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Synthesis of a Correcting Equation for 3 Point Bending Test Data 
 

Abstract 

 

A frequent requirement of a Mechanics of Deformable Bodies course is for students to complete 

an experiment using a compression/tension test fixture incorporating a 3-point flexure fixture.  

The prominent goals of such an assignment are to understand the basic concepts of 

load/deflection relationships for pure bending situations, to calculate and correlate theoretical 

analysis with experimental results, and to use computer software to plot and analyze data.  Once 

completed, students should be able to compare theoretical and experimental modulus of elasticity 

values.  The student should then be able to not only determine the type of material used in the 3-

point bending test but also discuss any discrepancies between theoretical and experimental 

values. 

 

During the preparation of lab materials for such an experiment, it was noticed that the data 

collected from the instrument produced incorrect modulus of elasticity values for all specimens.  

Extension values suggested that there was more deflection occurring in the test specimen than 

predicted resulting in modulus of elasticity values lower than expected.  In fact, the modulus of 

elasticity values could be so low that a student could not correctly determine the material type of 

the specimen being analyzed.  In order to correct the extension data, a system deflection analysis 

was initiated. 

 

First, internal displacements occurring within the 3-point flexure fixture members were 

determined by calculating the deflections produced during experimental loading.  Next, the 

remaining sources of internal displacements within the system were investigated with the results 

being fitted to a curve.  A correction equation with support separation distance, applied load, and 

specimen weight as independent variables was generated by summing all the internal 

displacements found.  The original extension data could then be adjusted by subtracting this 

correction displacement.  The resulting correction equation was validated using specimens with a 

known modulus of elasticity.  Successful completion of this project would allow students to 

appropriately correct the 3-point bending extension data collected during an experiment and 

more accurately calculate an unknown specimen's modulus of elasticity. 

 

Introduction 

 

Typical curricula for students pursuing a degree in an engineering mechanics field includes the 

study of load/deflection relationships for certain materials.  These relationships include, but are 

not limited to, axial, torsional, and lateral loading of members.  Deflection equations are 

developed during instruction that allows students to calculate the theoretical deflection of objects 

so loaded.  Regardless of the form these deflection equations take, students can use them to 

determine the modulus of elasticity for the material comprising the member, an important 

concept when dealing with unknown materials.  While some students can grasp the fundamental 

concepts of load and deflection just by studying theoretical material, some students learn more 

easily by completing hands-on experiments.  Students who learn more easily using hands-on 

methods are referred to as kinesthetic learners.  Whatever mode of learning works best for these 

students, all students benefit from performing physical experiments that apply the theoretical 



material to a physical experiment.  The truth in this fact is because “Over 80 percent of college 

faculty use lecture as their primary instructional method. At its core, kinesthetic learning gives 

students the opportunity to move out from behind their desks and to interact with their 

surroundings” [1].  Therefore, even if laboratory experiments are not required by a traditional 

class curriculum, incorporating them is beneficial for illustrating a concept.  An additional 

benefit is that engineering students may be introduced to the types of load/deflection tests that 

they may deal with in their professional careers after graduation. 

 

The strength of a material is inherent in the material itself and must be determined by 

experiment.  Hibbeler [2] explains, “One of the most important tests to perform in this regard is 

the tension or compression test.”  There are others but utilizing a 3-point bending test provides 

additional benefits.  Three of these benefits are due to test specimen geometry, machining 

capability, and student instruction.  University engineering mechanics laboratories differ 

concerning the type and capacity of test equipment available.  To test material such as steel using 

a tension test, the diameter of the test sample would be determined by the load capacity of the 

test equipment available.  If the diameter of the test specimen were too large, the test may fail 

due to no yielding or fracture occurring.  So, if a smaller test specimen is required, it would need 

to be machined to a smaller, non-standard, diameter to conduct a successful experiment.  Surface 

imperfections play a large part in inaccurate results from tension tests due to the stress 

concentrations they cause which are traditionally reduced by polishing the surface to a smooth 

mirror finish.  This treatment is difficult for specimens small enough to be used in some of the 

lower capacity test equipment available. 

