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ABSTRACT: Strictly proper scoring rules are used to elicit a person’s true probability beliefs about an 
uncertain outcome.  The application of strictly proper scoring rules to grading in an academic 
environment is not new and is typically restricted to classes centered on Decision Analysis.  For the 
purpose of explanation, a typical application of strictly proper scoring rules in academic grading would be 
as follows:  assume that a multiple choice question with four possible answers has correct answer “D” and 
is worth one point.  The traditional technique requires students to select one right answer, so if a student 
answers “D”, the student receives a 1 or a 0 for all other answers.  Conversely, a strictly proper scoring 
rule requires the student assign probabilities that each possible answer is correct, say A=0.1, B=0.2, 
C=0.05, D=0.65.  The student’s score depends on the scoring rule applied.  Under the logarithmic scoring 
rule, the student would receive ln(0.65) points or -0.43.  The scores are obviously bounded by (-∞, 0].  
Usually, the instructor rank orders students’ scores and then assigns final grades.  This situation can be 
extremely punitive for students who assign a low probability to a correct answer, and only slightly 
rewarding for those who submit their true understanding of the problem.  Alternatively, the quadratic 
scoring rule allows a range of scores for the “correct” answer but is bounded between -1 and 1 allowing 
the instructor to similarly rank the scores.  We discuss a modification of the quadratic rule applied at the 
United States Military Academy in our Decision Analysis course.  In our approach, we are restricted to an 
absolute grading requirement - the grade a student earns is not curved in any way.  We explore the trade 
off between information gained about the students’ true beliefs and points awarded.  We examine initial 
student feedback and compare probabilistic grades to the hypothetical traditional multiple choice grades.  
Finally, we explore options for integrating strictly proper scoring rules into other engineering courses. 
 
Introduction  

 The mission of the United States Military Academy is "To educate, train, and inspire the Corps of 
Cadets so that each graduate is a commissioned leader of character committed to the values of Duty, 
Honor, Country and prepared for a career of professional excellence and service to the Nation as an 
officer in the United States Army".1 During their four years of education at West Point, cadets learn the 
value of being bold, decisive leaders who are committed to action.  What is often not as well learned 
however is the risk assessment associated with committing to the wrong course of action and the 
consequences therein.  Quite naturally, cadets tend to apply the decisive action – and minimal risk 
assessment – they learn in a field training environment to their academic requirements.  For most of these 
students, the real world will quickly manifest itself as a hostile environment in which a new platoon 
leader must weigh life or death situations laced with multiple levels of uncertainty.  In our Decision 
Analysis course for Systems Engineering cadets, we aspire to make our students better assessors of 
probability and risk, and thereby better decision-makers in the face of uncertainty, through a series of 
challenging and thought provoking “probabilistic multiple choice” problem sets.  Secondly, we aspire to 
gain more information about the state of our students’ information regarding course material by having 
them respond to questions in a way that has more distinction than a binary response. 

 In an effort to make our students better assessors of probability, we have introduced the concept 
of probabilistic scoring rules, also known as Strictly Proper Scoring, in the Decision Analysis course.  
Essentially, this approach requires each student to solve a group of multiple choice problems and then 
assign a probability that each of the given multiple choice answers is correct.  This method allows a 
student who is not confident in her answer to assign her true beliefs about the answer to the problem.  
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Although there is a correct answer, this scoring method allows students to trade a small portion of points 
to avoid losing all credit for a particular question. 
 
In this paper, we begin by discussing the background of probabilistic scoring rules and then discuss the 
technical aspects of the approach.  We then transition to our application, our assessment of the study to 
this point and then conclude with a discussion of the future directions of our study. 
 
Background 
  

Probabilistic scoring rules are used in a variety of ways.  In the late 1960s, probabilistic scoring 
rules were introduced as a means for evaluating meteorologists’ probability assessments on the weather.2,3  
Probabilistic scoring is used in the field of medicine to evaluate diagnosis of disease.  Probabilistic 
scoring is used in the world of finance to evaluate market analysts’ predictions.  Recently, probabilistic 
scoring is used in the development of speech recognition software.   

