2006-433: STREAMLINING THE WORKFLOW OF AN ENROLLMENT MANAGEMENT DEPARTMENT THROUGH INDUSTRIAL ENGINEERING CONCEPTS

Sreekanth Ramakrishnan, SUNY Binghamton
Sreekanth Ramakrishnan is a doctoral student at the Department of Systems Science and Industrial Engineering at Binghamton University, State University of New York at Binghamton. His research interests include Enterprise Resource Planning, Business Process Reengineering and Simulation-based Frameworks. Currently, he is a research associate with IBM Enterprise Learning, Poughkeepsie, NY. His email address is sramakr1@binghamton.edu and his webpage is http://bingweb.binghamton.edu/~sramakr1.

Justin Sturek, SUNY Binghamton
Justin Sturek is a graduate student in the Department of Systems Science and Industrial Engineering at Binghamton University, State University of New York at Binghamton. Currently, he is a research associate in the Industrial Engineering Department at Endicott Interconnect Technologies, Inc. (former IBM Microelectronics, Endicott). His email address is jsturek1@binghamton.edu.

Sumit Parimoo, SUNY Binghamton
Sumit Parimoo completed his Masters in Industrial Engineering from the Department of Systems Science and Industrial Engineering at Binghamton University, State University of New York at Binghamton. He is currently a Business Systems Analyst at Sanmina SCI, San Jose, CA.

Krishnaswami Srihari, SUNY Binghamton
Krishnaswami Srihari, Ph.D. is a Distinguished Professor and the Chair of the Department of Systems Science and Industrial Engineering at Binghamton University, Binghamton, New York. Krishnaswami (Hari) Srihari joined the State University of New York at Binghamton, New York in August 1988. He received his M.S. (1985) and Ph.D. (1988) in Industrial Engineering and Operations Research from Virginia Polytechnic and State University, Blacksburg, Virginia. Dr. Srihari's research is primarily focused on the electronics manufacturing domain. He has received over 12 million dollars in external research funding and has published over 250 research papers, and authored over 800 technical reports. His e-mail address is <srihari@binghamton.edu> and his web address is <http://www.emrs.binghamton.edu/hari>.
Streamlining the Workflow of an Enrollment Management Department

Through Industrial Engineering Concepts

Abstract

The number of applicants to undergraduate programs has increased significantly over the past few years. In addition to demographics, advances in internet technology that allow applicants to apply to numerous universities and colleges through a single window have further complicated the timely processing of applications to academic programs. Moreover, the number of applications is not evenly distributed throughout the year. Consequently, given the arrival patterns and an increase in the absolute number of applications, the timely processing of applications was a concern. These factors impacted the workflow of the enrollment management department discussed in this paper prompting management to review and strategically adjust their procedures and processes, and subsequently streamline the current workflow without adding resources.

The objective of this research was to identify and implement modifications to the current workflow at the enrollment management department at Binghamton University (BU), in order to maximize the throughput of applications with ‘optimal’ resource utilization and reduced turnaround times. In order to achieve the aforementioned objectives, a thorough study of the current system vis-à-vis the workflow was done. This research endeavor focused on the utilization of Industrial Engineering approaches, such as process mapping and time studies, facilities planning, Decision Support Systems (DSS), human factors engineering, and simulation to achieve a streamlined workflow.
The first phase of the research was to identify the sequence of events in the application processing workflow, using process mapping. Subsequently, the bottlenecks were identified and potential solutions were recognized. They included the (i) development of decision support systems, (ii) modifications to the layout, and (iii) ergonomic considerations.

The decision support package was developed to assist in making error-free decisions within a shorter time span for the effective processing of applications. The implementation of the DSS was expected to decrease the amount of time that the data entry personnel spent to retrieve the applicant’s information.

Modifications to the layout of the department’s facilities, such as mail room, filing cabinets, and resource locations were identified. This would help streamline the workflow by reducing the non-value added activities. There were three key recommendations which would aid in achieving this objective, namely the (i) relocation of resources, (ii) a new filing protocol, and (iii) relocation of workstations. Finally, an assessment on the ergonomic aspects of the working environment was conducted. The ergonomics study was aimed at identifying the interactions of the workforce with their working environment. Occupational Safety and Health Administration (OSHA) standards were used as a benchmark for the study.

