
Paper ID #25343

Teaching and Assessing Sustainability Based on the Karlskrona Manifesto

Dr. Ing. Ivan Cabezas, Universidad de San Buenaventura

Ivan Cabezas was born in Colombia in 1973. He received the B. Eng. in Computer Science and the
Engineering Ph. D. degrees from Universidad del Valle, in 2004 and 2013, respectively. He is a member
of IEEE and ASEE. Engineering education and sustainability concerns during the software engineering
design process are among his research interests. He has been working as a full-time professor in the Soft-
ware Systems Engineering program at the Engineering School of the Universidad de San Buenaventura -
Cali, in Colombia, since 2014.

Eileen Webb, Accreditation Preparation

Eileen Webb is president of Accreditation Preparation which has helped over 100 programs at over 20
universities with their ABET accreditation in the United States, Mexico, Colombia and Portugal since
2012. She is also president of Streamline Consulting, an industrial engineering firm serving manufactur-
ers, casinos and government clients. Former employers include Texas Instruments, Raytheon, Procter and
Gamble, Shedd’s Food Products, Weyerhaeuser Paper, ABB, and others. She has been an invited speaker
at the ABET Symposium, World Engineering Education Forum, LACCEI (Latin America and Caribbean
Consortium of Engineering Institutions) and Simposium Assessment in Barranquilla, Colombia Her bach-
elor of chemical engineering is from Georgia Institute of Technology (Georgia Tech.)

c©American Society for Engineering Education, 2019

Teaching and assessing sustainability based on the Karlskrona Manifesto

Abstract

Sustainability is not a new concept. Over the last few decades the Brundtland Commission

Report and the United Nations have emphasized the importance of sustainability and defined key

concepts. Understanding and seeking sustainability is not only a must but also a challenge for

today’s engineers. Incorporating sustainability into design helps students build their engineering

judgement beyond the short-term, technical issues that they tend to focus on to better prepare

them for the ambiguities of professional practice. Consequently, engineering curricula and

faculty should prepare students with the required knowledge, skills, and behaviors to address it.

However, this preparation is not a simple task due to the little guidance available to achieve it on

a daily basis. On the one hand, some approaches around it may generate ambiguities and

misconceptions arising during the engineering design process. On the other hand, a concise but

narrow perception of sustainability framing it as an environmental issue or being able to maintain

a business activity over time introduce bias to a proper engineering design process aimed at

sustainable development. In fact, it can be argued that there is not a single definition of

sustainability suited to all engineering disciplines. However, the main elements of a

sustainability model are general enough to be applied to most engineering disciplines.

In this paper, sustainability is addressed as a software engineering design concern that involves

sustainability principles and multiple dimensions at different moments in time. The presented

experience is aimed as a guide for teaching and assessing sustainability during a software

engineering capstone design. It is based on the Karlskrona Manifesto for sustainability design,

involving societal, individual, environmental, economic, technical dimensions, and considering,

short, medium and long-term effects of engineering solutions. A sustainability matrix was used

as a tool for analyzing and comparing different software systems designs. Based on the

conducted experience, undergraduate students faced a challenge for identifying the impacts of

software systems beyond a short-term time window, while graduate students were better able to

identify potential impacts beyond first-order – short term time horizons. Learned lessons are

shared for the sake of repeatability.

Tags: sustainability, Karlskrona Manifesto, Software Engineering, capstone design.

Introduction and paper goal

At 1987, The Brundtland Commission Report [1] defined sustainable development as meeting

the needs of the present without compromising the ability of future generations to meet their own

needs. The 1992 United Nations Conference on Environment and Development relate sustained

development with simultaneous environmental protection, plus economic and social

development [2]. These three factors were recognized as the interdependent and mutually

reinforcing pillars for achieving sustainable development by the United Nations World Summit

on Sustainable Development in 2002 [3]. More than thirty years later, a balance among the

above-mentioned factors is widely adopted and promoted as a way to achieve sustainable

management and development, as they are a foundation of the United Nations 17 Sustainable

Development Goals of the 2030 Agenda for Sustainable Development [4]. The United Nations

17 Sustainable Development Goals aim to transform our world and to improve people’s lives and

prosperity on a healthy planet. It comprises 169 broad and interdependent goals. There is not an

explicit mention of software in those goals. Information and communications technology and

technological development are addressed by few of them, mainly targeting developing countries.