 

Using a 3-point bending test, the material cross-section can be non-circular and of a larger size in 

comparison to an equivalent pure tension test.  Therefore, less machining capability would be 

needed to yield a successful test.  Good results could be obtained using commercially available 

stock of various materials, sizes, and geometries.  This has the benefit of the 3-point bending test 

being more usable across a wider array of testing equipment for less setup and material cost.  

Also, student measurement of the cross-section is made simpler since nonuniform dimensions 

would be less likely.  One of the main instructional results of the 3-point bending test would be 

to analyze the experimental data to determine the test sample’s modulus of elasticity.  

Determining the modulus of elasticity would require the manipulation of the deflection equation 

and evaluating it using the specimen’s geometric properties along with the experimental loads 

and resulting deflection values obtained during the test. 

 

There are three main outcomes from incorporating a strength testing lab into an engineering 

mechanics curriculum.  First, the student will gain familiarity with strength testing.  Up to this 

point in the student’s study, they would most likely have only been exposed to the pure tension 

test.  Through exposure to the 3-point bending test method, the student would be made aware of 

alternative strength testing types used in industry.  Next, the modulus of elasticity of an unknown 

material can be determined using experimental data.  Typical engineering mechanics problems 

supply the student the material to be used with its respective modulus of elasticity value so they 

may determine a deflection for a given load.  Requiring the student to determine the modulus of 

elasticity of an unknown material given the load and deflection turns typical problems upside 

down.  Lastly, this type of experiment necessitates the completion of an in-depth error analysis.  

This lab requires the student to compare theoretical and experimental modulus of elasticity 



values.  The probability that theoretical and experimental values will match up with no error is 

very low.  Therefore, the reasons behind the discrepancy need to be investigated by the student, 

encouraging them to perform error analysis.  This task challenges the student to evaluate each 

detail of the experiment, apparatus and test specimen to determine what types of errors may have 

occurred to cause the difference between experimental and theoretical modulus of elasticity 

values.   

 

During the preparation of lab materials for such a 3-point bending test, it was discovered that the 

testing system reported data that produced incorrect modulus of elasticity values.  The deflection 

values reported suggested that all the test samples were deflecting more than they experienced.  

Therefore, a lower modulus of elasticity values was produced for all test samples.  At times, the 

values were so low that the student was unable to make an accurate determination of the test 

specimen’s material.  Initial analysis suggested that there was a proportional correlation in the 

size of the error to the stiffness of the specimen (defined as the modulus of elasticity multiplied 

by the specimen’s second moment of area).  Therefore, an investigation as to the major possible 

errors existing in the 3-point bending lab setup was undertaken to determine a correction 

factor/equation for the deflection data.   

 

Background 

 

Materials testing is a fundamental concept that must be understood by those practicing in the 

field of engineering mechanics.  The strength of a material depends on its ability to sustain a load 

without undue deformation or failure.  Although several important mechanical properties of a 

material can be determined from materials testing, it is used primarily to determine the 

relationship between the average normal stress and average normal strain in many engineering 

materials such as metals, ceramics, polymers, and composites. 

 

The purpose of this study was to determine a correction factor/equation for the 3-point bending 

test data obtained through experimentation.  For these experiments, the deflection data was 

obtained from an Instron 3345 Single Column Universal Testing System (hereafter referred to as 

the Instron) with a 5 kN Static 3-Point Flexure Fixture (Figure 1).  Both the Instron and the 3-

Point Flexure Fixture limited experiments to 

loads of no more than 5kN.  This limitation was 

a major contributing factor to the necessity of the 

3-point bending test experiment (fixture set-up 

during operation can be seen in Figure 3). 

