Ms. Mary L. Fletcher, Johns Hopkins University

Mary Laurette (Laurie) Fletcher received her B.S. degree in software data management from the University of Maryland and her M.S. in technical management from the Johns Hopkins University Whiting School of Engineering. She has more than 25 years of experience in software data management, technical publications and communications, and proposal management. Her particular areas of expertise include her understanding of the business relationship and contracting between private industry and the U.S. government, and the acquisition and management of Small Business Innovative Research programs. Fletcher is the Vice President of Fraser Technical Consulting, where her responsibilities include services specializing in software data management, proposal management, and technical publications. She was previously employed by Solipsys Corporation (now Raytheon Solipsys), where she held the following positions: Data Management Group Supervisor, Assistant Program Manager for DD(X), and Corporate Proposal Manager. Fletcher is a member of the following organizations: American Association of Engineering Education, American Society for Engineering Management, Society of Technical Communications, Women in Engineering ProActive Network, Society of Vertebrate Paleontology, Wyoming Geological Association, and the Tate Geological Museum Advisory Board. She is also an instructor for the Osher Lifelong Learning Institute at Casper College in the subject of the "History of Mysteries."

Dr. Allan W. Bjerkkaas, Johns Hopkins University

Allan W. Bjerkkaas holds a bachelor’s degree with a double major in physics and mathematics from the University of North Dakota and a master’s degree and a Ph.D. in physics from the University of Illinois, Urbana-Champaign. He joined the Johns Hopkins University Applied Physics Laboratory in 1973 after completing a two-year postdoctoral appointment at the University of Pittsburgh. While at the Applied Physics Laboratory, Bjerkkaas was a Project Manager in the Submarine Technology Department and a Group Supervisor in both the Submarine Technology Department and the Research and Technology Development Center. Since the mid-1970s he has taught in the part-time graduate programs that Johns Hopkins has offered for working engineers. He received the Excellence in Teaching Award in 1992. Bjerkkaas has been the Chair for the Applied Physics and the Information Systems and Technology programs. In 2001, he became the Associate Dean for the Engineering for Professionals (EP) programs in the Whiting School of Engineering, a position he held full-time after retiring from the Applied Physics Laboratory in Feb. 2005 until he retired from the Whiting School of Engineering in Sept. 2010. He now resides in Fergus Falls, Minn., and continues to teach online courses for EP. He can be reached at bjerkaas@jhu.edu.
Structured Design Approach for Converting Classroom Courses for Online Delivery

Abstract

As online courses have proliferated, more and more face-to-face instructors are challenged with the requirement to develop their courses for the online environment. In this paper, a spreadsheet table is described in which each row represents a week, called a module, of the class and each column represents a specific design element, such as learning objectives, learning assessments, resources, lectures, videos, other learning activities, or other design components found in an online course.

The process begins with an effort to infer the learning objectives by examining the content and assignments given in the classroom. These are entered into the table. Next the assignments from the classroom are entered in the assessment column and the alignment between learning objectives and assessments is determined followed by adjustments to the learning objectives and assessments to achieve better alignment. The content material that will result in the students achieving the learning objectives is then determined using what can be leveraged from the classroom as well as new material.

The iteration process continues with adjustments to the learning objectives, assessments, and content material until the instructor is satisfied that the course is both well aligned across a module as well as sequentially from week to week. This spreadsheet table then becomes the final overall detailed description of the course and serves as a starting point for design tune-up activities each time the course is taught.

Introduction

There is a two-fold challenge in converting face-to-face (classroom) courses for online delivery. The first is the overall task of systematically translating a class to an online environment. But there is rarely a one-to-one correspondence in the translation, often because the face-to-face faculty received little-to-no formal training on course design nor had any instructional design support, and therefore resorted to using general pedagogical techniques. So there is the coincidental problem of teaching faculty to redesign existing classes to accommodate the online environment. This is especially important because of the need to offer the students a course that is clearly aligned across the learning modules and through the duration of the semester.

