the process some physics) by building
up and combining these small subroutines.

1 Introduction

For the reader’s convenience, we will briefly describe the
conflict between GR and QFT in order to motivate the in-
troduction of YMG. For more details on either, see [1, 2].
There are many subtle logical arguments that show this
conflict, but just the combination of GR’s and QFT’s pos-
tulates is enough to generate a contradiction. According
to GR, gravity is not a force at all. Rather, the pres-
ence of matter and energy distorts space-time which then
modifies the trajectories of objects in it. The distortion of
space-time is quantified by the metric tensor gµν , which
can be defined by its effect on the line element, viz.

ds2 =

3∑
µ=0

3∑
ν=0

gµνdxνdxµ (1)

where the zero index corresponds to the time component
of four-dimensional space-time. Thus, given the metric
tensor we can calculate such things as trajectories of ob-
jects in a gravitational field. Einstein’s field equations de-
scribe exactly how the four-dimensional space-time metric
changes in response to matter and energy:

Gµν =
8πG

c4
Tµν (2)

The tensor Gµν is the so-called Einstein tensor and is
a complicated deterministic function of the metric gµν .

Meanwhile the energy-momentum tensor, Tµν , encodes
all information about the matter, energy, and momentum
in the space. The coefficient of the energy-momentum
tensor is chosen so that, in the low-speed low-gravity
limit, Einstein’s field equations reduce down to Newton’s
law of gravity. The specific forms of these tensors are not
relevant to this discussion. In curved four-dimensional
space-time, Newton’s second law reads

gµν
∂S

∂xµ

∂S

∂xν
−m2 = 0 (3)

where S is the trajectory we wish to solve for and m is
the mass of the object following that trajectory.

QFT is dominated by its algebra. According to quan-
tum mechanics, observables like position and momentum
can no longer be represented by variables as they are in
classical mechanics. Rather, they need to be promoted to
Hermitian operators which act on the space of all possible
configurations of the system. QFT takes this one step fur-
ther by making entire fields into so-called field operators.
Two field operators ψ and φ are determined by

[ψ(t, ~x), φ(t, ~y)] = δ(~x− ~y) (4)

where [A,B] ≡ AB−BA is the commutator of two opera-
tors, and δ(·) is Dirac’s delta distribution. Eqn. 4 implies
that if ψ and φ are not in the same place at the same time
they cannot interact. This relation, and generalizations of
it just enforce a sense of causality in QFT.
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This procedure of promoting field functions into field
operators is called “second quantization” and it leads to
all of the success of the Standard Model of particle physics.
But what happens if we try to second quantize GR? Es-
sentially, this is a question of what would happen if space-
time geometry were subject to quantum fuzziness. We
need to be able to write out Eqn. 4 explicitly for the
“quantum metric tensor” in order for it to help us de-
termine the field operators’ algebra. The problem is that,
in order to write it out explicitly we need to know the
distance between the two fields. To know the distance, we
need to know the quantum metric. But we were trying to
write out Eqn. 4 in order to solve for the quantum metric
in the first place! This puts us in the unenviable position
of needing to already know the quantum metric before we
set out to solve for it.

It should be emphasized that the above argument is
just one of many which show that both GR and QFT
cannot be completely correct in their current forms. A
more detailed account of the tension between physics’ two
greatest theories can be found in [3, 4].

YMG seeks to approach gravity from a QFT perspec-
tive [5]. To incorporate a type of interaction into a phys-
ical system in QFT, one need only make the system’s La-
grangian invariant under certain mathematical transfor-
mations. New fields which mediate the interaction then
follow from the Lagrangian’s modified form. For example,
all physical electromagnetic properties and phenomena are
unchanged by a global shift in the electrical potential en-
ergy. Formally this is invariance under the U(1) group,
and it leads to both the existence of the electromagnetic
field and to conservation of electric charge. In the 1950′s
C.N. Yang and R. Mills came up with a general procedure
for working out the field and its interactions associated
with a given symmetry [6]. The details of this method are
beyond the scope of this paper but the interested reader is
referred to [1] for a reasonable introduction. In YMG we
start by assuming local translational symmetry (formally,
invariance under the T4 group) and use the Yang-Mills ma-
chinery to find the corresponding field, in this case a tensor
we’ll call φµν , and its equations of motion. In the classi-
cal limit, where the action of the system is much larger
than the fundamental quantum of action, (i.e. h̄→ 0) the
equations motion for φµν always take the form

Gµν
∂S

∂xµ

∂S

∂xν
−m2 = 0 (5)

Gµν ≡ (1 + φµσ)(1 + φσν) (6)

This equation also works for massless fields by setting
m = 0. Now we get to see why YMG is considered to
be a theory of gravity. Eqn. 5 looks and behaves just
like Eqn. 3 with Gµν playing the role of an effective met-
ric tensor. It is merely an effective metric because we
started its derivation by assuming flat space-time. Thus,
YMG explains gravity as the macroscopic effect of the
quantum field corresponding to the T4 symmetry group.

