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Work in Progress: Teacher Impact on Student Learning Using LC-DLM 

Implementations in the Classroom 
 

Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study 

transport phenomena aimed at providing hands-on learning experiences. With an implementation 

design embedded in the community of inquiry framework, we disseminate units to professors 

across the country and train them on how to facilitate teacher presence in the classroom with the 

LC-DLMs. Professors are briefed on how create a homogenous learning environment for 

students based on best-practices using the LC-DLMs. By collecting student cognitive gain data 

using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the 

variable of the professor on the implementation with LC-DLMs. Because of the onset of 

COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA 

whereby modality was grouped and professor effect was the independent variable had 

significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only 

(p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an F-

test using modality as the independent variable and professor effect as the nesting variable also 

show significance on the score difference between pre and posttests (p-value=0.0236 for hands-

on, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, 

and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an 

effect on student cognitive gains with respect to differences in pre/posttest score and posttest 

score only. Future will focus on qualitative analysis of features of classrooms yield high 

cognitive gains in undergraduate engineering students. 

 

1.      Introduction and Methods 

 

1.1  Theoretical Framework  

  

In the past twenty years, active learning has been increasingly used in the undergraduate 

classroom and results in positive student learning outcomes. Several types of 

implementations report success including smaller activities like minute papers or think-pair-

shares [1] or course changes like in flipped classrooms [2]. Demonstrations and hands-on 

activities are also increasingly used in class in both virtual and face-to-face formats. With all 

these changes to pedagogy, we wanted to investigate whether the implementation type itself 

could affect student learning (such as minute papers, think-pair-share, etc.) or if the 

professor still heavily influences student cognitive gains which has been documented in 

traditional undergraduate engineering classroom instruction [3]. 

 

A helpful theoretical framework to consider this change in pedagogy is the community of 

inquiry. It posits a collaborative-constructivist classroom setting, whereby social presence, 

teaching presence, and cognitive presence are required by teacher and students to create 

meaningful learning experiences [4]. This framework helps to illustrate the motivation 

behind changing from a traditional or teacher-led classroom environment to an active 

learning classroom environment whereby students co-create knowledge with the teacher and 

their peers. In the case of this paper, we are aiming to isolate the factor of teaching presence 

as a variable for study. As part of the community of inquiry, this describes the design and 



facilitation of the classroom learning environment, aimed at fostering social and cognitive 

presence from student and teacher alike [5].  

 

This work in progress study selects a specific active-learning intervention of low-cost 

desktop learning modules (LC-DLMs) where the learning environment or implementation 

sequence has been designed for use by a variety of professors. By using teaching presence in 

the community of inquiry as a framework, we have designed the learning experience to 

remain homogenous among classrooms to isolate professor effect. By professor effect, we 

simply mean the professor who has been assigned to teach the course (so while courses may 

be the same, instructors vary between these courses). To measure the effect, data on changes 

in student cognitive gains via pre- and posttests has been collected before and after the LC-

DLM implementation. This data has then been qualitatively analyzed to investigate whether 

professor effect statistically significantly changes student cognitive gains.  

 

1.2  Module Description  

 

LC-DLMs are miniature-sized industrial engineering units that have been designed for 

implementation in the undergraduate engineering classroom. These modules communicate 

thermal-transport concepts to undergraduate engineering students. In the past, use of the 

modules has been shown to increase student cognitive gains [6] and the implementations 

incorporative active learning techniques into the classroom. Two fluid mechanics modules, 

the hydraulic loss as shown in Fig. 1, and the venturi meter in Fig. 2 have standpipes that 

operate as monometers for direct visual interpretation of the pressure head along the length 

of the pipe. The hydraulic loss module has a consistent diameter pipe to convey concepts of 

continuity and skin friction head loss, while the venturi meter has a contraction at the throat 

and gradual expansion to the same diameter as the incoming pipe for demonstrating fluid 

flow measurement principles. The standpipes are strategically placed at the entrance, 

contraction, throat, expansion, and end so students can observe changes in pressure along 

the length of the pipe. The double pipe unit shown in Fig. 2 is a heat exchanger with an inner 

and outer tube separated by a stainless-steel pipe, promoting the exchange of thermal energy 

between the two fluid streams. Several bends in the double pipe provide enough length to 

promote a measurable temperature change greater than 4°F (depending on the flowrate) 

between the hot and cold streams during a classroom experiment. For the fluid modules, the 

students collect flowrate and monometer head data while with the heat transfer module 

students record the flowrate and temperatures of the inlet and outlet streams.   