The Johns Hopkins University Engineering for Professionals, Technical Management Program uses a course design matrix (CDM) spreadsheet approach designed by the authors to ensure that all online courses in development have an effective alignment and that applicable assessments are chosen to measure success in achieving the learning objectives.

In this paper, the top-level process of making the transition to an online course will be provided and then the CDM approach will be deconstructed in detail. The iteration of this approach will
be explained as an ongoing process throughout the life of the course and, finally, necessary elements for training the instructors will be examined.

Top-level Process

The existing face-to-face material is the basis for starting the breakdown of the course into a matrix. While the intention is to reuse as much material as possible, it is important to approach this process with a willingness to let go of material that does not work well in an online environment (e.g., free-ranging classroom discussions).

It should be possible to reverse-engineer learning objectives from the existing course material (and if that is not possible, there is a fundamental disconnect that needs to be addressed before progressing any further). A good framework, driven by well-crafted learning objectives, is key to populating this CDM with the course content.

After the course learning objectives have been established, it is important to design appropriate assessments (discussions, papers, presentations, scenarios, tests, etc.) to ensure that the students have understood and can implement the learning objectives.

Only after the learning objectives and assessments have been drafted should the learning materials/learning objects be derived from the face-to-face course or designed for the online course. This ensures that the learning objectives and assessments drive the design of the course and that they are not used instead to adhere to existing materials that may or may not be appropriate for the course.

A basic template for a CDM is provided in Figure 1.

<table>
<thead>
<tr>
<th>Module</th>
<th>Title and Summary Statement</th>
<th>Learning Objectives</th>
<th>Learning Assessments</th>
<th>Learning Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Course Design Matrix (CDM) Template

Once the CDM is populated with these elements, it is important to first align the learning objectives, assessments, and materials across a module and then align the modules with each other. This iterative process may drive a change in the hierarchy of module themes and a reorganization of materials into more associative elements. A basic overview of this process is provided in Figure 2.
An important element in course design, both online and face-to-face, is the establishment of a consistent, reliable vocabulary. Bloom’s Taxonomy of learning levels captures the language of learning objectives as expected outcomes of learning, i.e., what students should be able to do after they complete a module. Because this is such a universal approach to the definition of learning objectives, it is important that instructors have training in the use of Bloom’s Taxonomy before embarking on the course design process. Many if not most instructors are already versed in the taxonomy but it is important to ensure that there is training available for those who are not. It is essential to have this vocabulary in course design.

Getting Started

Before working on the CDM, it is important to get organized:

- Organize lectures in sequence
- Organize classroom activities in sequence
- Organize assignments, projects and exams
- Arrange materials into tentative weekly modules

Module Title, Summary Statement

The module title provides the main theme(s) for the module and the summary statement provides a sentence about each topic covered in the module. A sample module title and summary statement are provided in Figure 3.
Learning Objectives

When reverse-engineering learning objectives, it is important to ask “what were the students expected to learn in each academic week?”

Here are some clues:

- What were the assignments and projects about?
- What did the exams test?
- What were the lecture topics?

The language of learning objectives is codified in Bloom’s Taxonomy. All learning objectives should adhere to the use of the Bloom’s verbs and the hierarchy should be applied to the academic level of the course. It should also accurately represent the spread of the activities in the course. More than one course has been redesigned and learning objectives recrafted because of the internal awareness provided by Bloom’s Taxonomy.

It is important to align the learning objectives in logical sequence within each module and then, when going through subsequent iterations, ensure that objectives are in logical sequence from module to module. Finally, it is important to add or delete objectives as needed. If they don’t work, throw them out.

A sample CDM with learning objectives added is provided in Figure 4.