Armed with equations of motion for an effective metric
tensor we can make all the same sort of calculations which
one normally makes with GR. The canonical phenomena
used to verify GR, perihelion precession of Mercury and
the bending of light around massive objects, are also pre-
dicted to within the limit of experimental accuracy by
YMG [5, 7, 8].

2 Solution for a Spherically
Symmetric Source

Very often in astrophysics we would like to use a known
form for the gravitational potential to infer the proper-
ties of objects from their observed motions. A common
scenario is that of one object orbiting another much heav-
ier spherically symmetric body. We can solve for either
GR’s metric tensor or YMG’s effective metric by using
T 00 = −Mδ(~r) as a reasonable approximation to a spher-
ically symmetric source (this approximation is perfectly
fine as long as we’re outside the source). In the case of
GR the equations can be solved exactly giving the famous
Schwarzchild line element:

ds2 = −
(

1 +
GM

c2r

)
c2dt2 +

(
1− GM

c2r

)−1

dr2 + r2dΩ2

(7)

The equations relating the components of YMG’s effec-
tive metric are very complicated and non-linear so a nice
closed form like the Schwarzchild metric cannot be writ-
ten down. However, we can use successive approximations
to solve for the effective metric components to whatever
order desired. Solving to order 1/r2 leads to the results
in [5, 7]. It is often easier to perform calculations in a
Newtonian setting by extracting an effective gravitational
potential from the (effective or real) metric. It is rela-
tively straightforward to show [2] how the effective poten-
tial should be related to the various metric components.
Via a computer algebra system we have recently shown
that there is a first-order solution to the equations of mo-
tion for the effective metric with a spherically symmetric
source such that the effective potential takes the form

φeff = βr +
GM(1 +GMβ)

r(1 + 2GMβ)
(8)

where G is Newton’s constant divided by an implicit fac-
tor of c2 1, M is the mass of the source, and β is a free
parameter of the theory. Let us investigate a consequence
of the linear-in-r term in the effective potential.

1It is quite common to chose units such that c, the speed of light, and h̄, the reduced Planck’s constant, are both dimensionless and equal
to 1.
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3 Rotation Curves & Dark
Matter

Consider a galaxy with matter density ρ(~r) and mass
M =

∫
ρ(~r)d3~r. If φ(~r) is the gravitational potential

caused by the galaxy then the rotational speed of galactic
matter at a radial distance r from the center of the galaxy
is

v(r) =

√
r
d

dr

∫
ρ(~r′)φ(|~r − ~r′|)d3~r′ (9)

On the scale of galaxies, matter is sufficiently dilute that
Newtonian approximations to mechanics work just fine.
This is the justification for using the Newtonian Eqn. 9
with the effective potential. Comparing the results of
Eqn. 9 using GR’s effective potential with astronomical
observations yields a disturbing discovery.
This figure shows the typical qualitative situation; the
agreement is actually pretty good near the center of the
galaxy, but farther out it diverges from observations. This
result follows from constructing ρ by fitting observed lu-
minosity profiles, but the discrepancy implies that either ρ
or φ is wrong. Historically, because of its successes, people
have been uneasy about the possibility that the effective
potential, and hence GR, is wrong. Rather, it is common
to assume that ρ is composed out of the matter we can see
plus a contribution from matter we can’t; dark matter. In
spite of its popularity, dark matter is not the only feasible
solution to the galactic rotation curve problem described
above.

As has been known for some time by Modified New-
tonian Dynamics (MOND) theorists, another way to get
rotation curves which don’t sag at distant radii is to in-
troduce a linear term in the gravitational potential [9].
This was the motivation for searching for a solution to
YMG’s equations of motion of the effective metric which
would lead to a linear term in the potential. Now, the
coefficient of the linear term, β is to be determined from
experimental data.