Thus a software engineer might conclude that his or her responsibility regarding sustainability is

narrow on a daily basis, or it is beyond software related activities. However, in practice, software

plays a central role in sustainability, because of the extent to which software systems impact all

aspects of our lives. In the context of software engineering, sustainable development can be

understood as a way of how a software product is developed, so that negative and positive

impacts on sustainability are captured, documented, and optimized over the whole product’s life

cycle [5]. Sustainable software was defined in [6] as software whose direct and indirect negative

impacts on economy, society, human beings, and the environment resulting from the

development, deployment, and use of the software is minimal or has a positive effect on

sustainable development. In fact, the Brundtland Commission Report, the multiple United

Nations initiatives, and several available works on literature do a good job of emphasizing the

importance of sustainability and defining many key concepts. However, in practice, there is a

gap between understanding sustainability and achieving it based solely in a conceptual ideal.

This gap can be tackled during the engineering design process [7] since it is an iterative, creative,

decision-making process for devising a system, component, or process fulfilling desired needs

and specifications within a set of constraints [8]. Thus, the engineering design process requires

involving sustainability principles during decision-making in order to obtain a sustainable

engineering solution.

The goal of this paper is to present an experience aimed to incorporate the three main elements

of a sustainability model – the Karlskrona Manifesto – during the engineering design process:

sustainability principles, sustainability dimensions and order effects [9]. The Karlskrona

Manifesto allows practitioners and researchers to understand the major role that software

engineering plays on sustainability. It arose as the outcome of a cross-disciplinary initiative to

create a common ground and develop a focal point of reference for the global community of

research and practice allowing a deeper thinking on software engineering and sustainability. It

has proven its usefulness for effectively communicating key issues, goals, values, and principles

of sustainable design. Moreover, it has been adopted by researchers addressing a wide variety of

subjects in software engineering (e.g. software requirements, software engineering curricula,

systems thinking, design thinking, engineering ethics, and multidisciplinary engineering, among

others) [10].

Background

Sustainable software approaches and models

A systematic mapping study on sustainability in software engineering is presented in [11].

Among the conclusions, authors highlight that in spite of the increasing attention sustainability

has received in software engineering during the last years, it is still not clearly defined nor

understood. In practice, software sustainability issues arise due to main factors: firstly, the time-

to-market pressure during software development projects on which sustainability is an

afterthought, and secondly, the software engineers’ lack of education and skills for applying

sustainability-improvement techniques [12].

Three main approaches for classifying software sustainability works are as follows [5]: (i)

considering sustainability as a part of software quality [13], (ii) using quality attributes and

metrics supporting sustainability [14], and (iii) adopting a global vision of sustainability [9].

From our perspective, the last approach offers advantages over the two formers. Such a claim

can be supported by using a theoretical framework on sustainability. In fact, the Karlskrona

Manifesto can be used to create a global view of sustainability. In this paper, three aspects of the

Manifesto are highlighted for the sake of clarity: sustainability principles, sustainability

dimensions, and order effects [9].

Sustainability principles

A sustainability principle is a perspective from which sustainability is assumed and adopted. The

Karlskrona Manifesto entails nine principles and a pragmatic perception about sustainability.

● Sustainability is a challenge to be addressed, not a problem to be solved.

● Sustainability is a concern independent of the purpose of the system.

● Sustainability applies to both a system and its wider contexts.

● Sustainability requires actions on multiple levels.

● System visibility is a necessary precondition and enabler for sustainability design.

● Sustainability is systemic.

● Sustainability has multiple dimensions.

● Sustainability requires long-term thinking.

● Sustainability transcends multiple disciplines.

● It is possible to meet the needs of future generations without sacrificing the prosperity of

the current generation.

Sustainability dimensions

Dimensions allow understanding the nature of sustainability in any given situation. These are

summarized as follows.

● Environmental: focused on the long term effects of human activities on natural systems.

It includes the use and stewardship of natural resources, such as energy consumption,

waste production, and the impact on climate change, among others.

● Economic: focused on assets, capital, and added value. It includes wealth creation,

prosperity, profitability, capital investment, and return on investment, among others.

● Societal: focused on the relationships between individuals and groups. It covers social

equity, justice, employment, democracy, as well as the structures of mutual trust and

communication in a social system and the balance between conflicting interests, among

others.