<table>
<thead>
<tr>
<th>Modules, Module Theme (Organizational Emphasis)</th>
<th>Summary Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Fundamentals of Technical Communications (General)</td>
<td>Where it all starts - Technical Communications and Writing</td>
</tr>
<tr>
<td></td>
<td>Analyzing the communications context of an audience; knowing your audience</td>
</tr>
<tr>
<td>2 - Situational Awareness and Barriers to Communication (General)</td>
<td>Situational analysis (one size does not fit all)</td>
</tr>
<tr>
<td></td>
<td>Barriers to communication; practicalities of communication - why so much is subjective</td>
</tr>
<tr>
<td></td>
<td>Turn mistakes into learning opportunities</td>
</tr>
<tr>
<td>3 - Corporate Communication and Knowledge Management (Executive)</td>
<td>Top-down communication</td>
</tr>
<tr>
<td></td>
<td>Corporate informational structure</td>
</tr>
<tr>
<td></td>
<td>Knowledge management and archival issues</td>
</tr>
</tbody>
</table>

Figure 3. Sample Module Titles and Summary Statements

Learning Assessments

In the classroom, there is sometimes more emphasis on formative learning assessments, i.e., the assessments that serve as a barometer for how much is being understood at that moment. Examples of such assessments are discussions that are not graded, practice activities (again, ungraded), and other such interactions. In the online environment, these activities can still take place in the form of office hours discussions and ensuring that collaboration tools are available for practice, but they need to be understood to be completely separate from summative assessments, which are graded and serve as a quantifiable measure of learning. When we talk about assessments for online courses, we are primarily talking about summative assessments. It should be noted that the relatively mature students in our graduate courses find formative assessments annoying and would rather be graded on all that they do, no matter what the risk of a potentially lower grade may be because no preliminary formative assessment results were available to them.

When moving from assessments in a classroom setting to online assessments, it is important to first align assessments from the classroom that relate to the new list of learning objectives that are now populating the CDM. It will likely be necessary to design additional learning assessments to cover the learning objectives.

Assessments that work well in an online setting may include:

- Asynchronous web discussions
- Problems
- Scenarios
- Essay topics
- Research papers
• Presentations (using collaborative media or meeting applications)

The assessments to go with the learning objectives that were provided in Figure 4 are shown in Figure 5.

<table>
<thead>
<tr>
<th>Modules, Module Theme (Organizational Emphasis)</th>
<th>Learning Objective(s)</th>
<th>Assessments (for full detail, see “Assessments” tab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Fundamentals of Technical Communications</td>
<td>1. Explain the reasons that effective communications begin with good writing. 2. Determine the makeup of the audience. 3. Analyze their technical level of understanding. 4. Identify the audience’s inherent vocabulary. 5. Clarify the message and/or the action you want to have as a result.</td>
<td>W1 – Website Discussion 1 - (Not everyone has their textbook on the first week so we’ll be posting some general questions for this week’s discussions.) Please tell us a little about yourself, e.g., where you grew up, where you went to school, where you live now, where you work, what do you like to do for fun, etc. Anything you’d like for us to know about you. Then, what is your major, how many classes have you taken before this, and why are you in this program? And please post a picture (you can do this in the Website Discussions tool under “My Profile”); if you’re comfortable with doing so – it really helps to be able to picture the other people when you’re involved in discussions.</td>
</tr>
<tr>
<td>2 - Situational Awareness and Barriers to Communication</td>
<td>1. Analyze a communication context, including the audience characteristics and the message and/or outcome (from Module 1) to determine what additional information is needed by the audience. 2. Develop an optimal communications methodology based on the previous analysis. 3. Design and describe the communication. 4. Identify the barriers to effective communication. 5. Describe the consequences if the barriers are not addressed. 6. Develop strategies to reduce the impact of the barriers. 7. Assess the effectiveness of a communication event. 8. Identify communications shortcomings. 9. Develop means for remediation.</td>
<td>W2 – Website Discussion 2 – [Communications Barriers] You are a five-year employee of AVI and have just transferred from the System Test Group to the Systems Group. You are the new roommate of Lynne Baron, a mathematician and systems engineer, who you know casually from working at AVI. You have been put together because you will be working on some of the same projects…. S1 – Scenario 1 – … Write a 1000-word plan for how you will address the audience, clarify your message, and choose a methodology for an oral presentation to the AVI Management Committee. Provide as much rationale for your plan as will fit into the 1000 word limit. E1 – Essay 1 – (Two-week design) Essay 1 - Research and write a 2000-word paper on mediating the challenges in communications with virtual (non-co-located) teams and then discuss the benefits…</td>
</tr>
<tr>
<td>3 - Corporate Communication and Knowledge Management</td>
<td>1. Describe the communication responsibilities of upper-level management. 2. Evaluate the methods typically used by upper-level management to communicate. 3. Describe procedures to put in place to facilitate corporate information transfer up and down and across the organization. 4. Evaluate the procedures typically used in such an environment. 5. Describe the elements of organizational knowledge management. 6. Develop a plan to maintain archives.</td>
<td>W3 – Website Discussion 3 – Describe in simple terms communications procedures in place in your real world environment (not AVI); explain any deficiencies you have observed, and suggest ways to improve the procedures. Please feel free to change names to disguise people or organizations. Comment constructively on at least one other classmate’s approach. S2 – Scenario 2 – As an AVI department head, write a 500-600-word memo to all employees describing the new archiving policy and any new reporting guidelines that go with it…</td>
</tr>
</tbody>
</table>

