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Abstract 

Element types that are commonly used in practice for a static finite element stress 
analysis include the truss element, beam element, plane stress/strain elements, 
axisymmetric elements, and solid elements.  This paper focuses on stress concentrations 
and static failure associated with these elements and serves as a reference for instructors 
and practitioners.  Stress concentrations and static failure for these elements has not been 
comprehensively addressed in any finite element textbook.  The first author has 
integrated stress concentrations and static failure into introductory finite element 
undergraduate courses, graduate courses and industrial short courses.  The authors have 
found through experience that students and practitioners are not familiar with the stress 
concentrations and static failure associated with these elements.   
 
1. Introduction 
 
The finite element method (FEM) has been used extensively during the past thirty years 
in industry and is now a standard engineering tool for both analysis and design.  Years of 
experience with the method have shown that by understanding the fundamentals of the 
technique, real complex systems can be modeled with a high degree of reliability.  It is 
important to emphasize, however, that the reliability of the process is highly dependent 
on the skill of the engineer in the application of the method. Modern finite element 
developments have become very sophisticated, and the available software developed for 
the user has become very easy to use. It has become more important than ever to insure 
that the analyst, in his/her search for the best modeling method, correctly uses the tools 
available. 
 

Stress concentrations arise at locations where there are abrupt changes in 
geometry (e.g., holes, notches, fillets, grooves, etc.).  Mechanics of materials and 
elasticity textbooks comprehensively address stress concentrations.  Stress concentrations 
are not addressed in finite element textbooks and courses for the truss element and beam 
element.  However, finite element textbooks and courses consider stress concentrations 
for plane stress/strain, axisymmetric, and solid elements.  The truss and beam elements 
do not include stress concentrations, whereas, plane stress/strain elements, axisymmetric 
elements, and solid elements include stress concentrations.    
 



 2 

Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education 

 An understanding of the failure modes associated with each component in a 
structure is required to ensure that it will not fail under loading.  Static failure modes for 
different components can be readily found in mechanics of materials and machine design 
textbooks.  The most common static failure criteria found in finite element textbooks is 
the von Mises applied to plane stress/strain elements, axisymmetric elements, and solid 
elements.  A review of finite element textbooks reveals that there is no discussion on why 
the von Mises criterion was selected and other failure criterion are not considered.  The 
authors are not aware of any finite element textbook that address the static failure modes 
associated with beam element and there is very limited discussion for the truss element.   
 
 The goal of this paper is to define the stress concentrations and static failure for 
finite elements commonly used to carry out a static, linear elastic, stress analysis.  The 
elements considered include the truss element, beam element, plane stress/strain 
elements, axisymmetric elements, and solid elements as shown in Figure 1.  Each element 
will be considered separately in this paper and the following will be discussed:  overview 
that includes a literature review, stress concentrations, and static failure.  This paper will 
serve as a reference for instructors and practitioners.    
 

    
a. Truss c. 3-Noded 

Triangle 
e. 4-Noded 

Quadrilateral 
g. 4-Noded 

Tetrahedral (Tet) 
i. 8-Noded  

Hexahedral (Brick) 

    
b. Beam d. 6-Noded 

Triangle 
f. 8-Noded 

Quadrilateral 
h. 10-Noded 

Tetrahedral (Tet) 
j. 20-Noded 

Hexahedral (Brick) 

Figure 1. Common elements used to carry out a static, liner elastic, stress analysis. 
 
2. Truss Element 
 
The truss element is one of the simplest elements used in practice for a finite element 
stress analysis.  The theoretical development of the truss element is commonly found in 
finite element textbooks, undergraduate finite element courses, graduate finite element 
courses, commercial code short courses, and industrial short courses.  Commercial finite 
element codes usually contain both the two-dimensional (plane) and three-dimensional 
(space) two-noded truss elements.  The one-dimensional truss element cannot be found in 
commercial software and is only used as an academic exercise to introduce its theoretical 
development.  The authors are not aware of any finite element textbook that addresses 
stress concentrations for the truss element.  Static failure for the truss element is 
considered with an example in [1] and homework problems in [2, 3], however, there is no 
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discussion regarding static failure.  Adams and Askenazi [4] provide a discussion 
regarding static failure, however, they do not relate it to the truss element.  The truss 
element considered in this paper is straight, uniform, linear elastic, homogeneous, 
isotropic and has two end nodes as shown in Figure 1a.  Stress concentrations and static 
failure analysis addressed in this paper are carried out by hand or a spreadsheet using the 
results obtained from a commercial finite element code.  The results from a commercial 
finite element code can be found in an output text file.    
 