 

In the 3-point bending test procedure, a 

specimen of a known cross-section is positioned 

between two supports, and a load is applied at its 

center [3].  As mentioned, this test can be used to 

determine the modulus of elasticity of a material.  

This value is the constant of proportionality 

which relates stress and strain within the elastic 

region of a stress-strain curve (Figure 4).  There 

are several drawbacks to using a 3-point bending 
 

Figure 1 - 5kN Flexure Fixture [6] 



test, one of which is that unless a 

steel test specimen has low 

stiffness, it does not show the 

classic yield point phenomenon 

since the material is not yielding 

uniformly throughout its cross-

section (Figure 2).  While the yield 

point can be identified by the point 

at which the stress-strain curve 

becomes nonlinear, its 

determination isn’t as exact as in 

tension tests.  Finally, all deflection 

equations in common usage assume 

small deflections, so it is unlikely 

that a determination can be made 

for the ultimate strength or fracture 

strength of the material with any 

confidence. 

 

Before going any further, it is important to delineate the types of deflections existing in the test 

setup since they make up a majority of the predictable error.  Axial deflection was determined to 

be the dominant source of error in the 5kN flexure fixture.  Hibbeler [2] explains the axial 

loading process experienced in most components of the 5kN flexure fixture by saying, “In many 

cases, the bar will have a constant cross-sectional area A; and the material will be homogeneous, 

so E [the Modulus of Elasticity] is constant.  Furthermore, if a constant external force is applied 

at each end, Figure 5, then the internal force P throughout the length of the bar is also constant.”  

Equation 1 (models the deflection that occurs in an axially loaded member.  It was used to 

determine many of the individual deflections found in the 5kN flexure fixture under load. 

 
Figure 3 - Fixture during operation. 

 

 
Figure 4 - Generic stress-strain diagram. 

 

 
Figure 2 - Types of steel yield point phenomena: 

.750x.250 (distinct), .500x.357 (indistinct), and 

.500x.500 (none). 



 

The deflection of one 

member of the 5kN flexure 

fixture, as well as the test 

sample, are not represented 

by Equation 1.  These 

components can be modeled 

as a simply supported beam 

with an idealized concentrated center load.  Hibbeler [2] explains loaded beam analysis as, 

“Using tabulated results for various beam loadings, it is therefore possible to find the slope and 

displacement at a point on a beam subjected to several different loadings by algebraically adding 

the effects of its various parts.” If there is only one load on a beam, there is no need to use a 

superposition method.  And, if that load is located centrally on the beam, a simpler form of the 

deflection equation results.  The deflection equation (Equation 2) for this condition can be found 

in tables (Figure 6) or derived.  The maximum deflection could then be determined by 

substituting the necessary variable values. 

 
𝛿 =

𝑃𝐿

𝐴𝐸
 (1) 

 Where: 

δ = displacement of one point of the bar relative to another point 

L = original length of the bar 

P = internal axial force at the section 

A = cross-sectional area of the bar 

E = modulus of elasticity for the material 

 

 
𝛿 =

𝑃𝐿3

48𝐸𝐼
 

(2) 

 Where: 

δ = maximum displacement of the beam compared to its unloaded state 

L = original length of the bar 

P = external load acting at the center of the beam 

I = moment of inertia of the beam 

E = modulus of elasticity for the material 

 

 
Figure 5 - Elastic deformation of an axially loaded member [2]. 

 

 
Figure 6 - Tabulated equations for a concentrated center loaded simply supported beam [4]. 

 



The maximum deflection equation found in most tables is only part of the actual maximum 

deflection equation since there exists a second term (Equation 3) found through derivation using 

Castigliano’s method (or others). 

It is not that there is an error in the textbook, but it was determined by the authors that the second 

term wouldn’t have much of an effect on the final answer.  In their textbook, Juvinall and 

Marshek [4] demonstrate that this is the case and further bolster their opinion by stating “For 

rectangular-section beams of length at least eight times depth, transverse shear deflection is less 

than 5 percent of bending deflection.”  Still, by removing that second term, the model is no 

longer an idealization model, it becomes an approximation model.  Since the deflections in this 

lab are on such a small order 

of magnitude, considering the 

more exact maximum 

deflection was appropriate. 

