

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

Teaching an Embedded System Course to Electrical Engineering and
Technology Students

Kalyan Mondal
Gildart Haase School of Computer Sciences and Engineering

Fairleigh Dickinson University
Teaneck, NJ 07666

Introduction

A rapid growth in the application of embedded programmable processors in systems from simple
household machines (e.g., washers and dryers) to complex real-time control in automobiles has
been seen over last three decades. Microprocessors, microcontrollers, and digital signal
processors (DSPs) have been at the forefront such development. This has warranted training
electrical and computer engineers in this important area of embedded system design using a
multi-disciplinary approach. Electrical and computer engineering undergraduate programs
require at least one embedded system design or programming course to train the future
workforce in this important field.

Many interesting embedded system teaching paradigms have been presented in [1-3]. In this
paper, we present our experience with teaching a microcontroller based system design course to
the junior undergraduate students. In this course, our focus mostly has been in teaching input /
output interface design through proper programming techniques. We used the technique of
compare and contrast of multiple solutions for such interface designs as outlined in the rest of the
paper. We believe that students become well prepared for the real world by learning the tradeoffs
between different approaches to the design and mastering them in a hands-on laboratory
environment.

Microcontroller Architecture and Assembly Language Programming

Our students take a course on microcontroller based design as the sixth-semester course after
they have learnt about the architectures of Intel 80xxx series microprocessors and their
programming in assembly language. They also learned in their fifth-semester microprocessor
design course the disassembly, memory, and register viewing processes. So in this course we
introduce students with microcontrollers that get used in the design of many embedded systems.
A hands-on laboratory is an integral part of this course and the instructor and students try out
various concepts on the available hardware and software platforms. Specifically we focus on the
Freescale HCS12 microcontroller and point out major differences (e.g., a plethora of parallel
ports, built-in interfaces, etc.) between microprocessors and microcontrollers. We introduce the
architecture and assembly language of HCS12 which allows students to appreciate their
differences from those of the Intel microprocessors. We provide a few simple examples of

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

assembly language programming and do not dwell on this topic for long since one objective of
this course is for students to use a high level language for programming. By the time we
introduce interfacing input / output devices (e.g., 7-segment displays, pushbutton switches, etc.)
through parallel ports, the students realize why programmable microcontrollers are preferred in
embedded system applications.

Programming in C Language: Integrated Development Environment

We quickly move to using C language for programming HCS12 microcontrollers since that
allows students to get a perspective on embedded system programming in the industry. We
introduce a few code fragments showing how simple C language constructs can be coded in
assembly language showing the usefulness of high level language programming. One such
example is shown in Fig. 1.

movb #$FF,DDRB ; configure PORT B for output

ldaa DDRJ

oraa #$03 ; perform logical OR operation on DDRJ data

staa DDRJ ; configure PJ1 ~ PJ0 pins for output

movb #$FF,PORTB ; output a high

ldaa PTJ

anda #$FE ; perform logical AND operation on PTJ data

staa PTJ ; send data to DAC and start it

Fig. 1 (a): An example of an assembly language code fragment

DDRB = 0xFF; // configure PORT B for output

DDRJ |= 0x03; // configure PJ1 ~ PJ0 pins for output

PORTB = 0xFF; // output a high

PTJ &= 0xFE; // send data to DAC and start it

Fig. 1 (b): Equivalent C language code fragment

Students use CodeWarrior integrated development environment (IDE) to code, compile,
simulate, debug, and run it on the Wytec Dragon-12 Plus development board. Students very
quickly notice the availability of various external input / output devices interfaced to the HCS12
on the Dragon-12 Plus board and anticipate programming the microcontroller for generating
audio-visual effects.

Code Debugging without “printf”

Most students in the course come with some exposure to the C/C++ language and programming
on Microsoft Visual Studio. However, a considerable amount of time is spent in reviewing the
important language features to improve students’ programming skills. The CodeWarrior IDE is

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

introduced and students are encouraged to code and debug simple C functions and programs on
it. At this point, the students realize that high level language program debugging cannot always
be done by formatted print out of various intermediate variables and the final result. We show
techniques to modify “printf” oriented programs for debug on CodeWarrior. An example of such
code modification is included in Fig. 2. Students realize that program inputs / outputs can be
realized in many different ways and thus they do have to know the specifications for input /
output prior to developing embedded system programs.