 
Probabilistic scoring rules applied in an academic environment are not new.  Shuford, Albert, and 

Massengill began the discussion of probabilistic scoring in education in 1966.4  Decision Analysis courses 
at Stanford and Texas A&M currently apply strictly proper scoring rules to many of their graded 
assignments.  Most programs use the logarithmic scoring rule which allows a student to earn an infinitely 
negative score on any question, and theoretically fail an entire course over the smallest question.  These 
other programs have the ability to rank order and subsequently assign a grade for the course.  This 
ranking and grade assignment is counter to the guidance established by the US Military Academy’s Dean 
of the Academic Board and as such, our application has been modified from this more drastic approach 
which we explain in greater detail later in this paper.10  Regardless of the approach, the mathematical 
manipulations may seem unnecessarily complex for grading a simple homework.  We explain these rules 
below and then follow with the explanation of the payoff in educational value for the increased 
calculation burden. 

 
 
Probabilistic Scoring Rules 
 
 Consider an individual X  who assesses a probability distribution over n > 1 mutually exclusive 
and collectively exhaustive events.  Let b = (b1,…,bn)  be a vector of X’s “true probability beliefs,” where 
bi is the probability that event i will occur.  Let r = (r1,…,rn)  be a vector of X’s “actual probability 
report,” where ri is the probability that event i will occur.  In that the n events are mutually exclusive and 
collectively exhaustive, the sum of the probabilities (b1,…,bn)  and (r1,…,rn)  are both equal to 1.  A 
scoring function S is strictly proper iff X’s expected score is strictly maximized by setting r = b; that is, 
X’s score is strictly maximized by reporting his or her true probability beliefs.3,4,5,6  We note that assigning 
a uniform distribution over the n events equates to an admission of no information (or insight); under 
strictly proper scoring rules, it is better to admit that you have no information than to guess.  This is a 
large departure from traditional multiple-choice scoring.   
 
Many scoring rules have been developed, but three of the most popular (for n multiple choice questions) 
are:   
 
  Quadratic (Q):   Qi(r) = 2ri – r • r [ ]1,1−∈  (1) 
  Spherical (S):   Si(r) = ri / (r • r)1/2 [ ]1,0∈  (2) 
  Logarithmic (L): Li(r) = ln(ri) ( ]0,∞−∈  (3) 
 
where ri is the probability assigned to the correct answer (i=1…n).7    
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As discussed by Bickel, the first thing to notice is that scoring rule L (equation 2, above) is 

defined as local, or that the assessor’s score only depends on the probability assigned to the correct 
answer; a higher probability assigned to the correct answer will always result in a higher score.  Locality 
is considered desirable by some because it should be easier for evaluated individuals to understand and it 
generates consistent rank orderings among assessors for the same assessments.  Conversely, scoring rules 
Q (equation 1, above) and S (equation 3, above) are global, as the scores depend on both the probability 
assigned to the correct answer and the probabilities assigned to the remaining incorrect answers.  Under 
these global rules, a reward is given to the probability assessed to the correct answer and a cost is 
deducted for probabilities assigned to incorrect answers.  This implies that one assessor may assign a 
higher probability than another assessor to the correct answer but receive a lower score.  This means that 
if individuals X and Y assigned [0.7,0.1,0.1,0.1] and [0.7,0.3,0,0] vectors respectively on an n=4 exercise 
with the first answer being true upon revelation, then X would receive a higher score even though they 
assigned identical probabilities to the correct answer.  Individuals X and Y are equally rewarded for their 
assignment to the correct answer, but Y receives a larger penalty due to a concentration of probability 
assigned to a particular incorrect answer.  In both cases, X and Y may have assigned their true probability 
beliefs.  We believe that locality is desirable in situations where rank ordering results are important, and 
also recognize that an argument that the inclusion of probabilities assessed to both correct and incorrect 
answers with a global scoring rule also has merit.  On a contextual level, the evaluator must decide 
whether to evaluate assessors locally or globally.7 

 
Another consideration is whether or not the scoring rule is bounded.  If an individual assigns a 

probability of 0 to the correct answer under scoring rule L, then the result is an infinitely negative score, 
from which the assessor can not recover.  This essentially results in an expected value of -∞ which 
increases the assessor’s risk aversion.  As scoring rule L results in only non-positive values, the evaluator 
must rank order the scores to assign positive scores (or the students would never do their homework at 
all!)  This rank ordering and then “curving” or “shifting” the scores for grading may be less appealing to 
the evaluator who wants to score assessors according to an ex ante standard rather than an ex post rank.  
Finally, if an evaluator concludes that a negative score on any given assessment exercise is not 
acceptable, then L will not work without being truncated.  However, If L is truncated (vice being 
unbounded below), then the scoring rule is no longer considered strictly proper.  In contrast, both Q and S 
are bounded, and can easily be linearly transformed to any desired scale.  We note that by definition a 
linear transformation of a strictly proper scoring rule is still strictly proper.5 
 
USMA Approach 
 

The primary objectives of the Decision Analysis course at the United States Military Academy 
are for the cadets to cover both single and multiple objective decision analysis as well as risk attitudes.  
We began early in the semester to train the students to be better assessors of probability through 
integration of a modified quadratic scoring rule.  Our goals for using this system rather than a traditional 
multiple-choice method are: 1) Train students to be better decision-makers through probability assessment 
and 2) Provide the instructors with more information about each student’s true level of understanding of 
the material. 
 