 

Having defined how the 

deflection of the test specimen 

could be theoretically obtained 

(Equation 2), the method used 

to determine the specimen’s 

modulus of elasticity could be 

presented.  The student must 

follow a prescribed process 

(Table 1) to complete the lab.  

Using this method, the student 

could complete one of the 

main outcomes of the 

experiment by calculating the 

measured modulus of elasticity 

value from experimental 3-

point bending data. 

 

Method 

 

The methodology to determine an error correction equation consisted of two parts.  The first 

dealt with determining the predictable internal displacements occurring within the 3-point 

flexure fixture members by calculating the deflections produced during experimental loading.  

The second was to obtain the repeatable errors that existed in the remaining experimental setup 

through experimentation.  Combining the findings of the predictable and repeatable 

displacements would form the error correction equation to be applied to data resulting from 3-

point bending tests. 

 
𝛿 =

𝑃𝐿3

48𝐸𝐼
+

3𝑃𝐿

10𝐺𝐴
 

(3) 

 Where: 

A = cross-sectional area of the beam 

G = modulus of rigidity for the material 

 

 

Table 1 - Lab procedure to determine modulus of elasticity. 

 
 

1. Determine the necessary properties: 

a. Width of beam: b 

b. Height of beam: h 

c. Theoretical modulus of elasticity for the beam 

material: E 

2. Complete beam characteristic calculations: 

a. Calculate moment of inertia: I=b∙h3/12 

3. Determine the measured spring constant of the material 

a. Determine Δy from the linear portion of the given 

Force vs Deflection graph 

b. Determine Δx from the linear portion of the given 

Force vs Deflection graph 

c. Determine kmeas by calculating the linear portion’s 

slope Δy/Δx 

4. Calculate the modulus of elasticity by rearranging 

Equation 2 and substituting kmeas for P/δ 

a. Ecalc  = (L3∙kmeas)/(48∙I) 
 



 

5kN Flexure Fixture Displacements 

 

The reasoning behind investigating the 5kN Flexure Fixture displacements is explained by 

Hibbeler [2].  “Whenever a force is applied to a body, it will tend to change the body’s shape and 

size.  These changes are referred to as deformation, and they may be either highly visible or 

practically unnoticeable.”  So, even though deflections in the 5kN Flexure Fixture would be 

unnoticeable to the human eye, they would likely affect the Instron’s extension data.  

Determining the internal displacements of the fixture required that the dimensions of the flexure 

test components be known.  These dimensions would both aid in hand calculations and the three-

dimensional modeling of the system.  Using a digital dial caliper and a standard ruler, the 

necessary measurements of the 5kN Flexure Fixture components (shown in Figure 1 and Figure 

3) were recorded in SI units (Figure 7). 

 

Hand calculations to determine the internal deflections within the 5kN Flexure Fixture (Figure 9) 

for every component between the load cell and the Instron base plate was performed.  All 

components of the flexure fixture were made of steel, therefore a modulus of elasticity of 2x1011 

Pascals was used for these calculations.  The axially loaded member’s deflections (circled in red) 

were calculated using Equation 1 while the deflection for the lower anvil assembly experiencing 

bending (circled in yellow) was calculated using Equation 3.  The eight individual deflections 

(Figure 8) were then summed to create the deflection equation (Equation 4). 

 

 
Figure 7 - Dimensions of 5kN Flexure Fixture components in millimeters. 
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All deflections except 𝛿5 were due to axial loading, 

therefore the individual deflections could be determined 

using the total load being applied as well as the cross-

sectional area, length of the component, and its modulus 

of elasticity.  Deflection 𝛿5 was due to the lower anvil 

assembly being loaded in bending as a center loaded 

simply supported beam, so the calculation additionally 

required the moment of inertia and the modulus of 

rigidity. 