2.1. Stress Concentrations 

The truss element does not account for stress concentrations since it assumes a 
uniform stress distribution in the elements’ cross-section.  An abrupt change in the 
geometry, e.g., holes, notches, fillets, grooves, etc, results in a non-uniform stress pattern.  
Using the ‘theoretical stress concentration factor (unitless)’ for static loading the 
maximum stress can be determined at the location where there is a stress-riser.  Stress 
concentration factors for common axial loading cases can be found in undergraduate 
mechanics of materials textbooks and a comprehensive list can be found in handbooks [5-
7].  When the stress concentration factor cannot be found in a handbook, then electrical 
strain gauges, photoelasticity, or complex finite element models are used.  Complex finite 
element models include the plane stress/strain, axisymmetric, and solid elements 
discussed in Section 4.  Figure 2 shows theoretical stress concentration factor tK  for a 
flat bar with u-shaped notches subjected to axial loading. 
 

 
a. Flat plate with u-shaped notches. 

 

 
b. Stress distribution and maximum stress location. c. Theoretical stress concentration factor tK . 

Figure 2. Theoretical stress concentration factor for a flat plate with u-shaped notches 
subjected to axial loading. 

 

The maximum stress maxS  in Figure 2a at a local stress-riser in the truss element is 
defined as follows: 
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max t aveS K S=                  (1) 
where aveS  is the uniform normal stress in the truss element at the location of the stress-
riser and tK  is the theoretical stress concentration factor (based on theoretical elastic, 
homogenous, isotropic material).       

 

The application of the theoretical stress concentration factor tK  for static loading 
depends on the material type as follows: 

 
• Ductile Material ( 0.05fε > ).  A material is defined as ductile if the percentage of 

elongation to fracture fε  based on the 2 inch gauge length is greater than 5%.  The 

effect of  tK  is ignored ( )1tK =  since the material will yield locally at the stress-riser 
while the material farther away from the stress-riser remains below the yield strength.   

 

• Brittle Material ( 0.05fε ≤ ).  A material is defined as brittle if the percentage of 
elongation to fracture fε  based on the 2 inch gauge length is less than or equal to 5%.  
The theoretical stress concentration factor tK  is used for a brittle material except for 
cast materials ( )1tK =  since it has known defects throughout the interior and strength 
data includes stress concentrations. 

 
Consider a plate with u-shaped notches subjected to an end tensile axial force as 

shown in Figure 3a.  The corresponding finite element mesh with three truss elements is 
shown in Figure 3b.  The maximum stress at the location of the stress-riser (notches) 
requires that tK  be determined from Figure 2c.  The finite element uniform stress for 
element 2 is ( )2aveS  and the maximum stress for element 2 is determined using 

( ) ( )max 2 2t aveS K S= . 

 

 

 
a. Problem definition. b. Finite element model. 

Figure 3. Example to determine maximum stress in a flat plate with u-shaped notches 
using truss elements. 

 

2.2. Static Failure 
The static failure criteria are based on whether the truss element is in tension or 
compression.  Assuming that a truss element never exceeds the yield strength ( yS ) of the 
material, then static failure is defined by Norton [8] as follows: 
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• Tension Failure.  Static failure for a truss element in tension is based on the material 
yield strength ( yS ).  The factor of safety (FS) is defined as 

 
y

a

S
FS

S
=                 (2) 

 
where aS  is the allowable stress in the truss element.  When the material is brittle, 
except for cast material and ductile materials, the allowable stress aS  includes the 
theoretical stress concentration factor tK , i.e., a t aveS K S= . 