● Individual: refers to the wellness of human beings. It includes individual freedom, human

dignity, individuals’ ability to thrive and exercise their rights, among others.

● Technical: refers to longevity of information, systems, and infrastructure and their

adequate resilience and evolution with changing surrounding conditions. It includes

maintenance, obsolescence, data integrity, and system transitions, among others.

Impacts of software systems

For evaluating the sustainability of a software system, three orders of effects need to be

considered.

● Direct or first-order: are the immediate opportunities and effects created by the physical

existence of software technology and the processes involved in its design and production.

● Indirect or second-order: are the opportunities and effects arising from the application

and usage of software.

● Systemic or third-order: are the effects and opportunities that are caused by large

numbers of people using software over time.

As we said before, it is possible to identify three main approaches for classifying software

sustainability. The nature of approaches relating sustainability to quality models or to quality

attributes and metrics, includes technical, environmental, economic, and –partially– societal

dimensions. Nevertheless, by definition, these are focused on the technical dimension and in

direct and indirect order effects related to the software development process, software product

release and technical maintenance. In this way, the societal dimension is oriented to the software

development team. Consequently, as a global vision of sustainability approach, the Karlskrona

Manifesto provides a more holistic and comprehensive theoretical framework for addressing,

understanding and discussing sustainability.

Sustainability analysis matrix

Although the Karlskrona Manifesto is focused on principles and values of sustainability, instead

of current techniques, specific models, and suggested approaches, it can be used as the

foundation of specific techniques. An adaptation of the Attribute-Driven Design method [15]

was proposed in [16], as a research product of a master’s in software engineering project at the

Universidad de San Buenaventura – Cali. The adapted method is termed as Sustainable

Attribute-Driven Design and includes sustainability drivers as one of the inputs with higher

priority, aiming to achieve a sustainable architectural design. In the adapted method, an analysis

of sustainability is documented based on a multidimensional impact matrix of the architectural

components considered during the design phase by stakeholders. In this way, the adaptation

introduced by the Sustainable Attribute-Driven Design method consists of analyzing and

documenting sustainability impacts and opportunities of each architectural component regarding

the five dimensions of sustainability against the three order effects. The multidimensional impact

matrix is illustrated in Figure 1. In it, system architects and stakeholders can document impact

and opportunities introduced by a specific design element regarding each dimension and

considering direct, indirect and systemic effects. Impacts are associated with negative effects (i.e.

threats, drawbacks, risks, waste, technical debt, among others), while opportunities are

associated with positive leverages points (i.e. advantages, improvements, costs reductions,

profits, among others) in terms of sustainability. Sample text of each dimension and order effect

is shown in the examples from students work in the conducted experience section. A decision-

making process on which designers choose among possible alternatives is based on such

documented analysis. The contribution of the multidimensional matrix relies on providing to the

software architects a tool to conduct a very complex, challenging and abstract task: an

engineering design process promoting sustainability.

Teaching sustainability in the software engineering context

On the one hand, although international standards and curriculum guidelines such as the

Software Engineering Body of Knowledge V 3.0 [17] and the SE 2014: Curriculum Guidelines

for Undergraduate Degree Programs in Software Engineering [18] consider knowledge areas

related to sustainability, there is not an explicit relationship between sustainability principles or

concepts and such knowledge areas. Something similar happens with the Software Engineering

Code of Ethics [19]. In fact, there is not wide guidance or a well-adopted approach on how to

incorporate sustainability into a software engineering curriculum [10].

Figure 1. Multidimensional impact matrix for analyzing design sustainability.

Consequently, there is not an agreement on which subjects and material should be addressed in a

sustainability course in the context of software engineering. Moreover, there is a lack of or

reusable learning objects for this effort. Some approaches for integrating sustainability into the

educational path can be described as follows [10]: (i) developing courses covering selected

sustainability topics, (ii) developing modules or projects addressing sustainability issues to be

plugged into existing courses and (iii) transforming existing courses aiming a sustainability

awareness. However, it still not clear which one or combination of these is most effective. On the

other hand, there are clear promoters for preparing software engineering students in

sustainability topics at knowledge, comprehension and application levels. The definition of the

engineering design process and the student outcome number four provided by the ABET’s EAC

[8] are among them.