We use a linear transformation of the quadratic scoring rule (global, bounded) which allows 
scores on individual questions to be between 0 and 5 points.  There are three problem sets valued at 25 
points each – so each problem set includes 5 questions, and each question has four possible answers.  An 
example question is provided below in Figure 1. 
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Figure 1:  Sample Problem Set Question 

 
The score for any particular question is calculated by using the formula in equation 2, above or more 
specifically, equation 4 below. 
 
 2.5 + 2.5×Qi(r) (4) 

 
where r is the vector of reported probability assessments, and ri is the probability assessed to the 

correct answer.  Note that Qi(r) (from equation 2, above) returns a score on the interval [-1,1]; using 
equation 4, we have linearly transformed this rule to return a score on the interval [0, 5].  Once again, a 
linear transformation of a strictly proper scoring rule is still strictly proper.5  Similarly, the original 
interval can be transformed to the interval [0, 100] and interpreted as a percentage and any number of 
points can then be assigned to various questions. 

 
Figure 3 depicts the possible score ranges for differing assessments on the correct answer.  The fact 

that Figure 3 displays ranges of possible scores given the probability assigned to the correct answer is a 
result of the global property.  It visually depicts how student X scores better than student Y even though 
they both assigned the same probability to the correct answer.  Student Y incurs a larger cost for the 
distribution of a larger probability on a single incorrect answer in accordance with his or her true 
beliefs.  To attain the absolute maximum score, the student must assign a probability of 1.0 to the 
correct answer, and conversely, to attain the absolute minimum score, the student would assign a 
probability of 1.0 to any of the incorrect answers.  Both of these techniques equate to approaching the 
problem set as a traditional multiple choice exercise when a student can choose only one right answer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Possible Scores for Student X and Student Y 
 

 This approach has several features that we find desirable.  First, it allows us to establish, publish, 
and score against an ex ante standard rather than using a student’s ex post rank to determine grades.  This 
means that a student knows where they stand in the course as soon as they receive the solutions and 

Student X

Student Y
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scores rather than waiting until the end of the course to see their ranking.  In line with current research on 
effective teaching, we have avoided a grading system that puts students in competition with their 
classmates and we keep students informed of their progress throughout the term.8 
  
 Second, if a student is uncomfortable or ignorant about this grading system, they can still use a 
multiple-choice approach by answering with nothing other than 1s and 0s.  In our in-class explanations 
and demonstrations, we advise them that this does not maximize their expected score; we use this to 
advocate assigning their true probability beliefs.  We also show them how this allows the student to 
receive partial credit on a multiple choice type of question. 
 
 Third, this methodology does not produce negative scores.  We believe that the possibility of a 
negative score on any particular problem increases the level of risk aversion in some students.  We want 
to foster a risk neutral attitude in our students’ approach to our problem sets.  In doing so, we recognize 
that some will actually act in a risk seeking manner, but we have found that it is harder to convince our 
students out of risk aversion than it is to convince them out of risk seeking behavior.  This discussion also 
reinforces the fact that the best strategy is to assign true probability beliefs. 
 
 Finally, we reward an admission of ignorance with a 62.5% score; this equates to a “high F” on 
our scale.  A student attains this score by assigning equal probabilities to all possible answers.  This 
reinforces the principle that it is better to admit ignorance than to feign understanding.  We, the 
instructors, get more information about our students’ state of information as it relates to course material. 
 
Assessment 

 
We have used two tools to assess our approach:  the student scores and a brief student survey.  

The student scores provide a means for hypothetical comparisons between different scoring rules and the 
opportunity to explore the advantages and disadvantages for students under each rule.  The student survey 
provides insight into student awareness, motivation, and risk attitudes concerning the first problem set 
administered.  (Note that previous editions of this course did not have similar problems sets and thereby 
making direct comparisons impossible.) 
 