 
• Compression Failure.  Static failure for a truss element in compression is due to 

buckling or a combination of crushing and buckling.  Since a truss element has 
frictionless pin connections (nodes), then the element is pinned-pinned supported as 
shown in Figure 4a.  The effective length of the column is effl l= , where l is the truss 
element length.   The failure strength is designated as buckS  and is based on the 
slenderness ratio rS  of the truss element as follows: 

 

( )r r DS S≤      2( )r D
yc

ES
S

π=         (3a) 

2
1

2
yc rcr

buck yc

S SPS S
A E π

⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠
  Johnson Formula        (3b) 

 
( )r r DS S>                (4a) 

2

2
cr

buck
r

P ES
A S

π
= =     Modified Euler Equation       (4b) 

 
with the factor of safety defined as  
 

buck

a

SFS
S

=                 (5) 

 
where E  is Young’s modulus, ycS  is the compressive yield strength, r effS l k=  is the 

slenderness ratio, effl l=  is the effective length of the truss element, k I A=  is the 
radius of gyration of the cross section, I is the smallest moment of inertia, A  is the 
cross-sectional area, and aS  is the allowable stress in the truss element.  Truss 
elements made of brittle material, except for brittle cast material and ductile materials, 
have an allowable stress aS  that includes the theoretical stress concentration factor 

tK , i.e., a t aveS K S= .  Figure 4b shows the failure lines for the Johnson formula and 
the modified Euler equation in Equations (3b) and (4b), respectively. 
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a. Truss element. b. Column failure lines. 

Figure 4.  Truss element in compression and compression failure lines. 
 
3. Beam Element 
 
The beam element is one of the simplest elements used in practice for a finite element 
stress analysis.  The theoretical development of the beam element is commonly found in 
finite element textbooks, undergraduate courses, graduate courses and short courses.  The 
two-dimensional (plane) and three-dimensional (space) beam elements are commonly 
found in commercial finite element software.  The one-dimensional beam element cannot 
be found in commercial software and is only used as an academic exercise to introduce 
its theoretical development.  The authors are not aware of any finite element textbook 
that considers stress concentrations and static failure for the beam element.  Potts and 
Oler [9] do state that “no stress concentration will be computed at the points of beam step 
change” and the reason is also discussed.  However, there is no discussion on how to 
determine the maximum stress at the beam step change.  Logan [3] does consider in a 
homework problem for static failure, however, there is no discussion regarding static 
failure for beam elements.  Askenazi [4] provide a discussion regarding static failure, 
however, they do not relate it to the beam element.  The beam element considered in this 
paper is straight, uniform, linear elastic, homogeneous, isotropic and has two end nodes 
as shown in Figure 1b.  Both stress concentration and static failure for a beam element is 
carried out by hand or with a spreadsheet using the results from a commercial finite 
element code.  The results from a commercial finite element code can be found in an 
output text file. 
 
3.1. Stress Concentrations 
Stress concentrations are not present in the beam element.  The theoretical stress 
concentration factor and the beam element average stress are used to determine the 
maximum stress at the location of the stress-riser.  A three-dimensional beam element 
contains internal forces in terms of element (local) coordinates as follows: one axial 
force, two shear forces, two bending moments, and one torsional moment.  Stress 
concentrations are based on a combination of six internal forces and moments.  However, 
in practice for engineering (long) beams it is very common to consider that stress 
concentrations are only due to one axial normal stress and two normal bending stresses.  
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A study of commercial finite element codes reveals that only the normal stress 
components are used for the beam element.       

 
Stress concentration factors were discussed in Section 2.1 for axial loading.  

Stress concentration factors for pure bending of a beam can be found in undergraduate 
mechanics of materials textbooks for common cases and in handbooks for complex cases 
[5-7].  Figure 5 shows the theoretical stress concentration factor tK  for a flat bar with u-
shaped notches subjected to pure bending. 
 

 
a. Flat plate with u-shaped notches. 

 

 
b. Stress distribution and maximum stress location. c. Theoretical stress concentration factor tK . 

Figure 5. Theoretical stress concentration factor for a flat plate with u-shaped notches 
subjected to pure bending. 

 

The application of the theoretical stress concentration factor tK  depends on 
whether the material is ductile or brittle as discussed in Section 2.1.  The plane beam 
element is considered due to its simplicity and is shown in Figure 6.  The normal stress 
due to axial and bending is shown in Figure 6 using the ANSYS® notation and sign 
convention [10].  Stress concentration factors are applied according to one of the 
following approaches: 

 
1) Theoretical Approach. 

a) Determine the theoretical stress concentration factor taK  based on the axial force. 
b) Determine the theoretical stress concentration factor tbK  based on the bending 

moment. 
c) Use the largest value of the maximum normal stress from the two values at the 

stress-riser: 
i) max ta tbS K SDIR K SBYT= +            (6a) 
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ii) max ta tbS K SDIR K SBYB= +            (6b) 
where ,  ,  and SDIR SBYT SBYB  are defined in Figure 6. 