// Find first five integers not divisible by 2, 3, 4, 5, and 6 but divisible by 7 [4]

#include "hcs12.h"

#include <stdio.h>

int main (void)

{

 int cnt = 0, i = 1;

 printf(“\nThe 1st five qualified integers are: ");

 while (cnt < 5) {

 if ((i % 2 == 1) && (i % 3 == 1) && (i % 4 == 1) && (i % 5 == 1))

 if ((i % 6 == 1) && (i % 7 == 0)) {

 cnt ++;

 printf(“ %d”,i);

 }

 i++;

 }

 printf(“\n”);

 asm("swi"); /* software interrupt so that processor halts at this breakpoint */

 return 0;

}

Fig. 2 (a): Example C code not suitable for CodeWarrior debug.

// Find first five integers not divisible by 2, 3, 4, 5, and 6 but divisible by 7

#include "c:\cwHCS12\include\hcs12.h"

void main (void)

{

 int cnt = 0, i = 1, arr[5]; // arr[]: Saves 1st five qualified integers

 while (cnt < 5) {

 if ((i % 2 == 1) && (i % 3 == 1) && (i % 4 == 1) && (i % 5 == 1))

 if ((i % 6 == 1) && (i % 7 == 0)) {

 arr[cnt ++] = i; // store matching values in arr[]

 }

 i++;

 }

 for (;;) { // infinite loop

 }

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

}

Fig. 2 (b): Modified code for the example in Fig. 2 (a) suitable for CodeWarrior debugging. Arr[] shows the five
integers in the Data2 panel of the CodeWarrior debug window.

Parallel Input / Output Interface Programming: Direct Port Programming versus Using Existing
Functions

Next we introduce simple parallel input / output devices (e.g., LEDs, 7-segment displays, DIP
and pushbutton switches) interfaced through various ports of the HCS12. We first show how the
relevant parallel ports are programmed by bit-level manipulations using C language [4]. Later as
prescribed by the authors of [5], we introduce the C functions that encapsulate detailed port
programming. Although these functions make interface programming quite easy, the students
lose sight of how the interfaces actually work based upon what gets read and/or written to the
relevant ports. Some students do initially get a little confused with the two types of solutions to
the I/O interface programming and keep on mixing up the two methods. Later we show them
examples such as the one shown in Fig. 3 to drive the point that both methods result in the same
interface behavior.

// LBE [5] Example 1b: Turn ON every other LED after disabling 7-segment displays

#include <hidef.h> /* common defines and macros */

#include <mc9s12dg256.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12dg256b"

#include "main_asm.h" /* interface to the assembly module */

void main(void) {

PLL_init(); /* set system clock frequency to 24 MHz */

seg7_disable(); // disable 7-segment displays

led_enable(); // enable leds

leds_on(0x55); // turn on every other LED

for(;;) {} /* wait forever */

}

Fig. 3 (a): Example C code using functions.

// Textbook [4] version: Turn ON every other LED after disabling 7-segment displays

#include "hcs12.h"

void SetClk8(void);

void main (void) {

 SetClk8(); // set E clock to 24-MHz

 DDRB = 0xFF; /* configure Port B for output */

 DDRJ |= 0x02; /* configure PJ1 pin for output */

 PTJ &= 0xFD; /* enable LEDs to light by setting PJ1 = 0 */

 DDRP |= 0x0F; /* configure PP[0:3] pins for output */

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

 PTP |= 0x0F; /* disable 7-segment displays */

 PTB = 0x55; // turn on every other LED

 while(1);

}

Fig. 3 (b): Example C code in Fig. 3(a) rewritten using direct parallel port programming.

The students learn that the functions in [5] can be readily written from the bit level port
programming concepts as shown by an example in Fig. 4. Such a study helps them build up their
confidence in embedded system software development in a high level language under different
support conditions.

void led_enable() //Function to enable on board LEDs

{

 DDRB = 0xFF: //set Port B for output; LED anode to be set to a voltage

 DDRJ = 0xFF; //set Port J for output; LED cathode to a voltage

 PTJ &= 0x02; //connect LED common cathode to ground

 PORTB = 0x00; //turn off all 8 LEDs by setting anode voltage low

}

Fig. 4: Example of a function in [5] in terms of port programming.

Interrupts & Their Uses: Elimination of delay Functions

Later we introduce the concepts of interrupt programming. We explain how real time interrupt
can be used to delay an event from another. As an example, we show the conventional code (in
Fig. 5 (a)) for displaying ten shifting patterns of natural numbers on four 7-segment display
digits. This requires a delay of 1600 ms between each shifting pattern display [4].