Scores on the initial problem set averaged 75%.  As a part of their submission, students were 
required to also submit their “total commitment” answer – that is, the student had to pick one and only 
one correct answer.  This was used to calculate a hypothetical score under traditional multiple choice 
conditions.  If scored in the traditional multiple choice manner, the course average would have decreased 
to 70%.  More interesting yet, only 16 of the 74 students chose to answer every question as if it were a 
traditional multiple choice environment, and only 3 of the 16 achieved 100%.  In comparison, 41 students 
realized an improvement in their grade for the assignment over a traditional multiple choice environment, 
and only 15 experienced a reduction in their score.  This includes 2 students who received zero credit for 
problems on which they assigned probabilities whose sum exceeded 1.  If we remove the students whose 
all-in answers do not match their assigned probabilities, then the maximum points lost on a 25 point 
problem set was 0.9625, or 3.85% of the assignment. 

 
We collected student feedback after the first problem set but before any student had received their 

grade for the event.  67 of the 74 students completed the 10 question survey which attempted to assess the 
students’ attitude towards the scoring rule, their perception of their grade, and some brief questions to 
assist with future measurements of risk attitudes. 
 

There were 16 students that scored the same when comparing traditional multiple choice scoring 
and our scoring methods.  Of those, only 11 indicated that they believe their scores would be the same.  
This shows a misunderstanding or ignorance of how the scoring rule is calculated.  Of the 67 respondents, 
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63 (94%) predicted their scores would be within +/- 10% of traditional multiple choice scoring rules, but 
only 30 of 67 (45%) were accurate in predicting how the probabilistic scoring rule would affect their 
grades.  Additionally, 59 of the 67 (88%) respondents indicated that they are indifferent or prefer 
probabilistic multiple-choice over traditional multiple-choice.  Also of note, 63 of 67 (94%) respondents 
stated they spent the same amount of time or longer on this assignment than they would have if it were 
scored in a traditional multiple-choice manner. 
 
 Our most interesting findings concern the information gained by the instructors.  When students 
choose to answer with anything other than assigning a probability of one to an answer, the instructor 
gains some piece of information about the student.  Since the points we are willing to give cost us no 
more than the computing power necessary to accurately calculate a score, there is virtually no investment 
on the instructors’ part.  For that minimal investment instructors can learn about each student as long as 
each answers with their true beliefs.  The probabilities assigned to both correct and incorrect answers give 
us a better fidelity about the current state of our students’ information.  This reveals where the students as 
a whole could use improvement or review of material.  We aim to gather more data before we quantify 
the level of information gained relative to traditional multiple-choice scoring. 
 
Future research 
 

We believe that our scoring rule has a valid application in our Decision Analysis course.  It can 
also be leveraged in other engineering courses to elicit the true level of understanding of students.  Initial 
student feedback is positive, with some skepticism mixed in as well.  The students continue to improve 
their ability to assess their own understanding of probability and the uncertainties they face.  We believe 
this understanding of probability and uncertainty is applicable in all areas of engineering education.  
 
 Possible future research will focus on several areas.  Our ultimate goal is to improve each 
student’s ability to assess uncertainty and apply that improved ability to the decision situations in their 
everyday lives.  We intend to continue soliciting feedback from students in several areas and looking for 
significant relationships that may improve the quality of instruction over the next several years.  We plan 
to evaluate the relationships between learning styles, risk attitudes, and probabilistic scoring rules.  We 
also will assess students’ performance based on course objectives and their approach to probabilistic 
scoring rules.  We will also continue to pursue opportunities to include probabilistic scoring rules in other 
courses at West Point.  We believe there is merit in exploring the possibility of finding a strictly proper 
scoring rule that is both local and bounded.  We also hope to compare the accuracy of multiple probability 
assessors with various states of information as compared to an individual expert assessor. 
 
Conclusion 
 
 Every decision situation requires the decision maker to consider four elements: the decision to be 
made, uncertain events, possible consequences, and values and objectives.9  We have explicitly focused 
this paper on the uncertain events, but have encouraged the incorporation of the other three elements by 
allowing an infinite spectrum of possible outcomes and requiring each student to weigh their values and 
objectives against those uncertain events and consequences.  By doing so, we hope to build a cohort of 
future leaders more aware of the uncertainties affecting their decisions and the ramifications of their bold 
commitment to action.  We do not attempt to strip away the bold and decisive nature; rather we strive to 
augment the deft commitment to action with an ability to recognize the uncertain nature of future events 
and mitigate the risk of bad outcomes. 
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