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Structural Design Optimization: Numerical and Simulation Approaches 

Abstract 

A structure with optimal mechanical properties such as weight and stiffness have a significant 

positive impact on enhancing performance and cost efficiency. A very common structural 

optimization application problem arises in finding minimal weight design with constraints on 

stress and deflection. Real world applications, such as designing structural components of 

trusses, bridges, cars, aircraft, and spacecraft can be formulated and solved as engineering 

optimization problems. The goal of this project is to utilize computational methods including 

numerical and simulation analyses to find various optimal values and study the behavior of the 

structure. The MATLAB optimization solver is used to find optimum values numerically without 

violating constraints. The optimal values are, in turn, used as design parameters in the 

SolidWorks simulation software for creating a Computer Aided Design (CAD) model and 

virtually simulating a CAD model of the structure to ensure that the structure can withstand real-

world physical behavior. This project will have positive impacts on training and educating 

students in areas of design optimization, computational, and simulation methods. 

Introduction  

According to the Oxford Dictionary, the word “optimize” in a general setting can be defined as 

making the best or most effective use of a situation, opportunity, or resource without violating 

any constraints. Modern optimization methods were pioneered by Courant’s paper [1] on penalty 

functions, Dantzig’s paper [2] on the simplex method for linear programming, and Karush, 

Kuhn, and Tucker, who derived the KKT optimality conditions for constrained problems [3]. The 

use of nonlinear optimization techniques in structural design was pioneered by Schmit [4]. 

Today, many engineering problems involved in design optimization are subjected to constraints. 

Design optimization plays a key role in design and has a wide variety of applications in real-

world problems. Applications include increasing stiffness or reducing the weight of the structural 

components in spacecraft, aircraft, automobiles, and other structures without sacrificing 

structural integrity.  

The three examples in this paper can be used as a module/modules to teach applications of 

optimization and simulation in an undergraduate Finite Element Analysis course. The modules 

can be presented to students with a slight knowledge of optimization theory and MATLAB 

software. This project offers students the opportunity to gain valuable computational skills in 

areas of design optimization, CAD, and simulation. Also, students will learn to formulate the 

optimization problem and choose appropriate MATLAB optimization solvers to yield optimal 

values and validate the optimal results by virtually simulating the CAD model.  

Methodology 

The concept of optimization has four elements: design variables, objective function, constraints, 

and design space. Design variables include numerical quantities that will vary throughout the 

optimization process. Examples of design variables include, but are not limited to, size, weight, 

and geometry. The objective function is a mathematical equation that represents the design 



 
 

variables that will be optimized. Constraints are restrictions that define limitations of physical 

quantities in a specific design. The design space is the domain defined by the design variables.  

In this project, three structure models are analyzed to obtain optimal design variables, and 

structures are simulated to assess the accuracy of the optimal results. First, the objective function 

and constraints are defined, and the appropriate MATLAB optimization solver is used to 

minimize objective function while satisfying constraints. Prior to simulation, the optimal values 

of the design variable yielded from the MATLAB solver are utilized to model the structure in the 

SolidWorks CAD software. The model is, in turn, simulated to virtually test and analyze the 

structure to ensure that it can withstand the loading condition and doesn’t violate constraints. 

Three problems are presented as follows: 

1. Truss Problem Statement: 

As shown in Figure1, a steel truss has been designed with no maximum load capacity given. The 

four concentrated loads are applied to four joints located at the top of the truss, including points 

B and E. Maximum permissible stresses in members AB and BC are 71.2 MPa and 18.5 MPa, 

respectively, and the permissible vertical deflection at point C is 3 mm. All members have an 

equal cross section area and length.  