Assessing sustainability in capstone design projects

Designing for sustainability is not an alternative to traditional engineering design, but a more

holistic design paradigm [7]. Thus, the ultimate goal of engineering education embracing

sustainable principles is to train engineers to incorporate sustainability considerations into their

professional practices. Among the many contributions for assessing sustainability, we highlight

the proposals of [7] and [20]. Authors of [7] developed an analytical sustainable design rubric to

aid quantifying students’ abilities to incorporate sustainability into capstone design projects in

the civil and environmental engineering context. It aimed to capture not only the extent to which

students engage in sustainable design but also the influence of project sponsors and/or course

instructors on sustainable design expectations. In [20] the above-mentioned rubric is reviewed

and extended in order to broaden its applicability to engineering design projects outside of civil

and environmental engineering. Nevertheless, the original and the reviewed rubrics only partially

cover the five sustainability dimensions discussed in the previous section, focusing on

environmental, economic and societal dimensions. Moreover, indirect and systemic effects are

not explicitly addressed in the rubrics.

Conducted experience

Sustainability posture

The conducted experience reflects a posture around both sustainability and the engineering

design fostering it. It is defined as follows.

● There is not a unique or general set of features allowing to declare as sustainable a

software product in all scenarios and circumstances. Consequently, during an iterative

decision-making process, the goal is analyzing, comparing and choosing by stakeholders,

among the different alternatives based on the inherent sustainability trade-offs associated

with each engineering solution

● A software product incorporating sustainability concerns is the result of a sustainable

development process on which the engineering design decision-making explicitly

involves, documents, and analyzes sustainability principles, dimensions and short, mid

and long term order effects of the software system where the software product is used.

● Seeking sustainability is an ongoing and continuous effort which requires iterative

analysis at different moments in time, incorporating constraints imposed by a changing

environment.

Experience development and designed rubric

The conducted experience was developed at the Universidad de San Buenaventura – Cali, in

bachelor and master programs, in their software engineering projects.

In the bachelor program, the instruction around sustainability took place in the final semester

during the major design experience. The theory of the Karlskrona manifesto was presented to

students along with examples to help them understand its application to real projects. It was led

by the course coordinator, in periodic meetings, in order the students would incorporate their

sustainability analysis in the final technical report and present it as part of their projects defense.

In that scenario, students were supported by their project advisor and were responsible to explain

sustainability trade-offs of the proposed software solution to stakeholders.

In the master program, the instruction took place in a first-year mandatory course, devoted to

ethics and sustainability. The course faculty presented several models and approaches for

analyzing sustainability in software engineering, as well as related subjects to the lack of it such

as technical debt [21]. Special attention is devoted to the Karlskrona Manifesto approach and to

the multidimensional matrix, as a tool for documenting and analyzing sustainability trade-offs.

Students apply the learned concepts to their first version of the research-project proposal solution

during the course. The exercise is repeated, as their move forward in project development, and

updated analysis are presented by students in follow-up progress meetings in front of the

program faculty members committee. A final sustainability analysis is presented at the research-

project defense. In practice, graduate students had more feedback than undergraduate students.

Feedback was provided to all students during follow-up meetings. A rubric was developed to this

end. It is shown in Figure 2.

Study limitations and motivation

This practice has been applied for two years in the bachelor program and for one year in the

master program. So far, we have focused on designing and developing the respective

sustainability undergraduate module and the graduate course. We have not yet conducted surveys

focused on student’s perceptions of sustainability issues, neither pre-course nor post-course tests.

Figure 2. Rubric for assessing sustainability analysis matrix.

The student outcome of the designed and developed educational experiences is stated as follows:

a capability to apply engineering judgment regarding sustainability issues in the context of

software engineering. Regarding the undergraduate program, preparing the students for

performing sustainability analysis from a software engineering perspective contributes to the

educational objectives fulfillment. Taking into account the professional profile of master students

and their active role on the local software industry, engaging them in explicitly incorporating

sustainability aspects in their professional exercise is a matter of social and ethical responsibility

by the faculty and the program, and a way to serve program constituents.

Student sample work and observed results

Two examples of matrices for a graduate and undergraduate student, respectively, are shown for

the sake of illustration.