2) Conservative Approach. 
a) Determine the theoretical stress concentration factor taK  based on the axial force. 
b) Determine the theoretical stress concentration factor tbK  based on the bending 

moment. 
c) Use the largest of taK  or tbK  and as tK .  Calculate the maximum stress at the 

stress-riser using  
 max tS K SMAX=                (7) 
 where SMAX  is defined in Figure 6. 

 
The theoretical approach is technically correct in comparison to the conservative 
approach.  The conservative approach is easier to apply and is a more conservative since 
it predicts a greater maximum stress compared to the theoretical approach.  
 

 
Figure 6.  ANSYS® [10] plane beam element normal stress notation and sign convention 

for node J. 
 
3.2. Static Failure 
The bending moments and axial forces in a beam element yield a uniaxial state of stress.  
Beam elements found in commercial finite element codes also determine the normal 
stress due to bending moments and axial forces.  Shear stresses due to torsion and shear 
force are neglected.  Static failure for a beam element is based on yielding and buckling 
as follows: 
 
• Yield Failure.  All elements in the mesh are checked to determine if the factor of 

safety is satisfied as follows: 
 

max

yS
FS

S
=                  (8) 
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where yS  is the material yield strength, and maxS  is the maximum stress in the beam 
element at a node as shown in Figure 6 (includes axial and bending).  When the 
material is brittle, except for cast material and ductile materials, the maximum stress 

maxS  includes tK .  When the state of stress at a point includes the shear stress due to 
torsional moment and shear force and a normal stress due to bending moment and 
axial force, then a complex static failure criterion is required as discussed in Section 
4.2.   
 

• Compression Failure due to Buckling.  Elements that have a compressive normal 
stress due to axial force are checked, i.e., when SDIR  is negative in Figure 6.  The 
beam element is assumed pinned at nodes and this is considered conservative.  The 
actual connection at nodes results in a larger buckling load.  Consider a column with 
an end load f  shown in Figure 7a.  The compressive axial forces f  in Figure 7b is 

the same as the element nodal axial forces ( ),  
I Jx xf f
) )

 in Figure 7c.  Furthermore, the 

bending moment M  in Figure 7b is the same as the element nodal moments 
( ),  I JM M
) )

 in Figure 7c.  The failure stress for eccentric column buckling is defined 
by Norton [8] as follows:  

 

0.1rE >      2r
ecE
k

=  

 

21 sec
4

yc
buck

eff

S
S

lec f
k k EA

=
⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

  Secant Formula        (9a) 

 
0.1rE ≤  

 
2

1
2
yc r

buck yc

S S
S S

E π
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

   Johnson Formula        (9b) 

 
with the factor of safety defined as 
 

max

buckSFS
S

=                (10) 

 
where e  is the eccentricity, c  is the maximum distance from the centroid to the outer 
fiber of beam, k I A=  is the radius of gyration of the cross section, I  is the least 
moment of inertia, A  is the cross-sectional area, ycS  is the compressive strength, 

effl l=  is the effective length the beam element, E is Young’s modulus, and r effS l k=  
is the slenderness ratio.  Beam elements made of brittle material, except for brittle cast 
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material and ductile materials, have an allowable stress aS  that includes the theoretical 
stress concentration factor tK , i.e., a t aveS K S= .  Figure 8 shows the column failure 
lines for secant and Johnson in Equations (9a) and (9b), respectively, for different 
eccentricity ratios rE .  The element eccentricity e  is determined by using the element 

nodal forces ( ),  
I Jx xf f
) )

 and nodal moments ( ),  I JM M
) )

 in Figure 7c as follows: 

,  
I J

JI

x x

MMe Maximum
f f

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

))

) )             (11) 

 

  
a. Eccentrically 
loaded column. 

b. Free-body 
diagram of column. 

c. Beam element nodal forces and moments in terms of element 
coordinates. 

Figure 7.  Column and beam element. 

 
Figure 8. Secant and Johnson failure lines for different eccentricity ratios rE . 
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4. Plane Stress/Strain Elements, Axisymmetric Elements, and Solid Elements 
The plane stress/strain elements, axisymmetric elements, and solid elements are 
commonly found in finite element textbooks.  Stress concentrations for these elements 
types are commonly addressed in finite element textbooks.  Example problems and 
homework problems using the von Mises criteria are also commonly found in finite 
element textbooks.  Discussion regarding the von Mises static failure criteria are 
addressed in [3, 11] and other failure criterion can be found in [9, 12].   The most 
comprehensive discussion regarding static failure can be found in Adams and Askenazi 
[4]. 
 