// Display 10 patterns of shifting 0 – 9 digits on 7-segment displays [4]

#include "hcs12.h"

#include "delay.h“

void SetClk8(void);

unsigned char segPat[13] = {0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x67,0x3F,0x06,0x5B,0x4F};

unsigned char digit[4] = {0xFE,0xFD,0xFB,0xF7};

void main(void) {

 int seq, j, ix;

 SetClk8(); // set E clock frequency to 24 MHz

 DDRB = 0xFF; //configure Port B for output

 DDRP = 0xFF; //configure Port P for output

 while(1)

 for (seq = 0; seq < 10; seq++) { // pattern array start index

 for (j = 0; j < 400; j++) { // repeat loop for each pattern sequence

 for (ix = 0; ix < 4; ix++) { // select the display # to be lighted

 PTB = segPat[seq+ix]; // output segment pattern

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

 PTP = digit[ix]; // output digit select value

 delayby1ms(1); // display one digit for 1 ms

 }

 }

}

}

Fig. 5 (a): Example C code for displaying shifting patterns without using interrupts.

The run time interrupt (RTI) based program [4] eliminates explicit use of “delay” functions and
some of the loops used above as can be seen from Fig. 5 (b). The core display function gets
included in the interrupt service routine (ISR). Comparing and contrasting the two coding
schemes, pros and cons of interrupt programming are elegantly explained.

// Display 10 patterns of shifting 0 – 9 digits on 7-segment displays using interrupts [4]

#include "hcs12.h"

#include "SetClk.h”

int seq; // start index to segPat[] of a sequence of digits (0 to 9)

int ix; // index of digits of a sequence (0 to 3)

int count; // repetition count of a sequence

char segPat[13] = {0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x67,0x3F,0x06,0x5B,0x4F};

char digit[4] = {0xFE,0xFD,0xFB,0xF7};

void main (void) {

 seq = 0; // initialize the start index to segPat[] for the display sequence

 ix = 0; // initialize the index of a new sequence

 count = 400; // initialize the RTI interrupt count of a sequence

 SetClk8(); // set E clock to 24 MHz from an 8-MHz crystal oscillator

 RTICTL = 0x40; // RTI interrupt interval set to 2^13 OSCCLK cycles

DDRB = 0xFF; // configure Port B for output

 DDRP = 0xFF; // configure Port P for output

 CRGINT|= RTIE; // enable RTI interrupt

 asm("CLI"); // enable interrupt globally

 while(1);

}

// RTI interrupt service routine

interrupt void rtiISR(void) {

 CRGFLG = 0x80; // clear RTIF bit

 PTB = segPat[seq+ix]; // send out digit segment pattern

 PTP = digit[ix]; // turn on the display

 if (++ix == 4) // make sure the index to digits of a sequence is from 0 to 3

 ix = 0; // “

 if (--count == 0) { // is time for the current sequence expired?

 seq++; // change to a new sequence of digits

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

 count = 400; // reset repetition count

 }

 if(seq == 10) // is this the last sequence?

 seq = 0; // reset start index of a sequence

}

Fig. 5 (b): Example C code for displaying shifting patterns without using interrupts.

Existing Code Modification: Code Reuse for Faster Design

We emphasize reusing and modifying an existing code for a specific application. Such exercises
help students in appreciating the role of design support engineer. Many homework and
examination problems are set by providing working codes and asking students to modify the
codes appropriately per given specifications. In some cases, the header files in the code provided
to students point to nonexistent folders. These forces students to learn how to search and find
appropriate header file for inclusion in the project. Another common mistake by students is in
not including an interrupt vector table file in programs based on interrupts. In such cases, the
students find the code to compile and not run properly. By correcting for such omissions,
students learn a valuable lesson of code debugging and fixing.

Outcome Assessment and Analysis

Student homeworks and laboratory exercises have especially been identified to test most of the
specific learning that we have described in this paper. Specifically, the following outcome
assessments are being developed for use in the course:

1. Code Debugging without “printf”: This outcome is assessed as part of a larger assessment
involving testing the proficiency of code debugging. We assess students’ ability to debug
“printf” based codes on CodeWarrior by asking them to write an application program in C with a
print out of the results. Proficiency in code debugging outcome assessment involves additional
tests where either incomplete or buggy code fragments are provided or students have to fix the
problems and make the program run with expected results. We consider this learning outcome to
be very important since many engineers will be involved with fixing and upgrading existing
applications in their jobs.

2. Parallel Port Programming versus Using Library Functions: We assess whether students are
capable of interface programming in both ways. This is done through several laboratory
exercises. One such exercise involves providing a fully functional program using functions (or
direct port programming) and asking students to recode it by direct port programming (resp.
using functions). The students get graded on whether the recoded program works or not and how

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

many functions (resp. direct port program lines) are actually recoded by direct port programming
(resp. using functions). We have not mechanized the speed of coding in this assessment yet
which is planned for the future.

3. Conventional Timing versus Interrupt Based Designs: This outcome is assessed by providing
students a functional program that uses “delay” functions and conventional looping technique
and asking them to convert it using real time interrupt or some other appropriate clock-timer
based interrupt mechanism. Many students find this code conversion challenging and first time
assessment results in poor score. The score improves by the time of final examination after
students have done multiple such laboratory exercises.