 

 



                       
Figure 1. a) Hydraulic loss (left) and b) Venturi (right) set up 

 

 
Figure 2. Double pipe set up  

 

1.3 Module Dissemination and Implementation Materials 

 

A country-wide dissemination effort of these units has been ongoing for the past few years. 

Professors with different students, teaching styles, and geographic locations receive the units 

for implementation in their undergraduate classroom. Units are sent out every year to select 

faculty, who attend a summer workshop aimed at training faculty to use best practices for 

implementation. In this workshop, faculty become aware of all the materials available to 

assist in implementation and are given sessions on best classroom practices using the 

LCDLMs. In addition to the modules, faculty are asked to utilize worksheets that include 

guided experiments for students as well as homework problems that align with the pre- and 

posttests. The workshops faculty attend are aimed at training faculty on how to maintain 

fidelity to the community of inquiry teacher presence in their classrooms. Our group aims to 

educate all professor implementors on a similar implementation sequence and with the same 

materials. We emphasize the importance of implementation best practices and show data on 

what professors have done in past implementations that have achieved high student 

cognitive gains. However, to get buy-in from large numbers of faculty across the country 

and in an effort to respect faculty autonomy, faculty participants can modify worksheets or 

implementations (we encourage them not to) to best fit their pedagogical style. We do 

collect data about how they implemented each semester to track differences and have 

selected the implementations for this study with the fewest deviations from our 

recommendations.  

 



 

1.4 Pre- and Posttests 

 

All faculty who implement the LC-DLMs collect data on student cognitive gains before and 

after their implementations. This data is collected in the form of pre- and posttests, taken 

before and after students encounter the LCDLM. The pre- and posttests are short, 5-question 

or less, multiple-choice assessments about concepts regarding the most visual aspects 

associated with each LCDLM or concepts emphasized by the worksheets. These 

assessments were developed by a group of faculty familiar with the LCDLMs.  

 

1.5 Classroom Environment Development  

 

The homogenous classroom environment that we train faculty on has been ongoing 

development for nearly 15 years. The way in which these modules can be implemented has 

been fine-tuned based on best-practices in the literature, data collection and analysis from 

our group, and feedback from a variety of faculty implementors over the years. An ideal 

implementation would include: groups of 3-4 students with one LC-DLM, use of the 

worksheet provided to faculty, use of the homework problems provided to faculty, and a 

classroom environment where faculty engage with student groups during experimentation 

and discussion to keep them on task and centered on the correct concepts. We provide 

hardware in quantities to faculty to maintain low numbers in student groups and incorporate 

a few training mechanisms in the workshop to illustrate best practices. One workshop 

session models ideal faculty behavior during the implementation. Data is offered about why 

faculty should use this implementation type, linking it back to the community of inquiry and 

constructivism theory. While some faculty still like to modify their classroom, many 

maintain fidelity to the best practices we teach.  

 

1.6 Virtual Implementations 

 

Due to the onset of COVID-19, we had the opportunity to collect data in more than one 

classroom modality. Many professors were interested in continuing with the LC-DLM 

implementation in a virtual setting. As a result, our team developed materials to create a 

homogenous online classroom implementation. Materials included a series of videos 

available on YouTube. Videos on demonstration of each LC-DLM unit were developed, 

along with short concept videos that highlighted major conceptual takeaways from the 

worksheet. Professors who wanted to implement virtually were briefed on the best ways to 

use the materials for student learning. We allowed professors to implement either 

synchronously where all students are online simultaneously or asynchronous where students 

are given a time window to complete their work.  

 

1.7    Statistical Methods and Data Analysis  

  

Altogether data from 535 student pre- and posttest scores were collected in Fall 2020 and 

Spring 2021 from 14 professors doing 15 implementations using one hands-on or virtual 

implementation. The statistical analysis was done using JMP statistical software, version 

14.0. While we considered using a Cohen’s d effect size value rather than a p-value, an 



effect size originates in Bayesian statistics rather than Classical statistics. Historically, the 

Classical statistical methodology has been favored because it is more objective, does not 

rely on a subjective prior distribution, and works well for larger data sets and is shown to be 

more robust because it follows more closely to the scientific method [7].  