Triangular and quadrilateral shaped elements shown in Figures 1c-1f are found in 
commercial codes for modeling plane stress/strain and axisymmetric problems.  These 
elements include the three- and six-noded triangles (Figures 1c and 1d) and four- and 
eight-noded quadrilaterals (Figures 1e and 1f).  The solid element shapes found in 
commercial codes are tetrahedrals and bricks as shown in Figures 1g-1j. The tetrahedral 
has three and ten nodes (Figures 1g and 1h) and the brick has eight and twenty nodes 
(Figures 1i and 1j).   The material for these elements is assumed linear elastic, 
homogeneous, and isotropic.   
 
4.1. Stress Concentrations 
The plane stress/strain elements, axisymmetric elements, and solid elements account for 
stress concentrations.  These elements are formulated based on the theory of elasticity 
and determine a non-uniform state of stress throughout the body.  Therefore, the 
theoretical stress concentration factor is not required to determine the maximum stress at 
a stress-riser.  The stress value from the finite element analysis is used as the maximum 
stress at a stress-riser.  Stress concentrations are commonly addressed in finite element 
textbooks for the plane stress/strain, axisymmetric, and solid elements. 
 

The first author has applied the theoretical stress concentration factor to the finite 
element stress for a solid element mesh when only a coarse mesh could be generated.  An 
example is where a gas turbine contains extremely small gas holes.  These holes are so 
small that it becomes impossible, even with today’s mesh generators, to create a fine 
solid mesh around the tiny hole.  In this case the coarse mesh stress is multiplied by the 
stress concentration factor.  This type of problem can only be modeled accurately using 
the boundary element method [13] to determine the actual stress concentration near the 
holes. 

 
The first author has found that practitioners and students at times will carry out an 

incorrect finite element analysis when there is a sharp corner.  Consider the L-bracket 
shown in Figure 9 that was considered in [14].  The exercise is to find the maximum von 
Mises stress in the L-bracket and to determine if the part fails when subjected to the 
uniformly distributed load of 1500 N/mm.  A commercial finite element code is used to 
carry out a convergence study by solving the problem using successive mesh refinements 
as shown in Figure 10 (smaller four-noded quadrilateral elements are used in the vicinity 
of the re-entrant corner).  A plot of the maximum von Mises stress versus the number of 
degrees of freedom is shown in Figure 11.  From this graph the analyst determines that 
the stress will never converge.  The reason is that theory of elasticity states that an 
infinite stress arises at a re-entrant corner.  This is a common mistake where the 
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practitioner will chase a stress that can never be obtained.  Even more common is that 
students and practitioners do not carry out a proper convergence study and simply use the 
value of the von Mises stress for a given mesh.  This type of application reinforces how 
important it is for students and practitioners to have an understanding of finite element 
theory and mechanics of materials theory.  Furthermore, educating students on these 
slight yet often overlooked problems in finite element analysis instills a strong sense of 
practical and fundamental modeling skills.  If the bracket had a fillet at the corner of 
interest then the stress will converge. This exercise demonstrates that “A lack of 
understanding finite element fundamentals can introduce the potential for erroneous 
stresses and deflections even in simple classical examples [15].” 

 

t = 1 mm

1500 N/mm

175 mm

350 mm

225 mm

100 mm

100 mm

E = 30 x 10

y
ν = .3

psi6

S

Material:  A36 Steel

% Elongation over 2 in = 30
= 36 kpsi

 
Figure 9.  L-bracket problem definition. 

 

 
Figure 10. L-bracket finite element plane stress solution for the von Mises stress 

at the re-entrant corner for four meshes with 4-noded quadrilateral elements. 
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Figure 11. L-bracket non-convergence study of von Mises stress at re-entrant corner. 

 
4.2. Static Failure 
The state of stress at a point in plane stress/strain elements, axisymmetric elements and 
solid elements is complex such that failure theories are required. A failure theory is also 
known as failure criteria and addresses only material failure and not failure of the 
structure.  Static failure criteria serve to predict whether a given state of stress will 

1. cause the material to yield (ductile material), or 
2. cause the material to fracture (brittle material). 