In the spring 2010 when the course was first presented, we used EAC-ABET specified outcome
C to assess the learning outcome of this course. Outcome C specifies assessing an ability to
design a system, component, or process to meet desired needs within realistic constraints such as
economic, environmental, social, political, ethical, health and safety, manufacturability, and
sustainability. The rubric developed for this outcome partially measured learning 2 and 3
mentioned above. Basic rubric and assessment result are included herein to outline the process
used in 2010.

Rubric Based on the Lab: RTI Driven Display System of a Microcontroller

The student explores the software and hardware input/output interfacing aspects of a practical
microcontroller subsystem by designing blinking of lights and/or characters on various display
devices. These laboratory exercises include the following elements:

• The use of specific ports and loading of proper register values to enable and/or disable
displays (Lab 1).

• The use of real-time-interrupt (RTI) capability of the microcontroller for cost effective
display generation.

• Application of library functions to implement the display interface program (Lab 2).

• The use of a commercial integrated development environment (IDE) to permit the
development, compilation, debugging, downloading into the development board and
running the program.

The outcome C rubric outlines the design elements of these laboratory exercises and how a
student’s performance of this activity is rated.

Applying the Rubrics:

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

These rubrics were applied to the Lab Exercises 1 & 2 performed by students during the Spring
2010 semester of the course as part of their homework set #8. An experienced graduate assistant
was available in the laboratory to help the students, explain the requirements of the laboratory
and observe the correct operation of the programs.

Each Lab Exercise is structured in three parts, and each part is worth 10 points for a total of 30
points.

Lab Exercises 1 & 2 Measurements:

1 = Interpretation of specification and devising a cost effective solution
2 = Using implementation tools/equipment properly
3 = Documenting the design and drawing conclusions

Rating of Sample Lab Exercises Performed during the Spring 2010 Semester

The laboratory exercises were developed for the first time using two different concepts. Lab 1 is
based upon programming the uC port registers and other control registers to implement a display
function. Lab 2 on the other hand encourages the use of pre-existing input-output interface
functions to implement a display driver solution.

 Lab 1 Lab 2
Measure 1 2 3 | _ 1__ 2__ 3 Total_
Average 4.5 9.5 3.5 | 6 9 2.5 35

Based on the scores of 10 students, the average was 35 points (58.3%) with a spread of 15 points
(25%) to 50 points (83.3%). The minimum acceptable score is 30 points (50%). All students met
the objectives of outcome C.

Concluding Remarks

Additional interrupt based programming using timers and other on and off-chip devices are
introduced in the course. Overall we found that showing students how to use multiple techniques
to program the same input / output interface application is quite essential in the learning process.
Learning to develop interface programs using a good set of support functions is easier, but it fails
to prepare students to face the varying work place setups. In many cases, a good function
package may not be available and the engineer needs to develop the application by bit level
interface programming. Thus at the end of our course, the students feel more comfortable in
programming with any given set of support functions as they may face in their industrial career.
New rubrics to assess the specialized learning outlined in this paper are under development and
will be used for the course. The results will be reported in a future publication.

Copyright ASEE Middle Atlantic Regional Conference
April 29-30, 2011, Farmingdale State College, SUNY

References

[1] Wong, S., Cotofana, S. "On Teaching Embedded Systems Design to Electrical Engineering Students."
Retrieved March 13, 2011, from http://ce.et.tudelft.nl/publicationfiles/620_14_s_wong_ES.pdf.

[2] Flynn, A. M. "DSPs in Teaching Embedded Systems." Retrieved March 13, 2011, from
http://www.ti.com/sc/docs/general/dsp/festproceedings/fest2000/micro001.pdf.

[3] Berger, A. S. (2001). "A New Perspective on Teaching Embedded Systems Design." 3/20/2001 12:43 PM EST
Retrieved March 13, 2011, from http://www.eetimes.com/discussion/guest-editor/4023302/A-New-Perspective-on-
Teaching-Embedded-Systems-Design.

[4] Huang, H.-W. (2010). The HCS12/9S12: An Introduction to Software and Hardware Interfacing, Delmar
Cengage Learning.

[5] Haskell, R. E., Hanna, D.M. (2008). Learning By Example Using C Programming the Dragon 12-Plus Using
CodeWarrior. Rochester, MI, LBE Books.

[6] ABET. (2009). "Criteria for Accrediting Engineering Programs." Engineering Accreditation Commission, ABET
Board of Directors, from http://www.abet.org/Linked%20Documents-
UPDATE/Criteria%20and%20PP/E001%2010-11%20EAC%20Criteria%201-27-10.pdf .