 

An ANOVA was used to assess the statistical significance of modality (hands-on or virtual) 

and professor effect for both the difference in scores between pre- and posttest results and 

the differences in posttest data. Because of the unique way data was collected in this study, 

it required use of both an independent variable and a nesting variable. This method, which 

simultaneously runs an ANOVA (which tests the independent variable) with an F-test 

(which tests the nesting variable) allows us to test for two changing variables: modality and 

professor effect. The ANOVA was used to analyze the variance within the groups to 

determine statistical significance and the f-test was used to determine whether professor 

within each group had an effect. A MANOVA was not appropriate in this case because the 

only dependent variable was student scores. Had professor been a dependent variable then a 

MANOVA would have been used.  

 

In the statistical analysis, we ran a total of three types of tests. The first was an ANOVA 

where the independent variable is professor effect. In this case, we combined modalities of 

virtual and hands-on and only used professor effect as a variable. Statistical significance 

from this test would indicate that regardless of implementation modality the professor 

assigned to the course had an effect on student cognitive gains. We used two separate 

dependent variables: the difference in pre-posttest scores between classrooms and the 

difference in posttest scores only between classrooms. The two dependent variables aim to 

answer the question whether prior knowledge affected the outcome.  

 

The other two tests included both an independent variable tested with an ANOVA and a 

nesting variable tested with an F-test. These are noted as F-tests in the results section. The 

first of these two had the virtual modality as the independent variable and professor effect as 

the nesting variable. The second used the hands-on modality as the independent variable and 

professor effect as the nesting variable. Statistical significance from these tests indicates that 

both the independent and nesting variables create an effect on the dependent variable. Again, 

we ran two of each with different dependent variables the same as those for the ANOVA 

without the F-test.  

 

Finally, to ensure these tests are valid normality of the data set must be confirmed within the 

results. This ensures the assumptions of the test are valid for the given data set. To ensure 

normality, a Q-Q plot was generated for both the differences in pre-test scores and posttest 

scores.  

 

 

 

 

 

 

 



2.      Results and Discussion        

 

2.1  Confirmation of Normality 

 
Figure 1. Q-Q plot of Posttest scores. 

 
Figure 2. Q-Q plot of difference in scores results. 

 

The two graphs shown in Fig. 1 and Fig. 2 are Q-Q plots that confirm normality. It is clear 

these are normal because all data points fall within the normal range, as illustrated by the 

data points falling within the boundary shown by the dotted lines. Because the data is 

confirmed to be normal, we can run an ANOVA and an f-test on this data set.  

 

2.2      Dependent Variable Analysis  

 

Before examining the results of the statistical tests, a preliminary analysis on the two 

dependent variables was done. The results from the two analyses can be seen in Figs. 3 and 

4. Fig. 3 illustrates the differences in both variance and mean between the pre and posttest 

score differences for all 15 implementations. Fig. 3 also illustrates the differences between 

student cognitive pre/posttest performance between the modalities of virtual and hands-on. 

Fig. 4 illustrates the differences in posttest data only between the 15 implementations and 

between the hands-on and virtual modalities. The figures illustrate differences in mean 

between professors and differences in the highest and lowest student performances in 

implementations. A key difference between Figs. 3 and 4 is when considering pre/posttest 

data, many students performed worse on the posttest than the pretest (as indicated by a 

difference less than 0). However, since the posttest data is simply the average, this 

comparison to baseline is not captured.  



 

 
Figure 3. Variability graph showing the difference between pre- and posttest scores for 

each professor. 

 

 
Figure 4. Variability graph showing the posttest results for each professor within each 

implementation 

 

2.3  ANOVA on Overall Results  

 

An ANOVA without an F-test using only professor effect as an independent variable was 

run using both the score differences in pre/postest data and the score differences in posttest 

data. Results from the ANOVA can be seen in Table 1. Since p-values less than 0.05 are 

observed for both the ANOVA tests, we can conclude that regardless of modality professor 

had an effect on student cognitive gains with respect to both dependent variables. This result 

is not that surprising especially when taken in the context of teacher presence within the 

community of inquiry. Significance may have appeared because the modality in this case 

was held constant, and the training for the virtual and hands-on implementations was 

different between professors. This result indicates that when considering the LC-DLMs as a 

stand-alone intervention, they do not facilitate student learning without the aid of the 



professor. The next step is to divide modalities and test significance of professor effect when 

teaching presence has been specifically designed to be homogenous.  