4 Data Analysis & Program-
ming Education

To estimate β for a particular galaxy, we need to know
the radial matter distribution of that galaxy along with
its rotation curve. The latter is determined by measur-
ing the Doppler shift of the H1 and/or Hα emission lines
from hydrogen in the galaxy. The matter distribution is
much more difficult to determine because it depends on
parameters, such as the estimated mass of the galaxy and
its mass-to-light ratios across various bands, which can
only be estimated from models and not measured directly.
For raw astronomical data we go to the Sloan Digital Sky
Survey (SDSS), a massive CCD array survey of objects
in the night sky. The SDSS is ideal not only because
of its bulk of data (around 70 terabytes in all), but be-
cause all of that data is free to the public. In addition
to raw data the SDSS offers many other data products,

including calculations under various models of all the pa-
rameters we need to construct the radial matter density.
The construction of these density functions is relatively
straightforward, so the task is good for training beginning
programmers. The actual data for a galaxy’s luminosity
profile takes the form of binned azimuthally average fluxes
over five different bands in the visible and IR part of the
electromagnetic spectrum. We weight each band with the
estimated mass-to-light ratios and fit a single parameter
function to the result. Traditionally, astronomers like to
use the so-called Sérsic profile to fit galactic luminosity
profiles:

ρ(r) ∝ e−x
α

(10)

where x = r/R0, R0 is the half-light radius of the galaxy,
and α is a parameter to be tuned to each particular galaxy.
The Sérsic fit is one-dimensional in the radial direction; we
are assuming that the galactic disk is azimuthally sym-
metric and that it is much wider than it is thick. It fits a
variety of galaxy types pretty well [10] but is quite unruly
as part of an integrand. A few years ago Spergel showed
that

ρ(r) ∝
(x

2

)ν Kν(x)

Γ(ν + 1)
(11)

fits on average just as well as the Sérsic profile [11]. Here
ν is the tunable parameter, Γ(·) is the Gamma function,
and Kν(·) is a modified Bessel function of the second kind.
Realistically, the difference between the sum of residuals
after fitting data with a Sérsic versus a Spergel profile is
going to be small compared to measurement uncertainties.
The real reason to use the Spergel profile is that it allows
the integral in Eqn. 9 to be carried out exactly. This is
because the expansion of 1/|~r−~r′| in terms of Bessel func-
tions of the first kind, Jm(·), givenby

1

|~r′ − ~r| =

∞∑
m=−∞

∫ ∞
0

dkJm(kr)Jm(kr′)eim(φ−φ′)−k|z−z′|

(12)

lets us take advantage of the solubility of integrals of mul-
tiple Bessel functions. The predicted velocity from Eqn. 9
is the square root of a combination of powers of x = r/R0,
β, and hypergeometric functions.

The parameter β wouldn’t be very interesting if it
needed to be tuned to each individual galaxy. Instead,
we seek a universal value which best fits a large sample
of galaxies. The galaxies in any sample, no matter how
big, are bound to have their peculiarities. Computing the
half-light radius R0 and the best fitting ν in a Spergel
profile for each galaxy allows those parameters to absorb
some of the “locality” out of our estimate for β, mak-
ing it more universal. Turning data tables from SDSS
into (R0, ν) pairs for each galaxy is a multi-step process
involving regression, spline interpolation, and numerical
differentiation.

Through the NSF’s GK-12: Vibes & Waves Fellowship
the author visits 11th grade physics classes at Gardner
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High School to augment their physics classroom experi-
ence. A small group of these students is involved in an
after-school R language programming seminar run by the
author. The students are all beginner programmers, so
the training includes simple example programs based on
what was covered in their class that day. For example,
we could write a loop to perform the same operation on
many elements (such as the students have to do when fill-
ing out the tables in their physics lab reports) or we could
use R’s element-wise vector operations. The students have
progressed nicely and are presently able to write their own
linear regression code. The task of finding (R0, ν) pairs for
each galaxy will be a challenging and educational project
for the students.

5 Outlook & Conclusion

While the theoretical brickwork has been laid, we
presently have complete data for only half a dozen galax-
ies. Complete data for even one galaxy would be enough
for our students to test their algorithms, but it would be
something of a stretch to claim any value of β as universal

if it were based on observations of only six galaxies. Thus,
the process of data collection/selection continues. Mean-
while, the student programming talent grows as they put
together a poster on this work for an upcoming research
symposium at the University of Massachusetts Lowell. If
the best fitting β for a reasonable sample size is not a
good fit at all, then one would have to question the valid-
ity of the linear term in the effective gravitational poten-
tial of YMG. Otherwise, we will have shown that YMG
doesn’t need dark matter to correctly predict galactic ro-
tation curves. Once the value of β is known, the conse-
quences of φ = βr · · · beyond rotation curves will have to
be checked for consistency with observations.
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