𝐴 = 5.475 × 10−4 m2 

L = 4 m 
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                           Fig. 1: Truss Problem 

The optimization problem to maximize the load capacity is given: 

Maximize:   𝑃1 + 𝑃2 

Subject to:  3𝑃1 + 𝑃2 ≤ 135.1  kN; −3𝑃1 − 𝑃2 ≤ 135.1  kN; 𝑃1 − 𝑃2 ≤ 35.1  kN; 

   −𝑃1 + 𝑃2 ≤ 35.1  kN; 𝑃1 + 𝑃2 ≤ 85.1  kN; −𝑃1 − 𝑃2 ≤ 85.1  kN; 

   𝑃𝑖 ≥ 0        𝑖 = 1,2. 
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Analytical Calculations 

 

 

                                                                                             

                                                                                                                     

                                                                                                

 

                                                                                        

 

 

Fig. 2: Free Body Diagram 

Stress in Member AB 

 

∑ 𝐹𝑥 = 0                                     ∑ 𝐹𝑦 = 0         ∑ 𝑀𝐴 = 0  

𝐴𝑥 = 0                            𝐴𝑦 + 𝐷𝑦 − 𝑃1 − 𝑃2 = 0                  −2𝑃1 − 6𝑃2 + 8𝐷𝑦 = 0 

                              𝐴𝑦 + 𝐷𝑦 = 𝑃1 + 𝑃2        𝐷𝑦 =
3𝑃2+𝑃1
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At Joint A:   
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∑ 𝐹𝑦 = 0     

𝐴𝑦 − 𝐴𝐵
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4
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Stress in member AB:     
𝐴𝐵

𝐴𝑟𝑒𝑎
= 

3𝑃1+𝑃2

2√3×𝐴𝑟𝑒𝑎
   

Stress in member BC:     
𝐵𝐶

𝐴𝑟𝑒𝑎
= 

𝑃1−𝑃2

2√3×𝐴𝑟𝑒𝑎
   

Stress in member AB is equal to Force AB/Area which should be less than 71.2 MPa. Stress in 

member BC is equal to Force BC/Area which should be less than 18.5 MPa. The constraint 

equations were obtained after substituting the area value in stress equations.  

a. MATLAB Results 

The linprog solver in the MATLAB code is used to minimize the objective function since the 

problem is linear. Note that maximizing the objective function is equivalent to minimizing the 

objective function multiplied by (-1). Then to properly formulate the optimization problem, the 

objective function is formulated as:  

Minimize   - 𝑃1 − 𝑃2    

The MATLAB format of the objective function and constraints is listed as 

>> f=[-1 -1] 

>> A=[3 1; -3 -1; 1 -1; -1 1; 1 1; -1 -1] 

>> b=[135.1; 135.1; 35.1; 35.1; 85.1; 85.1] 

>> Aeq=[] 

>> beq=[] 

>> lb=[0 0] 

>> ub=[] 

>> [X, Z] = linprog (f,A,b,Aeq,beq,lb,ub) 

The optimal solution yielded the values of 25  

KN and 60.1 KN for P1 and P2, respectively.  

 

     b.  CAD Model and Simulation 

The optimal values of 𝑃1 and 𝑃2 are used in the SolidWorks simulation software to validate the 

allowable stresses in members of 𝐴𝐵 and 𝐵𝐶 as well as deflection in joint 𝐶 the truss. The CAD 

model is given in Figure 3. 

f = objective function  

A = left side coefficients of the 

constraints 

b = right side coefficients of the 

constraints 

Aeq = left hand side equalities 

beq = right hand side equalities 

lb = lower bound 

ub = upper bound 

X, Z = optimal solutions 



 
 

 

     Fig. 3: SolidWorks CAD Model of Truss with Optimal Loads 

 

Fig.4: Stress Analysis on Truss 

 

Fig.5: Displacement Analysis 



 
 

The Figure 4 stress simulation result verifies that the stresses in members AB and BC are lower 

than 71.2 MPa and 18.5 MPa, respectively. Also, Figure 5 shows that deflection in joint C is 

lower than the allowable 3 mm deflection.  