Subsequently, designed experiments and simulation studies were conducted to quantify the benefits that could be realized by implementing these suggestions. It was observed from the studies that a 20% decrease in the application turnaround time could be obtained along with a concurrent 15% increase in the number of applications processed.
1.0 Introduction

Enrollment Management in universities has consistently seen an increase in the enrollment of undergraduate and graduate students. The introduction of new technologies, web-based applications, one-stop-shop centers, and increased awareness of attracting and retaining potential candidates has resulted in enhanced competition among colleges and universities. This would, in turn, lead to increased pressure on the enrollment management departments. In order to attract the highest caliber applicants, resource and process management techniques have been implemented in application processing centers to reduce the turnaround time and hence, increase applicant satisfaction.

The admission process in most Enrollment Management departments focuses on four levels for targeting potential students: prospects, applicants, acceptances, and confirms. The first stage involves the prospective applicant who seeks to attend a higher education institution. There are numerous avenues, such as inquiry, tours and visits, walk-in sessions, websites, and email, by which the prospective students can obtain information pertaining to the admission process of an institution. The second stage is when the prospective students apply to the institution. Acceptance stage is by far the most complex of the entire application process. This stage involves selecting the students from the application pool. The last stage involves assisting the selected student and confirming their attendance.

This research effort, unlike most other related work, has identified three main stages in application processing, from an information flow and workflow perspective. The first phase involves the prospective students obtaining information and applying to the institution. This
forms the input to the Enrollment Management Department. The processing of applications and the decision on the applications constitute the second phase. This phase involves the main functions of an enrollment management department, such as, student accounts, counselors and the registrar. Once the student is selected and informed of the decision, the process goes on to the third phase, where the confirmation of the selected applicant is requested. On confirmation by the applicant, the final transcripts and other related documentation are obtained and stored for future reference. This constitutes the output phase of the application process. An overview of the admissions process is shown in Figure 1.

It is worth mentioning here that Information Systems (IS) play a very important role in an enrollment management department. IS helps in obtaining basic information of the application forms and also gathers data specific to the university admission process. There is extensive literature available that discusses the importance of IS in the application process. It also allows for improved communication between the prospective students and the institution and hence, could stimulate an increased rate of applications received.

Moreover, a centralized information management system would help speed up the decision making process on applications, as well as share information among the various functions in the enrollment management department. It would help streamline the admissions process, thus aiding universities to increase their targets without considerably altering the structure and environment of the department.
By the effective use of IS in higher education admissions processing, numerous benefits, such as increased efficiency and productivity, decreased costs, increased applications and recognition for the university, can be derived. It is to be observed that the speed, efficiency, accuracy, service, image, revenues, and sound business practices are major factors and goals in college admission and financial aid. However, there are concerns of over-emphasizing the use of IS in this area. The benefits of information technology may help in realizing specific goals of the institution’s admission department but may hinder with some others.

The undergraduate admissions office at Binghamton University (BU) is in the process of streamlining the overall application processing in order to account for larger volumes of applications. The identification of bottlenecks in the workflow within the application processing area is a critical aspect that needs to be considered.
The objective of this study was to identify the modifications to the existing workflow of application processing in order to reduce the application turnaround time, ‘optimize’ the utilization of resources, and maximize the throughput of the applications processed. Also, additional recommendations have been tested and presented in order to further maximize the aforementioned performance measures.

From Figure 1, it can be inferred that the proposed framework focuses on streamlining the information flow for the application process in addition to improving the workflow. The data warehouse stores all the relevant information pertaining to the applicant. Although there are numerous software applications, such as Recruitment Plus, Microsoft Office Applications and SCT Planner, that facilitate the above mentioned functions, they lack decision support capabilities. This research is a step in the direction of developing a DSS that can be interfaced with the data warehouse. This would aid in faster and more accurate decision-making. A DSS tool, *EZ Lookup*, interfaced with the data warehouse, was developed. This tool helps in decision-making during the data-entry phase of the application process.