Figure 5. Learning Objectives and Assessments Example

Learning Objects

Learning objects will be as diverse as the courses being translated from the classroom to the online environment. They may include lectures, videos, demonstrations, websites, and will almost certainly include textbooks and/or outside reading assignments. The most important aspect in designing learning objects is, of course, to ensure that they are appropriate for the learning objectives and the assessments. General guidelines for designing learning objects include:

• Break up lectures into 10-15 minute segments for recording
This is called “chunking” and it is part of a principle of communications that identifies the amount of information a person can best absorb in any one-time interval.

- Replace lectures with readings where possible
- It is important to assume some independent ability of online students in managing their learning objects and their time.
- Use video learning objects where possible.
- Align the objects with the learning objectives and assessments

Ask this question: “Will the learning object help the student achieve the learning objectives as measured by the assessments?”

The learning objectives and assessments from Figure 5 are now shown with the learning objects for these modules in Figure 6.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain the reasons that effective communication begins with good writing.</td>
<td>W1 - Website Discussion 1 - Tell us about yourself.</td>
<td>Lecture: ‘Course Introduction - The Evolution of Communications’</td>
<td>Adobe Systems video: ‘Evolution of Communications’</td>
<td>3 Writing and Work</td>
<td>4 Managing Creative Professionals</td>
</tr>
<tr>
<td>2. Determine the makeup of the audience.</td>
<td>W2 - Website Discussion 2 - Communication barriers</td>
<td>Lecture: ‘Technical Communications Overview’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Analyze their technical level of understanding.</td>
<td>Lecture: ‘Communication – The Process’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Identify the audience’s inherent vocabulary.</td>
<td>Lecture: ‘Communication – The Message and the Receiver’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Clarify the message and the action you want to take as a result.</td>
<td>Lecture (video introduction) ‘Situation Awareness’</td>
<td>Microsoft video: ‘Situation Awareness’</td>
<td>3 Your Audience and Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Analyze a communication situation, including the audience characteristics and the message (and desired outcome) from Module 1, to determine what additional information is needed by the audience.</td>
<td>Lecture (video introduction) ‘Detailed Design’</td>
<td>Adobe Systems video: ‘Evolution of Communication and The Future of Communication’</td>
<td>3 Your Audience and Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Develop an optimally communications methodology based on the previous analysis.</td>
<td>Lecture (video introduction) ‘Communication Barriers’</td>
<td>Microsoft video: ‘Communication Barriers’</td>
<td>3 Your Audience and Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Design and describe the communication.</td>
<td>Lecture ‘Communication Practice’</td>
<td>Microsoft video: ‘Communication Practice’</td>
<td>3 Your Audience and Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Describe the consequences of the barriers and how they are addressed.</td>
<td></td>
<td></td>
<td>4 Virtual Teams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Develop strategies to reduce the impact of the barriers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Assess the effectiveness of a communication event.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Identify communication shortcomings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. The Application of Learning Objects

The Iterative Process

It is important to feel that the converted online course is complete, effective, and applicable. This may mean several iterations of the process of examining objectives, assessments, and learning objects to ensure that they are aligned across modules and down the length of the course. Here are some things to consider in this iterative process:
• Review learning objectives for alignment
• Review assessments for alignment and completeness
• Review learning objects for relevance, completeness, and alignment
• Optimize learning objects for effectiveness
• At all times, think of the students, the expectations for their learning, and their ability to apply what they have learned.