2. Welded Beam Problem Statement: 

As depicted in Figure 6, a cantilever beam is welded onto a column. The welding area has two 

segments, each with length 𝑙 and width 𝑏 sizes. The length of beam 𝐿=14 inches is subjected to a 

load 𝐹=6000 lbs.  

 

 

 

 

 

 

 

Fig. 6: Cantilever Beam 

The objective of this problem is to minimize welding volume subjected to a limited shear stress 

on the welded area. 

Objective Function: 𝑓 = 2𝑏2𝑙 
Constraints:       𝜏 ≤ 30,000 psi;   0.25 ≤ 𝑏 ≤ 1 in;   2 ≤ 𝑙 ≤ 3 in; ℎ = 3 in                     

 

The expression for τ is given as:  

𝜏𝑦 =
𝐹

𝑏𝑙√2
 

𝜏𝑡 =
6𝐹(𝐿 + 0.5𝑙)√(ℎ2 + 𝑙2)

√2𝑏𝑙(𝑙2 + 3ℎ2)
 

𝜏 = √𝜏𝑦
2 + 2𝜏𝑦𝜏𝑡𝑐𝑜𝑠𝜃 + 𝜏𝑡

2   ; 𝑐𝑜𝑠𝜃 =
𝑙

√(ℎ2+𝑙2)
                  ( 90-θ )        𝜏𝑦            𝜏𝑡 

 

a. MATLAB Results  

The MATLAB code to generate the optimal results is given as follows:  

In MATLAB coding, x(1) and x(2) are 𝑏 and 𝑙, respectively. 

function f = objecfun(x) 

f = 2*(x(1)^2)*x(2); 

function [c,ceq] = nonlconstr(x) 

y(1)= 6000/(x(1)*x(2)*1.41); 
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𝑏 
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y(2)=(36000 *(14 + 0.5*x(2))*sqrt(9+x(2)^2))/(1.41*x(1)*(x(2)^3+27*x(2))); 

c = [sqrt(y(1)^2+2*y(1)*y(2)*x(2)/(9+x(2)^2)+y(2)^2)-30000]; 

ceq = [ ]; 

 

The MATLAB software yielded the optimal values for 𝑏 = 0.528 in and 𝑙 = 3 in. 

 

b. CAD Model and Simulation  

The optimal values for 𝑏 and 𝑙 are utilized in the CAD model and SolidWorks simulation 

software is used to validate the allowable shear stress on the welded area. The CAD model is 

given in Figure 7. 

 

               Fig.7: SolidWorks CAD Model with Optimal Welded Sizes for Welded Beam 

 

 

                                    Fig.8: Welded Beam 𝜏𝑦𝑧Shear Stress Results 



 
 

 

Fig. 9: Welded Beam 𝜏𝑥𝑧Shear Stress Results 

The Figures 8 and 9 resulted from simulation software and validate that the τ shear stress on the 

welded area is lower than 30,000 psi.  

3. Two-Bar Truss Problem Statement:  

The design of a two-bar truss is given in Figure 10. The load P is applied at node A which causes 

member AB to be in tension and member AC to be in compression. A simple minimum weight 

design problem here would be to minimize the weight of the truss subjected to: (i) ensuring that 

each member does not yield, and (ii) the member AC, which is in compression, does not buckle.  

A design vector 𝑥 = [𝐴1, 𝐴2, 𝐻] is defined where 𝐴1𝑎𝑛𝑑𝐴2 are area cross-sections and 𝐻 is the 

vertical distance between two bars. Thus, the problem may be stated as:  

𝐸𝑠𝑡𝑒𝑒𝑙 = 30 × 106𝑝𝑠𝑖, 𝛾 = 0.2836 𝑙𝑏/𝑖𝑛3, 𝑆𝑦 = 36,260 𝑝𝑠𝑖, 𝐹𝑠 = 1.5, 𝑃 = 15,000 𝑙𝑏, 𝐿 = 5 𝑖𝑛 

 