The other key area addressed by this research is the layout of the admissions processing area. This would help further streamline the information flow, in addition to improving the workflow, by the reduced travel time between the various functions in the department and reduced non-value added activities. Ergonomic factors, such as workstation design, working environment, and work rest cycle, were also considered for improving the workflow in the application
processing area at BU. The impact of the aforementioned solutions will be studied using simulation techniques and designed experiments.

This paper is divided into the following sections. The motivation and the scope of this research are discussed in the next section. Section 3 and Section 4 highlights the various IE techniques used to streamline the workflow and presents the recommendations of this research. The experimentation and its results are presented in Section 5. The paper concludes (Section 6) by discussing the findings in this research and the potential extensions.

2.0 Motivation and Scope of the Research

Due to an increase in the number of applicants in recent years, application processing centers are becoming more customer-oriented. One of the main challenges of these departments is to ensure faster response to the applicant and reduced application turnaround time, at ‘optimal’ resource utilization. While several researchers have studied enrollment management departments with the goal of increasing the overall efficiency of the services, very few consider all the critical aspects that impact the overall workflow. This research introduces Industrial Engineering (IE) concepts to achieve the aforementioned goal. The introduction of IE concepts at each stage of the application process would help streamline the process through an enhanced Decision Support System (DSS), improved facility layout, and ergonomic considerations. The methodology followed for this research is shown in Figure 2.
This research attempts to identify the bottlenecks in the admissions process and propose solutions to alleviate them. Cause and effect diagrams were constructed to identify the factors that impact the response variables. Figure 3 shows one such diagram that accounts for the ergonomic factors that impact the application turnaround time.

The next phase of this research was to identify the modifications to the existing workflow of application processing in order to reduce the application turnaround time, ‘optimize’ the utilization of resources, and maximize throughput of the applications processed. Decision Support Systems (DSS), process mapping and time studies, and facilities layout, were used as tools to achieve the aforementioned goal. Additionally, an ergonomics study was conducted to further maximize the resource utilization at the undergraduate admissions office at BU.

Subsequently, simulation techniques were used to analyze and quantify the potential benefits that could be accrued by implementing one or more of the recommendations. The time saved at each stage of the workflow, the efficiency of the system, and the impact on the workload of the staff was monitored.
3.0 Streamlining the Workflow at the Enrollment Management Department

3.1 Current Workflow

The initial flow of operations at the enrollment management department of BU was identified through the process mapping activity. Figure 4 shows an overview of the current workflow. The time taken and the number of resources allocated for each operation is also recorded. This would aid in identifying the critical operations and also the bottlenecks.

The sequence of events in the current workflow starts with a document of an applicant being received which can be an application (online or through mail), any of the supporting documents (credentials, Secondary Application Forms (SAF), transcripts) or an inquiry card. Personnel at the mail desk sort and date the documents and create a file for the applicant, which is then held at a temporary filing area. The data entry personnel update the data warehouse with the documents and other relevant information. This process is repeated until the applicant’s file is complete. The
file is then directed to the respective counselor for a decision on admission. Once the decision is made, the data warehouse is updated with the decision and the applicant file is re-filed. Time studies were conducted at the following stages of the application processing workflow: mail desk processing, credential retrieval, credential processing, application processing, folder creation and filing, and counselor decision making.

Figure 4 – Current Workflow

3.2 Modifications to the Workflow

The areas of improvement in the current workflow were identified based on the findings of the process mapping and time study. This section presents the various recommendations based on the study conducted at the undergraduate admissions at BU. The section would focus on three recommendations: (1) implementation of a DSS; (2) modifications to the layout; and (3) human factors. The changes to the existing workflow were identified based on the process mapping and bottleneck analysis, discussed in the previous sections. Several key suggestions were also
presented and validated using simulation and designed experiments. The proposed recommendations had the potential to reduce the application processing time along with the efficient usage of resources.