The matrix shown in Figure 3 corresponds to a master project introducing the software

architecture for a Health Catalog Repository, which allows the storage, management, and

custody of Electronic Health Records based on a regulated model of Personal Health Records, as

a cloud service [22, 23]. The obtained sustainability analysis matrix is associated with strong

student performance on the educational experience outcome. Impacts and opportunities were

properly documented and supported, and properly located along the three orders. Moreover,

impacts and opportunities correspond to the developed project specificities, properly viewed

from each sustainability dimension.

Figure 3. Sustainability matrix for a software architecture developed during a master project.

Beyond this particular example, we also observed that some graduate students fail to properly

address the specificity of the software project on hands while they rely on common places for

some dimensions (e.g. user experience in the individual dimension, and identify the opportunity

of using green-cloud infrastructure during software development in the environmental

dimension). It was also clear that the periodic presentations of conducted sustainability analysis

allow students to improve it and enhance it, prior to the final defense, besides that their long

experience in the software industry and software projects gave them a broader perspective.

Additionally, a more confident professional communication allowed them to be more effective in

sharing their perspective with stakeholders. The matrix shown in Figure 4 corresponds to a

bachelor project focused on a multimodal image retrieval model in the context of a smart-city

safety. It tackles a face detection, comparison, indexing and recovery problem in the context of a

very large image database [24]. While the project was technically successful, and properly

fulfilled its objectives, the obtained sustainability analysis matrix is an example of weak student

performance. The formulation of some impacts and opportunities were ambiguous and were not

properly associated with the respective dimension. There are only impacts for a subset of

dimensions. Long-term impacts and opportunities are only present for a single dimension.

Beyond this example, we also observed that undergraduate students found a challenge for

identifying impacts and opportunities, in most of the dimensions, beyond direct order effects. An

unclear distinction between the societal and the individual dimensions was also commonly found

in sustainability analysis. Moreover, undergraduate students tend to avoid identifying design

impacts. We believe they were afraid that by doing so, were exposing in somehow design

weaknesses, and it may hamper their projects assessment.

Figure 4. Sustainability matrix for a software system developed during an undergraduate project.

Additionally, undergraduate students were more susceptible to be influenced by stakeholders and

even advisor perspectives, instead of presenting impacts and opportunities totally analyzed on

their own. As a common factor, graduate and undergraduate students felt more confident

identifying impacts and opportunities related to the technical dimension.

Conclusions

Sustainability reasoning about software products imposes particular challenges, as software is

mainly concentrated in logical and abstract entities instead of concrete or physical artifacts. Most

of the times, the origin of sustainability issues in software projects arises due to giving exclusive

attention to the economic and the technical dimensions during the development phase, while only

the direct impacts of the software systems are considered. Such a scenario on which

sustainability is an afterthought can also be encouraged by the necessity of having working

software and time-to-market pressures. Against this common practice, the research community in

software engineering is still pursuing concise and widely accepted guidance for the multiple

aspects of sustainability in our professional exercise. Such guidance should be supported by

specific tools to be applied during the engineering design process. In this paper, the contributions

are as follows. The multidimensional impact matrix is presented and discussed aiming to build in

students engineering judgment around sustainability issues. It also introduces a rubric for

assessing how properly students understand and apply in a concrete engineering design situation

the three main elements of a sustainability model: sustainability dimensions, sustainability

principles, and order effects. In this way, the proposed rubric is both specific and general enough

to be used not only in a sustainability analysis based on the model introduced by the Karlskrona

Manifesto, but also with other sustainability models. Challenges faced by students are discussed,

giving some insights to faculty seeking to conduct a similar pedagogical experience. Currently

we are working on adding more examples to clarify the difference between individual and

societal dimensions, and also to better illustrate possible impacts and opportunities beyond first-

order effects.

References

[1] G. Brundtland et al., “Our Common Future: Report of the World Commission on Environment & Development”,

Oxford University Press, 1987.

[2] United Nations, “UN - Conference on Environment and Development”, [Online]

http://www.un.org/geninfo/bp/enviro.html, Accessed January 31, 2019.

[3] United Nations, “UN - World Summit on Sustainable Development”, [Online]

https://sustainabledevelopment.un.org/milesstones/wssd, Accessed January 31, 2019.

[4] United Nations, “UN - Sustainable Development Goals”, [Online]

hhttps://www.un.org/sustainabledevelopment/sustainable-development-goals/, Accessed January 31, 2019.