 

The total load for each component was adjusted to include the weight of the components above it 

to more accurately calculate the predictable error.  The moment of inertia for the lower anvil 

cross-section (Figure 10) was calculated using a composite body method.  The modulus of 

rigidity for steel is generally known, but it can also be calculated (Equation 5) from the modulus 

of elasticity if Poisson’s ratio is known (generally accepted to be 0.3 for most steels). 

The summation of all eight deflections (Equation 4) produced an equation with three 

independent variables: the applied load P, the weight of the test sample WBar, and the span of the 

vertical supports L.  All non-variable factors in the summation, consisting of geometric and 

material properties, became coefficients for the variables of the simplified 5kN Flexure Fixture 

correcting equation (Equation 6). 

 

𝛿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝛿𝑛

8

𝑛=1

 (4) 

 
Figure 9 - 5kN Flexure Fixture. 

 
Figure 8 - Individual deflections considered [6]. 

 

 
Figure 10 - Lower Anvil cross-section. 

 



 

To verify this correction equation, a bar that was unlikely to bend due to a very high moment of 

inertia (weighing 75.4978 N) was chosen to be the test specimen (Figure 11) for both the hand 

calculation and an ANSYS Workbench analysis (Figure 12). 

 

The force placed on the top face of the 5kN Flexure Fixture was 4000 N.  Standard Earth gravity 

was applied so that the weight of the bar and the individual components figured into the final 

deflection solution since the correction equation considered them as well.  ANSYS Mechanical 

was set up to solve for two directional deformations: the y-axis for the entire body and just the 

top face.  The top face was where the deflection values would be comparable to the correcting 

equation results.  When the solution was complete, contour plots showing the directional 

deformation of the body (Figure 13) and the top face (Figure 14) were produced.  The result of 

the comparison of the top face directional deformation with the error correction calculation was 

then performed (Table 2).  The maximum percent error between ANSYS and the hand 

calculation values was 1.598% with the average percent error being 0.457% validating this 

correction equation component. 

 
𝐺 =

𝐸

2(1 + 𝑣)
 

(5) 

 Where: 

G = the modulus of rigidity 

E = the modulus of elasticity 

v = Poisson’s ratio 

 

 5𝑘𝑁 𝐹𝑙𝑒𝑥𝑢𝑟𝑒 𝐹𝑖𝑥𝑡𝑢𝑟𝑒 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
= 1.67 ∗ 10−6𝑃𝐿3 + 1.67 ∗ 10−6𝑊𝑏𝑎𝑟𝐿3 + 1.57 ∗ 10−5𝐿3

+ 3.69 ∗ 10−9𝑃𝐿 + 3.69 ∗ 10−9𝑊𝑏𝑎𝑟𝐿 + 3.46 ∗ 10−8𝐿 + 2.98
∗ 10−9𝑃 + 7.47 ∗ 10−10𝑊𝑏𝑎𝑟 + 8.87 ∗ 10−9 

(6) 

 
Figure 11 - Verification setup. 

 

 
Figure 12 - ANSYS model boundary conditions. 



 

Repeatable Errors 

 

With the 5kN Flexure Fixture deflections accounted for, the 

remaining repeatable deflections in the system needed to be 

determined.  An experimental setup (Figure 15) was 

generated to determine the remaining system deflection.  

The bar of very high moment of inertia was once again 

utilized since its internal deflections due to axial loading 

could be considered negligible due to its large cross-

sectional area.  Due to the geometric trait that the 

compression test plate’s diameter was large compared to its 

 
Figure 15 - Experimental setup 

for remaining system deflection. 
 

Figure 16 - Remaining system deflection analysis results. 

 

 
Figure 13 - Total system directional deformation. 

 

 
Figure 14 - Top face directional deformation. 

Table 2 - ANSYS and Hand Calculation Comparison. 