3.2.1 Component 1: Decision Support Systems

A DSS is an information system designed to support individual and collective decision-making by enabling decision models for large collections of data. These systems are designed to support the decision-making process, rather than render a decision.\(^3\)

The undergraduate application processing system at BU is a prime candidate where a DSS could enhance the overall efficiency of the organization. Due to the modifications in application processing over the past few years, there are certain process steps where there are significant delays that can be ameliorated through the use of computer based DSS.

As previously mentioned, the enrollment management department at BU was assessing the overall efficiency of its workflow in the undergraduate admissions process. For the 2004-2005 academic year alone, approximately 22,000 applications were received for freshmen alone. BU currently receives applications from three primary sources: (i) online, through the SUNY system (ASC); (ii) online, through the common application system; and (iii) a paper-based common application system form.

It was observed that the first two systems had different formats in their respective application forms. Consequently, processing of these applications was cumbersome. In addition, there was a
growing concern that the processing of these applications required manual intervention to make certain decisions, such as, determining the county code of the applicant, the curriculum code of the school and the College Entrance Examination Board (CEEB) code of the previously attended educational institution. Currently, the data entry personnel determine these data fields after referring to multiple websites and/or paper-based sources. This process was time consuming, error-prone and lacked consistency.

The CICS™ database used for application processing at BU requires the applicant to enter the name of the county if the applicant is a New York State resident. Unfortunately, most applicants do not write the county name. The common application does not even list the county code or name on the application form. Therefore, determining the county code takes a considerable amount of time. Currently, there are two sources to determine the county codes. There is a paper based source as well as multiple online sources. However, neither option provides an exhaustive list of counties nor an up-to-date list of city names within the counties. To overcome this limitation, a DSS was developed to reduce the time taken to lookup the county code.

Another arena where the DSS would reduce the lookup time is the determination of the CEEB code of the educational institution that an applicant previously attended. The applicant’s inquiry card has a field for the educational institution’s name. However, the application form requires the CEEB code to be entered. As in the previous case, there is no single source to obtain the CEEB code. Another concern is the inconsistent data provided by the applicant. For example, an applicant whose high school is “Johnson City High School” may provide “JCHS” on the inquiry card. Therefore, the data entry personnel need to determine the closest possible match of the
school using a ZIP code, city or searching by keywords of the school name. This DSS is
designed on a ‘search engine’ framework which would make decision-making faster and
accurate. The user needs to input the keyword of the high school name and the search engine
returns all high schools having the keyword entered. The user can then further narrow down the
search by entering the nearest city or state where the high school is located.

The third DSS was developed to determine the school and curriculum code of an applicant.
Again, the personnel at the data entry stage were required to do a manual lookup on paper-based
sources, which was both time consuming and error-prone. This DSS would significantly reduce
the amount of time used to determine the curriculum code of the applicant.

The three systems mentioned above were integrated into a single system referred to as EZ
<Insert Table>

Lookup. All the three functions and the scope of the DSS are shown in Figure 5. The DSS is
developed in Microsoft® Access. The interface developed resembles a switchboard. The switches
on the interface correspond to a unique function or a query.

The following are the five functionalities that are provided in the DSS:

1. Lookup by ZIP for County Code.
2. Lookup by City for County Code.
3. Lookup CEEB Codes.
5. Lookup School Code by Curriculum Name.
Figure 5 – Framework of EZ Lookup

An initial estimate of the potential time savings due to the EZLookup DSS is shown in Table 1. The figures illustrate that the DSS does have a significant positive impact on the application processing workflow. Additionally, the users have an easy and a reliable DSS, which makes the application processing faster. The system is very flexible, easy to use and to maintain, and could be potentially integrated with CICS™.