A Final Word about Instructor Training

It is very important that an effective training program in the fundamentals of good pedagogical design be provided to faculty who are responsible for the classroom-to-online conversion. These include good learning objective design, a working knowledge of formative and summative assessment design and use in a course, as well as some orientation on all the excellent sources of learning object materials, including all the free material available on the web from other instructors around the country and the world.

Comprehensive training should also be provided on how to conduct good interactive segments during the online course, as well as training in the use of the online course management system used by the instructors’ school.

Conclusion

Converting face-to-face classes to an online environment is not a straightforward or insignificant task. At all stages of the development process, it is important to examine what worked in the classroom and evaluate whether or not it will work online. And if aspects of a face-to-face class don’t work for an online class, do you throw them out or reconfigure them? Having sound learning objectives will help with that evaluation. It is natural to have an attachment to the material that has worked so well for years and feels so comfortable. But it may be necessary to give some of that up if it doesn’t work online. But the good news is that this necessary examination of course materials ensures a fresh look at all aspects of a course and may yield improvements in the face-to-face class as well as the online class. The CDM approach should help engineering instructors keep the systematic design process in view all during the development process.

It is also a good idea to keep the matrix handy as the semester unfolds, especially when the online class is fairly new, and to keep it updated as it becomes clear what is working and what is not working as well as expected. This will help ensure that the course structure continues to be a flexible and responsive entity.

An example of the completed CDM with the first three modules of a semester is provided in Figure 7.
Figure 7. Completed Course Matrix

<table>
<thead>
<tr>
<th>Module, Module Theme (Organizational Emphasis)</th>
<th>Summary Statement</th>
<th>Learning Objectives</th>
<th>Assessment(s)</th>
<th>Learning Methods</th>
<th>MIT Guide to Quality and Organizational Communication (Second Edition)</th>
<th>Learning Objects</th>
<th>Video Description</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Fundamentals of Technical Communication (General)</td>
<td>March 1st: week 1 - Technical Communication (and writing)</td>
<td>1. Establish the means that effective communications begin with good writing.</td>
<td>M1 - Website Discussion 1</td>
<td>Writing and Work</td>
<td>Managing Knowledge Professionals</td>
<td>8.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Determine the makeup of the audience to determine an optimal level of understanding.</td>
<td>Lecture: Communication - The Present</td>
<td>J Your Audience and Aims</td>
<td>Effective Writing Skills</td>
<td>10.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Clarify the message and the intent the other party wants to convey as a result.</td>
<td>Lecture: Communication - The Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situational Analysis (who does not fit it)
- 1. Analyze an audience (including the audience characteristics and the message and desired outcomes) to determine the additional information needed by the audience.
- 2. Develop an optimal communication strategy based on the previous analysis.
- 3. Design and develop the communication strategy.

Barriers to communication (prejudices of communication - why do people act as they do)
- 1. Identify the barriers to effective communication.
- 2. Describe the consequences of the barriers.
- 3. Develop strategies to reduce the impact of the barriers.

Turnovers into learning opportunities
- 1. Assess the effectiveness of a communication event.
- 2. Identify communications improvements for future events.

2 - Generalized Communication and Knowledge Management (Executive)
- 1. Describe the communication responsibilities of upper-level management.
- 2. Evaluate the methods typically used to support upper management's responsibilities.

Critical Information Process
- 1. Identify procedures to put in place in the event communication is needed to support the organization.

Knowledge Management and Archival Issues
- 1. Identify the procedures used to support knowledge management.
- 2. Develop a plan to maintain archives.

References

1. http://www.odu.edu/educ/roverbau/Bloom/blooms_taxonomy.htm
2. From The Johns Hopkins University Engineering for Professionals, Management in Technical Organizations course