 



height, its internal deflections could also be deemed negligible.  Therefore, most of the reported 

deflection should be from the remainder of the system.  It was expected that the remaining 

repeatable system deflection would be comprised of the deflection in the load cell and the 

Instron’s column.  Due to the nature of the suspected remaining deflections, it was suspected that 

the results would be nonlinear, and a cubic polynomial approximation appeared to fit best.  Also, 

given that there should be no deflection when there was no load, a zero intercept was specified.  

The resulting deflection data was processed, and a zero-intercept linear regression analysis was 

performed (Figure 16) to generate the remaining system correction equation (Equation 7). 

 

Results 

 

With the total system deflection analysis completed, the total system correction equation 

(Equation 8) was created by summing Equations 6 and 7. The impact of the test specimen’s 

weight was investigated by letting Wbar = 0.  Since the test specimen would not typically weigh 

more than 2 N, and since doing so resulted in a difference approximately equal to 0, a simplified 

total system corrections equation resulted (Equation 9). 

 

A graphical representation of the 

total system corrections equation 

was generated (Figure 17) using 

MATLAB to investigate the 

sensitivity of the correction 

equation to the different 

independent variables.  As 

expected, the correction equation is 

more sensitive to load than the span 

of the vertical supports.  

 

With the final total system 

correction equation developed, 

verification was sought through 

experimental testing.  Several 

materials were selected for testing 

 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
= 3.2228 ∗ 10−15𝑃3 − 2.5081 ∗ 10−11𝑃2 + 2.2097 ∗ 10−7𝑃 

(7) 

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
= 1.67 ∗ 10−6𝑃𝐿3 + 3.22 ∗ 10−6𝑃3 + 1.57 ∗ 10−5𝐿3 − 2.51
∗ 10−11𝑃2 + 3.69 ∗ 10−9𝑃𝐿 + 3.46 ∗ 10−8𝐿 + 2.24 ∗ 10−7𝑃
+ 8.87 ∗ 10−9 

(9) 

 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
= 1.67 ∗ 10−6𝑃𝐿3 + 3.22 ∗ 10−6𝑃3 + 1.67 ∗ 10−6𝑊𝑏𝑎𝑟𝐿3

+ 1.57 ∗ 10−5𝐿3 − 2.51 ∗ 10−511𝑃2 + 3.69 ∗ 10−9𝑃𝐿 + 3.69
∗ 10−9𝑊𝑏𝑎𝑟𝐿 + 3.46 ∗ 10−8𝐿 + 2.24 ∗ 10−7𝑃 + 7.47
∗ 10−10𝑊𝑏𝑎𝑟 + 8.87 ∗ 10−9 

(8) 

 
Figure 17 - 3D Plot of Total System Correction Equation. 

 



with different geometric and modulus of elasticity properties (Table 3) to be evaluated at 

different vertical spans to determine how close the correction equation modified data predicted 

the test specimen’s known moduli of elasticity. 

 

The testing sequence desired was as follows: 

1. Set vertical support span to 10 cm 

2. Bend 9 test samples (three geometries of three materials) until yielding or 4000 N 

3. Export data to correcting excel spreadsheet 

4. Repeat steps 1-3 for vertical spans of 12 cm and 14 cm 

 

Table 3 - Test Sample Geometric and Mechanical Properties. 

Material Width (in) Thickness (in) Modulus of Elasticity (psi) 

4140 Steel 

0.25 0.25 

2.97x107 [5] 0.25 0.5 

0.5 0.25 

6061 T6 Aluminum 

0.25 0.25 

1.00x107 [5] 0.25 0.5 

0.5 0.25 

360 HO2 Brass 

0.25 0.25 

1.41x107 [5] 0.25 0.5 

0.5 0.25 

 

Table 4 - Modulus of elasticity verification test results. 