<table>
<thead>
<tr>
<th>DSS Module</th>
<th>Sample Size*</th>
<th>Time Taken per Application Currently (sec)</th>
<th>Time Taken per Application with DSS (sec)</th>
<th>Overall Savings (person-hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Code</td>
<td>18,000</td>
<td>60</td>
<td>2</td>
<td>290</td>
</tr>
<tr>
<td>CEEB Code</td>
<td>41,750</td>
<td>90</td>
<td>12</td>
<td>905</td>
</tr>
<tr>
<td>Curriculum Code</td>
<td>4,000</td>
<td>50</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Total Savings (person-hours)</td>
<td></td>
<td></td>
<td></td>
<td>1,245</td>
</tr>
</tbody>
</table>

* Figures based on the 2004-05 Academic Year

Table 1 – Potential Time Savings due to ‘EZ Lookup’ DSS

3.2.2 Component 2: Facilities Layout

The process mapping phase highlighted a significant movement of both resources and information in the current workflow. This resulted in bottlenecks in application processing, especially in the data entry and filing stages. There were two key suggestions which would aid in
achieving this objective, namely, (1) relocation of cabinets (credentials, transcripts, applications, and letters of recommendation) closer to the data entry area; and (2) a ‘filing protocol’. The following sections discuss the benefits and concerns of each of the above suggestions.

3.2.2.1 Scenario 1: Relocate the Credential Cabinets

In the current workflow, it was observed that there is scope for relocation of the file cabinets. These cabinets, which hold the applications, credentials and other supporting documents, could be moved closer to the main data entry area. This would decrease the travel time of the resources. However, the travel time for the mail room personnel would increase slightly. If the applications or any supporting documents were brought over to the data entry area in batches, this concern could be overcome.

Another anticipated benefit obtained by relocating the cabinets closer to the data entry area would be that it allows the personnel to assess the volume of applications that needs to be processed. This helps in an efficient planning of resources and schedules. The cabinets also need to be arranged so that they could hold the maximum capacity during peak periods.

3.2.2.2 Scenario 2: Filing Protocol for Decided Applications

The filing process at the undergraduate admissions office has certain redundant activities which could be eliminated. Once an applicant file is reviewed and a decision (accept or reject) has been made, they are re-filed into the same filing rooms, along with the ‘undecided’ ones. It is not until after a specified time that the ‘decided’ files are pulled and filed into a new room. A filing protocol needs to be used where all ‘decided’ files will be stored in a different room, away from
the ‘undecided’ applications. Hence, when a decision has been made and the file is complete, it could be filed in a separate room, waiting for the payment and the final transcript from the student. This scenario would help decrease the time spent on filing, since it eliminates the redundant and time consuming searches for files.

However, the amount of space available for filing, before the counselors make the decision on the applications, needs to be studied. The filing rooms that hold the undecided applications should cater to volume before the decisions are made on the applications. Moreover, the space requirements for a projected increase in the volume of applications in the future need to be addressed.

3.2.3 Component 3: Ergonomics

Ergonomics is defined as a behavioral science that analyzes the interaction of the personnel with their working environments. It also helps in adapting the workplace to the individual’s physical and psychological needs. Ergonomic design involves redesigning activities/operations, workstations, or the work environment, based on the standards set by the Occupational Safety and Health Administration (OSHA).

The planning stages involve obtaining feedback from the personnel, prioritizing critical areas within the department, and studying the impact on the overall system. Ergonomics combines both health sciences and the field of engineering, with the main goal being to provide a safer and healthier work environment for the individual. It also has a direct impact on the overall productivity of the organization.
The ergonomics study conducted at the undergraduate admissions office was focused on identifying and studying the interactions the personnel had with their working environment. This would help enhance the efficiency and effectiveness of the resources. There were three main areas in which the human factors evaluations were performed: (1) the workstation areas; (2) the chairs in the filing rooms; and (3) the folder design. Based on the evaluation, certain recommendations were made. These recommendations are listed below.

3.2.3.1 Computer Workstation Areas

1. The workspace area should be organized so that primary activities are positioned relatively close (11-17 inches) to the individual and secondary activities placed outside of this region (17-21 inches).

2. There should be a sufficient amount of area underneath the workstation, both width and depth to accommodate knees and legs, with the height of the workstation allowing individuals enough room to be comfortably positioned, while seated close to the workstation.