 

Table 1. Results of ANOVA for difference in pre- and posttest scores and posttest scores. 

Implementation P-value 

Difference <0.0001 

Posttest 0.0004 

 

2.4 ANOVA and F-Test Results  

 

An ANOVA with an F-test was run on the score difference between pre/posttest results with 

the independent variable as modality and the nesting variable professor within 

implementation type. As seen in Table 2, each of these tests are significant (p-value=0.0236 

for hands-on, and p-value=0.0004 for virtual), indicating that even with holding the modality 

constant, professor has an effect on score change in pre/posttest scores. This finding shows 

that the LC-DLM implementation and subsequent effect on cognitive gains between 

professors with similar reported methodology still depends on the professor. Before 

considering the implications of this result further, it is important to consider the result from 

the final test. 

 

Table 2. Results of ANOVA and F-test for difference in pre- and posttest scores 

Implementation P-value 

Hands-on (F-Test) 0.0236 

Virtual (F-Test) 0.0004 

 

The third test we ran was an ANOVA with an F-test using posttest score as the dependent 

variable. This test also resulted in significance for both the hands-on and virtual modalities 

(p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). This further indicates that 

regardless of hands-on or virtual implementation, the professor impacts student learning. 

Because this test only examined posttest data, it implies that the prior knowledge of students 

entering the class also did not have an effect on cognitive gains. Taken together, the results 

from both ANOVA with F-tests indicate that the effect of professor is significant in both 

modalities. The difference in pre- posttest scores and the raw posttest scores follow the same 

trend, showing a student’s professor significantly affects their cognitive understanding on 

concepts associated with the LCDLMs.  

 

Table 3. Results of ANOVA and F-test for posttest scores 

Implementation P-value 

Hands-on (F-Test) 0.0314 

Virtual (F-Test) <0.0001 

 

The results of the ANOVA and F-tests are surprising especially when taken in the context of 

teacher presence within the community of inquiry. If anything, of all the tests these should 

not have been significant because the training for the virtual and hands-on implementations 

was different between professors. This result shows that the trainings we offer to faculty 

participants might have lower implementation fidelity than we hope to achieve with the 



workshops. The result may have significant implications for how the trainings are run and 

highlights the importance of further understanding what features of teacher presence in the 

classroom truly affect the community of inquiry whereby students co-construct meaning 

from the LC-DLMs, worksheets, and their peers.  

 

To better understand the causes leading to the results seen, we will transition from a 

quantitative analysis to a qualitative analysis. The initial quantitative step aimed at 

investigating whether significance existed between professors using the LC-DLMs. Now 

that evidence is clear it does, we will need to further investigate how and what professors do 

in the classroom to facilitate a community of inquiry whereby students can collaboratively 

co-construct knowledge. Finally, investigating professor’s perceptions of the LC-DLMs and 

whether their satisfaction with the hardware and worksheets influences student learning 

would also be beneficial.   

 

3.       Conclusions  

 

In this study, we simultaneously investigated the modality of hands-on or virtual 

environment and professor effect using LC-DLMs, collecting data on student cognitive 

gains as a result of this intervention. Framed using the community of inquiry, professors 

were trained on how to best implement the modules in the classrooms, with the learning 

environment designed for them. Three statistical tests were run to determine if professor had 

an effect on student cognitive gains: a single ANOVA combining modality and testing for 

professor effect only, an ANOVA with an F-test dividing modality between hands-on and 

virtual and testing individual professor effect on pre/posttest differences and a third 

ANOVA with F-test where the dependent variable changes to posttest cognitive data only. 

Each of the tests yielded significance in every domain, indicating professor had an effect 

when modality mattered (hands-on or virtual) and professor had an effect when modality 

didn’t matter. Because we aimed to train professors to create a homogenous learning 

environment, these findings are significant because the trainings may not be providing as 

uniform a message as we hope. Future work will include further investigation into features 

of a classroom that yield high cognitive gains via qualitative rather than quantitative 

analysis.  
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