Fig. 10: Two-Bar Truss 
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Minimize:  𝛾𝐴1𝐿 + 𝛾𝐴2√(𝐿2 + 𝐻2) 

Subject to: 
𝑃

𝐴2𝑠𝑖𝑛𝜃
 ≤ 𝑆𝑦/𝐹𝑠   ;   

𝑃

𝐴1𝑡𝑎𝑛𝜃
≤ 𝑆𝑦/𝐹𝑠  ; 

𝑃

𝑡𝑎𝑛𝜃
 ≤ 

𝜋2𝐸𝐼1

𝐿2𝐹𝑠
    

𝐴1, 𝐴2, 𝐻 ≥ 0 

 

a.  MATLAB Solutions 

The objective function and constraints given in the problem statement are utilized in the 

MATLAB software. In MATLAB coding, 𝐴1, 𝐴2, and 𝐻 are x(1), x(2), and x(3) respectively. 

For a circular cross-section  𝐼1 =
𝐴1

2

4𝜋 
  and substituting for 𝜃, in joint A, in terms of 𝐿 and 𝐻, the 

optimization equations yield: 

function f = objecfun(x) 
f = 1.418*x(1)+0.2836*x(2)*sqrt(25+x(3)^2); 
function [c,ceq] = nonlconstr(x) 
c =[0.6205*sqrt(25+x(3)^2)/(x(2)*x(3))-1; 
  3.102/(x(1)*x(3))-1; 
  0.07165/(x(3*x(1)^2)-1];     
ceq = [ ]; 

 

The MATLAB code yielded the optimal values of 𝐴1 = 0.653 𝑖𝑛2, 𝐴2 = 0.8 𝑖𝑛2, and  𝐻 = 5 𝑖𝑛. 

b. CAD Model and Simulation 

The optimal values obtained from the MATLAB code are utilized in the CAD model and 

SolidWorks simulation software is used to validate allowable stresses. The CAD model of the 

Two-Bar truss is given in Figure 11. Note that the size and geometry of the Two-Bar truss is 1.5 

sch 40 circular pipe that has area approximately  0.8 𝑖𝑛2. 

 

Fig. 11: SolidWorks CAD Model of the Two-Bar Truss with Optimal Values 



 
 

 

Fig. 12: Two-Bar Truss Axial Stress Simulation Results 

 

 

Fig.13: Amplitude Results from Buckling 



 
 

Figure12 resulted from the simulation and verifies that axial stress is lower than the allowable 

axial stress 24173 psi which obtained by substituting the value of 𝑆𝑦/𝐹𝑠   in stress equations. 

Figure 13 shows amplitude of deflection resulted from buckling which are very close to zero.  

Assessment of the Project 

This project requires students to utilize their knowledge and skills as well as demonstrate the 

level of learning stated on the ABET-ETAC student learning outcomes. The project can be used 

as a direct assessment method to validate student outcomes and evidence of what students have 

learned from the curriculum. This project is used to measure students’ mastery in the simulation 

subject area. A survey was designed to get feedback from students in the Finite Element Analysis 

/ Engineering Software Application course. This survey allows the student to rate the student’s 

achievements in terms of how successful he/she was in achieving the stated student outcomes 

and rates the quality of modules and instruction.  

Conclusion and Future Research 

Computational simulation is utilized in conjunction with the MATLAB numerical solution to 

validate the optimal results. The computational simulation not only supports the numerical 

results, but it can also be extended to more complicated designs. There are some anticipated 

challenges with the CAD and simulation modeling portions. Ensuring the model has the correct 

input of boundary conditions, force location and distribution, and material properties is critical to 

the success of the project.    

More examples on structural design optimization, such as optimizing the size of beams and 

pressure vessels, can be included in future work. This can be completed by using more advanced 

and complex problems. The use of supercomputing clusters will alleviate some computational 

time concerns. Also, formulating objective functions with constraints can be investigated as well.  
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