3. Adjustable keyboard and mouse tray holders should be provided.

4. A document holder, located either directly below or on both sides of the computer monitor, is recommended to ensure the proper viewing angle. The document holder should be sturdy, stable and appropriately sized.

5. The position of monitor needs to be at slightly below eye level and an ‘optimal’ reading distance from the individual (20 - 40 inches).
3.2.3.2 Computer Workstation Chairs

1. An appropriate number of casters (5) should be present to allow for support and ability to change positions when working.

2. A padded and contoured backrest is needed for lumbar support and positioning of the lower back.

3. Arm rests should be softly padded, adjustable and spaced appropriately to allow the individual ‘optimal’ placement of the elbows while at rest.

4. The seat pan should be padded and wide enough (20 inches) to accommodate the individual.

5. The height of the chair should be adjustable and allow the feet of the individual to remain flat at rest on the floor. This would allow the individual to remain seated upright in the chair with the lower back against the backrest and the shoulders touching the backrest.

6. In order to further increase compliance with standards, a footrest should be used to allow for the individual’s feet to remain at rest.

3.2.3.3 Folder Design

One of the areas of concern in the current layout was the folders in which the applications are filed. Currently, it was difficult for the file clerk to recognize the information on the application folder from a certain amount of distance (visual identification). The total distance from the end of the filing cabinet drawer to the individual’s eye was 42 inches. The use of the current folders forced the individual to skim through each folder to ensure proper filing along with reading the folder to be filed. This was a time consuming process, not to mention the physical strain on the
individual’s eye. This research proposes a few benchmarks, while designing the folders for holding the applications.

1. The folder formats should be consistent for readability, placement of information and sized appropriately. The following should be considered when designing a folder:

 - Alphanumeric characters (font size, font type, color, thickness).
 - Lettering type (block, lower or sentence case).
 - Reading distance of the individual.
 - Amount of critical information displayed.
 - Background color of folder.

2. The folders should be tabbed to allow for increased visual acuity and identification.

3. The folders should be placed within the appropriate distance (arm’s reach) of the individual.

The implementation of the aforementioned recommendations would result in an increased comfort level, which has a direct relationship to the productivity and efficiency of an individual. The simulation study discussed in Section 5 quantifies the benefits that could be accrued by these recommendations.

4.0 “Clean Slate” Layout

Most facility layouts are constructed utilizing a block dimensional shape in order to ‘optimize’ the design facility. The three most commonly used shapes are rectangular, square, and circular. A square and rectangle are the most simplified versions to represent a facility with a minimal amount of constraints on a facility design. Size, orientation and properties of areas within the
facility are the most important characteristics in determining an ‘optimal’ facility design layout. However, there are constraints and limitations which exist in a facility layout, such as fixed versus movable objects, sequential ordering of activities and overlapping of operations. These constraints are minimized when a square or rectangular layout is utilized ¹.

The objective of a clean slate layout was to design an ‘ideal’ layout using the same area as in the current system, accounting for all its constraints. A square area was considered for this purpose. All the above three scenarios were incorporated into the clean slate layout. Figure 6 shows the suggested ‘ideal’ layout for the enrollment management department at BU.

The anticipated benefits of this ‘ideal’ work area are enlisted below:

1. The layout is flexible and accounts for future design modifications.
2. It allows for a smooth flow of processes and movement throughout the facility.
3. Location of the first process should be in close proximity of the shipping and receiving areas (mailing rooms) and accommodate incoming materials and products.
4. This layout will encourage better communication within the various departments of an office.
5. Proper space utilization accounts for traffic lanes and inventory storage.
6. The design should include factors that improve the attractiveness of the working environment.
7. The proposed facility layout enables the business to effectively operate in accordance with OSHA and governing requirements.