 



Two of the material/geometry combinations did not yield useable results.  The 0.25 x 0.5 4140 

steel specimens were too stiff to give useable results.  In retrospect, milder steel should have 

been chosen so that useable results could have been obtained from this geometry.  The 0.25 x 

0.25 360 H02 brass specimens did not appear to be the same material as the other two brass 

geometries since the modulus of elasticity was half that of the others and none were close to 

what was expected from the specific material ordered.  This was possibly due to a quality control 

issue.  These values were all reported as N/A in the verification of test results (Table 4). 

 

The percent error improved by 13.98% (on average from an original percent error of 23.21% to a 

corrected percent error of 9.92%).  The percent difference improved by 17.02% (on average from 

an original percent difference of 27.79% to a corrected percent difference of 10.77%).  Overall, a 

reasonable improvement.  If one were to discount the brass tests (due to suspected quality control 

issues regarding the material received), the percent error improvement would be 11.8% (on 

average from an original percent error of 16.40% to a corrected percent error of 4.62%) and the 

percent difference improved by 13.99% (on average from an original percent difference of 

18.55% to a corrected percent difference of 4.56%).  Much better results, as the remaining errors 

were under 5%. 

 

Several other observations were obtained from the results of this verification testing.  The first 

being that the Load–Deflection curves (Figure 18) showed linear segments whose slopes were 

the spring constant (k) for that material and geometry combination.  Each of the three test 

specimens for this material and span showed different k values because they had different 

stiffnesses.  Second, the stiffer the specimen, the more error there was to be corrected. 

 

Next, the corrected curves show a higher 

modulus of elasticity (slope) and lay close to 

each other (Figure 19).  The uncorrected 

curves show that the stiffer the specimen, the 

lower the slope value.  Only the linear portion 

of the curves from the load-deflection results 

was used for this graph.  Note: the horizontal 

axis represents the deflection modified by a 

constant determined by Equation 10 and has 

the units of in2, which when combined with 

the vertical axis units of lbf, results in the 

slope of the curves having the units of psi, for 

modulus of elasticity. 

 

Lastly, with the material and specimen 

geometry held constant, the effect of the span 

could be observed (Figure 20).  As with the 

previous results, the corrected curves were 

very close to each other.  The remaining 

 
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝛿 ∗  

48 ∗ 𝐼

𝐿3
 (10) 

 
Figure 18 – Load-deflection curves. 

 



curves had a slope whose values became lower as their span decreased.  This was to be expected 

since the specimen becomes harder to bend and thus behaved as if it was stiffer. 

 

 

 
Figure 19 - Modulus of elasticity slopes (original and corrected). 

 

 
Figure 20 - Modulus of elasticity slopes (original and corrected) for various spans. 

 



Discussion 

 

This verification process showed that an error still existed between theoretical and experimental 

modulus of elasticity values.  This trait of the data was noted but no additional correction was 

applied to further address the remaining discrepancies.  The reasoning behind this decision was 

that if all the error was accounted for, the students would have no error analysis section in their 

lab reports.  The originally identified purpose of the developed correction equation was to correct 

most of the errors in the testing system (the predictable and repeatable errors, specifically).  

Therefore, the ability of the student to correctly determine the unknown material used during 

testing would be substantially improved using this correcting equation.  The minor error 

remaining could be due to errors in the load cell, the weight of the specimen, variation in the 

specimen’s length during deflection, and others.  It remains for the student to acknowledge the 

existence of these minor errors and report them in their findings along with their reasoning 

behind the differences between theoretical and measured modulus of elasticity values. 

 

Conclusions 

 

A correction equation was found that reduced errors existing in testing data from an Instron 3345 

Single Column Universal Testing System with a 5 kN Static 3 Point Flexure Fixture to under 

5%.  This allows the student to more accurately determine the modulus of elasticity and, thus, 

determine the material (or its alloy) being tested.  Introducing this type of experiment to the 

engineering mechanics curriculum would enhance a student’s ability to obtain the course 

objectives by allowing them to demonstrate their level of knowledge of the strengths of 

materials. 
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