The most common static failure criteria found in finite element textbooks is the von 
Mises failure criteria applied to plane stress/strain and axisymmetric problems.  
Unfortunately, finite element textbooks do not make it clear why the von Mises failure 
criteria is used.  
 

The failure criteria for the plane stress problems are considered for brevity.  The 
failure criteria selected is based on the material type as follows: 
• Ductile Material ( 0.05fε > ).  The definition of a ductile material was discussed in 

Section 2.1.  The most common failure criteria used for ductile materials and found in 
commercial finite element codes are von Mises and Tresca as shown in Figure 12.  
These two criteria are as follows: 

 
1. von Mises (von Mises-Hencky) or Distortion-Energy Criteria.  This is considered 

the most accurate and preferred approach for ductile materials since it has very 
good correlation with experimental data.  The von Mises theory states that 
yielding begins when the distortion energy equals the distortion energy at yield in 
simple tension.  However, it is more convenient to state von Mises criteria in 
terms of an effective stress eσ .  The value of eσ  that defines yielding can be 
determined from a standard tensile test specimen.  One can show that e ySσ =  is 
reached in uniaxial test, and for any other state of stress failure is defined as: 

 

e ySσ ≥             (12a) 
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where yS  is the tensile yield strength.  The effective stress eσ  in terms of 
principal stresses for a plane stress problem is: 
 

2 2
1 1 2 2eσ σ σ σ σ= + +           (12b) 

 
or in terms of Cartesians stresses 
 

2 2 2
e x y x y xyσ σ σ σ σ τ= + − +           (12c) 

 
The principal stresses ( 1 2,  σ σ ) and Cartesians stresses ( ,  ,  x y xyσ σ τ ) are 
determined from the finite element program.  The safety factor for von Mises is 
defined as 

 
y

e

S
FS

σ
=             (12d) 

 
The effective stress eσ  is a fictitious stress that does not really act on any plane in 
a component, it is simply a number, always positive, representing an effective 
intensity of a stress equivalent to the three principal stresses.  Since it is always 
positive it does not provide an indication of tension or compression.  Figure 12 
shows the von Mises ellipse failure envelope (yield surface or yield locus) for 
plane stress ( 3 0σ = ) in terms of principal stresses ( 1 2,  σ σ ).   
 

 
Figure 12. von Mises and Tresca failure envelopes for ductile materials. 
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2. Tresca or Maximum-Shear Stress Criteria.  Tresca is mathematically simpler and 
more conservative than von Mises.  The Tresca criteria states that yielding will 
begin at a point in a body when the maximum shear stress at that point equals the 
maximum shear stress in a standard tensile test specimen when the specimen 
begins to yield as follows: 

 

max 2s

y
y

S
Sτ ≥ =            (13a) 

 
where maxτ  is the maximum shear stress at a point and 

syS  is the shear strength of 
the material at yield that is one-half of the tensile yield strength yS .  Equation 
(13a) is a good relationship to remember in practice if only the yield strength is 
available.  The factor of safety for Tresca is defined as  
 

max max2
sy yS S

FS
τ τ

= =            (13b) 

 
Figure 12 shows the Tresca hexagonal failure envelope for plane stress ( 3 0σ = ) 
in terms of principal stresses ( 1 2,  σ σ ).   

 
• Brittle Material ( 0.05fε ≤ ).  The definition of a brittle material was discussed in 

Section 2.1.  The most common failure criteria used in practice includes the following: 
 

1. Maximum Normal-Stress Criteria. 
2. Modified-Mohr Theory or Modified Internal Friction Criteria. 
 
The finite element courses taught by the first author only provides an overview of 
these two criteria for brittle materials with no applications due to time limitations and 
therefore is not addressed in this paper.  

 
Conclusion 

This paper considers stress concentrations and static failure for elements that are 
commonly used in practice to carry out a static finite element stress analysis.  The 
elements considered include the truss, beam, plane stress/strain, axisymmetric, and solid.  
Stress concentrations and static failure have not been comprehensively addressed in any 
finite element textbook.  The first author has integrated these topics into his introductory 
finite element undergraduate, graduate, and industrial short courses.  This was done when 
the first author started teaching industrial finite element short courses.  The plate and 
shell elements are also commonly used element in practice.  However, these elements 
were not addressed since stress concentrations and static failure are more complex then 
the elements considered in this paper.   
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