The clean slate layout can be used as a guideline for designing the layout in similar instances elsewhere.
5.0 Summary of Experimentation

Simulation modeling is an excellent tool for analyzing workflow modifications. Additionally, using a simulation model that accurately reflects real-life, sensitivity analysis can be conducted to study the impact of any modifications to the system. While mathematical models serve to evaluate solutions for problems, such as workflow modeling and resource allocation, simulation serves as an excellent tool to study the outcomes from various ‘what-if’ scenarios.
A simulation study was conducted to ascertain the potential benefits that could accrue from the implementation of one or more of the recommendations provided in Section 3 and Section 4. The following is a brief summary of the simulation study that was conducted at the enrollment management department at BU. The simulation model with the current workflow was developed in the Arena® 7.01 software, based on the information obtained from the process mapping activities and time study.

The times required for data entry, filing applications, and the times required by counselors to make their decision on the applications have been used to build the model. All stages in the workflow at the applications processing area were considered for model development. This approach would offer advantages such as increased accuracy of the simulation model and the freedom to simultaneously and proactively evaluate a variety of different solutions.

Statistical tests, including a hypothesis test, ANOVA analysis and paired t-tests, were conducted. At a confidence level of 95%, it was observed that the simulation model was statistically identical to the actual scenario at the enrollment management department of BU, based on the three performance measures. The model was presented to the Enrollment Management Department at BU and their suggestions were incorporated into the model.

The baseline model was then used to develop another set of models that would account for the modifications to this workflow. Designed experiments were conducted to identify the key factor(s) that would affect the response variables. The impact of the implementation of the DSS,
modified facility layouts and ergonomic considerations were studied through these experiments and the sensitivity analysis. It was found that the throughput would increase by 20% and the turnaround time would decrease by more than 20% with the suggested modifications. Further, with the implementation of one or more additional recommendations, the throughput would increase by at least 15% over the existing system. Moreover, the application turnaround times would also decrease by at least 20%. The details and results of the simulation study and design for experiments are discussed in detail in Ramakrishnan et al. 8.

6.0 Conclusions

Modifications to the workflow and information flow at the undergraduate admissions office at BU were imperative for the defined objective of streamlining the application processing system. IE tools, such as DSS, facility layout, ergonomics, simulation and designed experiments, were used effectively to streamline the application processing-a unique feature of this research. Figure 7 highlights some of the contributions of this research effort.

The following section delineates the principal recommendations that this research effort proposes:

1. The DSS will provide the department with software features which enhance the functionalities of the current CICS™ system. This DSS will provide the user with the interface of querying three types of information (county code, curriculum code and CEEB code), which was previously determined using manual lookup sources and scattered internet sources. The EZLookup tool, developed in Microsoft® Access, utilizes a central search location for the information required.
2. “Inefficient” layout of the department can impede efficient information flow and cause NVA searches for supporting documents. However, the enhancements and changes to the current layout would help to reduce a major NVA activity, namely travel time. The ‘clean slate’ drawing retains the current square footage of the office space and reallocates the square footage to an ‘ideal’ work area.

3. The objective of the ergonomics study was to enhance the efficiency and effectiveness of the personnel with respect to their workstation environments. The ability of personnel to concentrate on their responsibilities, along with reducing contact stress, would facilitate increased productivity. This ergonomics study examined and compared the current settings to the OSHA standards and provides recommendations for designing the workstation environments.

![Diagram of the application process]

Figure 7 – Contributions of this Research

The recommendations of the research are both short-term and long-term solutions to aid in streamlining the current application process. As the volume of applications increases over each fiscal year, the benefits from these alternatives will become more pertinent. These
recommendations would result in time savings and hence faster application processing. It would enable strategic planning from a resource allocation perspective. These recommendations would help the department to function at ‘optimal’ levels of productivity, gain a competitive advantage, thus contributing to increased applicant satisfaction across enrollment management departments.

Bibliography:

Acknowledgements:

The authors would like to thank Sandra Starke-Seiden, Vice Provost – Enrollment Management, Cheryl Brown, Director for Undergraduate Admissions, Harolyn Pasquale, Associate Director for Undergraduate Admissions, and the Undergraduate Admissions Processing Staff and Students at Binghamton University for their support and inputs during the course of the project.