[5] R. Amri and N. B. B. Saoud, "Towards a Generic Sustainable Software Model," Fourth International Conference

on Advances in Computing and Communications, pp. 231-234, 2014.

[6] M. Dick, S. Naumann, and N. Kuhn, “A model and selected instances of green and sustainable software” What

Kind of Information Society? Governance, Virtuality, Surveillance, Sustainability, Resilience, IFIP Advances in

Information and Communication Technology Vol. 328, pp. 248-259, 2010.

[7] M. Watson et al., “Development and Application of a Sustainable Design Rubric to Evaluate Student Abilities to

Incorporate Sustainability into Capstone Design Projects”, 120th ASEE Annual Conference & Exposition, 2013.

[8] ABET, “EAC - Criteria for Accrediting Engineering Programs, 2019 – 2020”, [Online]

https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/,

Accessed January 31, 2019.

[9] C. Becker et al., “Sustainability Design and Software: The Karlskrona Manifesto”, IEEE/ACM 37th IEEE

International Conference on Software Engineering - ICSE, pp. 467–476, 2015.

[10] B. Penzenstadler, et al., "Everything is INTERRELATED: teaching software engineering for sustainability",

40th International Conference on Software Engineering: Software Engineering Education and Training - ICSE-

SEET, ACM, pp 153-162, 2018.

[11] N. Wolfram, P. Lago, and F. Osborne, "Sustainability in software engineering", Sustainable Internet and ICT

for Sustainability (SustainIT) 2017.

[12] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss, “Sustainability guidelines for long-

living software systems,” in 28th Intl. Conf. on Software Maintenance, pp. 517–526, 2012.

[13] C. Calero, M. A. Moraga, and M. F. Bertoa, “Towards a software product sustainability model,” University of

Castilla-La Mancha & University of Malaga - 2013, [Online] https://arxiv.org/abs/1309.1640 , Accessed January 31,

2019.

[14] F. Albertao et al., “Measuring the sustainability performance of software projects”, Proc. the IEEE 7th

International Conference on e-Business Engineering - ICEBE, pp. 369-373, 2010.

[15] R. Wojcik, “Attribute-Driven Design Method – ADD”, [Online]

http://www.sei.cmu.edu/architecture/tools/define/add.cfm, Accessed January 31, 2019.

[16] Villa, L., et al., “Towards a Sustainable Architectural Design by an Adaptation of the Architectural Driven

Design Method”, pp. 71-86, ICCSA, 2016.

[17] IEEE Computer Society, “Software Engineering Body of Knowledge SWEBOK V3 Guide”,[Online]

https://www.computer.org/education/bodies-of-knowledge/software-engineering/topics , Accessed January 31,

2019.

[18] ACM, “Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering", [Online]

https://www.acm.org/education/curricula-recommendations, Accessed January 31, 2019.

http://www.un.org/geninfo/bp/enviro.html
https://sustainabledevelopment.un.org/milesstones/wssd
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/
https://arxiv.org/abs/1309.1640
http://www.sei.cmu.edu/architecture/tools/define/add.cfm
https://www.computer.org/education/bodies-of-knowledge/software-engineering/topics
https://www.acm.org/education/curricula-recommendations

[19] IEEE Computer Society and ACM, “Software Engineering Code of Ethics”, [Online],

https://www.computer.org/education/code-of-ethics, Accessed January 31, 2019.

[20] C. Cowan, E. Barrella, and M. Watson, “Validating Content of a Sustainable Design Rubric Using Established

Frameworks”, 124th ASEE Annual Conference & Exposition, 2017.

[21] R. Verdecchia, I. Malavolta and P. Lago, "Architectural Technical Debt Identification: The Research

Landscape", IEEE/ACM International Conference on Technical Debt -TechDebt, pp. 11-20, 2018.

[22] Villa, L., et al.: Electronic health record as an eHaaS. In: 2015 10th Computing Colombian Conference,

10CCC, 2015.

[23] Black, A.S., Sahama, T.: eHealth-as-a-Service (eHaaS): the industrialization of health informatics, a practical

approach. In: 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services

(Healthcom), pp. 555–559, 2014.

[24] J. Cao, B. Wang, and D. Brown, "Similarity based leaf image retrieval using multiscale R-angle description",

Information Sciences, Volume 374, pp. 51-64, 2016.

https://www.computer.org/education/code-of-ethics

